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ABSTRACT: Computational modeling has been adopted in all aspects of drug research and
development, from the early phases of target identification and drug discovery to the late-stage clinical
trials. The different questions addressed during each stage of drug R&D has led to the emergence of
different modeling methodologies. In the research phase, systems biology couples experimental data
with elaborate computational modeling techniques to capture lifecycle and effector cellular functions
(e.g. metabolism, signaling, transcription regulation, protein synthesis and interaction) and integrates
them in quantitative models. These models are subsequently used in various ways, i.e. to identify
new targets, generate testable hypotheses, gain insights on the drug’s mode of action (MOA), translate
preclinical findings, and assess the potential of clinical drug efficacy and toxicity. In the development
phase, pharmacokinetic/pharmacodynamic (PK/PD) modeling is the established way to determine safe
and efficacious doses for testing at increasingly larger, andmore pertinent to the target indication, cohorts
of subjects. First, the relationship between drug input and its concentration in plasma is established.
Second, the relationship between this concentration anddesired or undesired PD responses is ascertained.
Recognizing that the interface of systems biology with PK/PD will facilitate drug development, systems
pharmacology came into existence, combiningmethods from PK/PDmodeling and systems engineering
explicitly to account for the implicated mechanisms of the target system in the study of drug–target
interactions. Herein, a number of popular system biology methodologies are discussed, which could be
leveraged within a systems pharmacology framework to address major issues in drug development.
© 2013 The Authors. Biopharmaceutics & Drug Disposition published by John Wiley & Sons, Ltd.
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the early stages of target identification and drug
discovery, up to phase II–IV of clinical trials. In
the early stages, computational modeling in the
form of systems biology, fueled by recent advances
in ‘omics’ technologies, constructs predictive
models to integrate major cellular functions and
monitor how these are altered in disease; identifies
new drug targets; predicts the potential of clinical
efficacy and toxicity of uncharacterized compounds
and probes their mode of action (MOA). Systems
biology employs elaborate methodologies to
exploit and integrate prior knowledge of the
Received 30 July 2013
Accepted 12 August 2013y John Wiley & Sons, Ltd.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


478 I. N. MELAS ET AL.
interrogated system (disease, cell type, a specific
tissue, etc. and their interactions with compounds
of interest) and extracts qualitative or quantitative
features that will lead to its better understanding,
eventually facilitating drug development. The
preclinical and clinical development, on the other
hand, follows a completely different paradigm.
Scientists, clinical pharmacologists and physicians
have to decide on issues such as: What is the
optimal drug candidate to advance in the next
phase of clinical trials? What dose/regimen will
maximize efficacy and minimize toxicity? What
are the right patients to treat with the drug?
Because of the nature and consequences of these
questions and because of the existing staged
paradigm of drug development [1], PK/PD
modeling, an empirical data-driven approach based
on cardinal pharmacological principles [2], has
gained wide acceptance: PK/PD modeling first
establishes the relationship between drug input
and its concentration in plasma and second, estab-
lishes the relationship between this drug plasma
concentration and a desired or undesired response,
be it a biomarker, a clinical endpoint or an adverse
event, e.g. tumor growth or cell apoptosis.
Traditionally, systems biology and PK/PD

modeling existed in ‘parallel universes’ [3].
However, it is becoming evident that their role is
complementary and that a lot could be gained
by their integration. For example, PK/PD
overlooks pertinent biological network aspects
such as the molecular basis of the disease, the
way in which cellular processes are orchestrated
by intricate signaling mechanisms, and how these
mechanisms cross-react. This severely limits the
general applicability of the model and disallows
extrapolations and wider pharmacological and
biological insights. On the other hand, PK/PD is a
relatively tractable and pharmacologically sound
method that manages to tame and quantify the
uncertainty around the point estimates of the
model parameters as well as the inter-individual/
biological and unexplained variability inherent in
the data. Thus, it can quantify the dose–exposure–
response relationship and assess the robustness
of the model. The latter is not always true in
systems biology. Systems biology figures out the
qualitative and quantitative aspects of the
molecular mechanisms of disease by leveraging
extensive and diverse data from in vitro
© 2013 The Authors. Biopharmaceutics & Drug Disposition
published by John Wiley & Sons, Ltd.
experiments, but that imposes limitations, especially
when there is limited understanding of how these
data are incorporated in the physiology of the
target organism and how they affect its clinical
response. Thus, depending on the system under
study, systems biology approaches may lead
to intractable or ill-defined models with low
confidence on their parameters making their use
for robust quantitative predictions of clinical
response risky. Systems pharmacology emerged
to form this exact interface between PK/PD and
systems biology [4,5]. It combines methods from
PK/PD modeling and systems engineering
explicitly to account for the implicated mecha-
nisms of the target system in the study of drug–
target interactions, albeit in a tractable, robust
way. In more detail, instead of ignoring the
biology of the target organism and focusing only
on the data-driven correlation of drug exposure
and clinical response, systems pharmacology
employs mechanistic methods to capture key
properties of the system (e.g. focused biology
around the target or biomarker), increasing the
applicability and relevance of the model.

Herein, we first present the current PK/PD
methodologies applied in drug development and
then discuss a number of systems biology ap-
proaches that could be leveraged within a systems
pharmacology framework to facilitate: (i) the
modeling of signaling pathways, (ii) identification
of drug MOA and (iii) prediction of clinical drug
efficacy and toxicity.
Computational Modeling in the Clinic

In the clinical phase of drug development, compu-
tational modeling takes place mostly in the form
of PK/PD. This is now a well-defined discipline
explained in established textbooks [2,6], thus,
the technical details will not be covered here.
Physiologically based pharmacokinetic (PBPK)
modeling, an approach lying between standard
PK modeling and systems pharmacology, warrants
a brief discussion. PBPK uses compartments that
correspond to specific tissues/organs and models
drug distribution between them in a physiologi-
cally realistic manner using the cardiovascular
system [7,8]. Moreover, recent advancements
in the predictability of key pharmacokinetic
Biopharm. Drug Dispos. 34: 477–488 (2013)
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Box. 1. Phosphoproteomic technologies.
Phosphoproteomic technologies play a key role in computational
modeling for drug development, since they provide high content
data at the level where most of the modern drugs act [49]. As
a result, all forms of mechanistic modeling for the study of
signaling pathways and the identification of drug MOA,
leverages phosphoproteomic data. Themost commonly employed
phosphoproteomic technologies in drugdevelopment, that are also
suitable for the clinical phase and the analysis of biopsy samples
are protein microarrays, xMAP technology and flow cytometry.

Protein microarrays [34,35] typically employ a glass slide, on
top of which the capture antibody is spotted. Then, the sample
bathes the slide and proteins from the sample are immobilized
on the matching antibodies. At the final step of the assay, a
secondary antibody (which is biotinylated) bathes the slide and
binds to the corresponding proteins. The amount of proteins on
the slide is measured by a plate reader, providing an estimate of
protein abundance; while, if one of the two antibodies is anti-
phospho, the phosphorylation of the protein is estimated instead.
The use of robotic systems to spot the antibodies on the slide
allows microarrays to measure up to 1000 proteins per sample,
essentially making antibody availability the limiting factor of this
platform. A variation of protein microarrays called Reverse Phase
Protein Arrays (RPPA) employs the spotting of the sample on the
glass slide; then an antibody solution, which is biotinylated, bathes
the slide and binds to the matching proteins. In this manner
thousands of samples can be screened at the same time but
measuring only a single signal.

xMAP technology [36,64], is an antibody-based, suspension
array technology. xMAP employs polystyrene beads as a
substrate, on top of which capture antibodies are coupled; the
beads are color-coded, so every bead color corresponds to a
different capture antibody (signal). The sample is plated on 96 or
384 well plates and beads of different colors are multiplexed and
suspended with the sample. Proteins from the sample bind
to the capture antibody on the bead surface, while the rest of
them are washed away. Then, a secondary antibody, which is
biotinylated, is introduced and binds to the immobilized
proteins, thus completing a sandwich assay. Then another
washing step follows and the bead–protein–secondary
antibody construct goes through the xMAP detection system
in which two lasers are used. One excites the bead’s red color
and one excites the fluorophore’s green color, two
photomultipliers collect the emissions and provide an
estimate of protein abundance for each signal. With xMAP
technology, up to 30 signals may be measured in each well,
providing high sample and signal throughput.

Flow cytometry [37] is a single cell technology that employs
the suspension of cells, properly labeled with fluorescent
chemicals, in a stream of liquid going through a detection
system. The detection system uses a laser to excite the
fluorophore and a photomultiplier measures the emitted
signature. To measure phosphorylation activity, phospho-
specific fluorescent antibodies are used that bind to the target
proteins. If more than one signals are to be quantified at the same
time, the fluorophores must emit in different wavelengths
(colors). Using polychromatic flow cytometry, Perez et al. in [37]
measured a total of 11 proteins (members of the MAPK family)
in both artificially and physiologically perturbed peripheral
blood mononuclear cells (PBMCs).
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parameters from human in vitro data and in the
availability of dedicated software platforms and
associated databases, allowed PBPK to construct
even more detailed models, predicting the time
dependent plasma concentration of the drug,
drug–drug interactions and the effects of age,
genetics and disease to the kinetics of the drug.
Recently, a few mechanistic models have been

proposed that capture the processes governing
the transduction of target activation into the
response in vivo [9]. These models employ concepts
from dynamic systems analysis (such as ordinary
differential equations (ODE)s modeling) to model
signaling cascades or even homeostatic feedback
(transduction models).
It has become clear in recent years that PK/PD

models are evolving to account for the mecha-
nisms of the target organism [4]. Systems pharma-
cology works in this direction, attempting to
incorporate methodologies from systems engi-
neering and systems biology with PK/PD model-
ing to widen its applicability and to facilitate the
prediction of drug action [4,5]. Systems pharma-
cology in the preclinical phase could aid in the
design of clinical companion tests to uncover
sensitivity (or resistance) to different drugs; or
screen high-risk drugs out of the development
pipeline as early as possible, de-risking programs
ahead of phase II and saving valuable resources.
Unfortunately, the clinical applicability of systems
approaches is constrained by the limited sample
availability. In contrast to the discovery phasewhere
extensive in vitro experiments can be carried out,
during clinical development computational models
are forced to work with a few biomarkers expressed
in blood (e.g. cytokine releases in the bloodstream)
and only occasionally with biopsy samples.
Moreover, biomarkers in blood are typically charac-
terized by a low signal to noise ratio, resulting in
obscure predictions. Aworkaround to some of these
limitations may involve the proteomic technologies
that provide high content data with minimum
sample requirements, such as the xMAP technology,
protein microarrays and flow cytometry (see Box 1).
Some of them have already been used in the clinic,
mostly in the quest for personalized medicine.
Leveraging these technologies within a systems
pharmacology framework could provide the
experimental data necessary for the construction of
more detailed and biologically relevant models.
© 2013 The Authors. Biopharmaceutics & Drug Disposition
published by John Wiley & Sons, Ltd.
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Computational Modeling in the
Discovery Phase

Computational modeling in the discovery phase
employs elaborate methodologies to exploit prior
knowledge of the interrogated system (disease,
cell type, a specific tissue, a compound of interest,
etc.) and extracts qualitative features that will
lead to its better understanding and ultimately
facilitate drug development. The employed
methodologies can be broken down into two
classes: (i) the data driven methods and (ii) the
mechanism driven methods. Data driven methods
exploit extensive datasets and use straightforward
approaches to extract interpretable features of
the interrogated system. These approaches include
mostly machine learning algorithms (clustering
analysis, classification, Bayesian inference), regres-
sion methods, methods from information theory
(mutual information) or optimization algorithms.
These methods are agnostic to the underlying
biology since they ignore the mechanisms that
define system behavior. Instead they trust the
experimental data in capturing all relevant
information on the interrogated system and focus
on modeling these data. On the other hand, mech-
anism driven methods employ a mathematical
formalism to model an often elementary process
of the system (e.g. signal transduction from one
phosphoprotein to the next, metabolism of one
substance to another, expression of a gene from
a transcription factor, etc.) and then integrate all
these processes in a computable model such as
the signaling pathway downstream of a receptor
of interest, a metabolic pathway, or a gene
expression network. Typically, data driven
methods are employed to construct predictive
models on a higher system level (e.g. gene regula-
tory networks numbering tens of thousands of
nodes) but not very detailed. Mechanism driven
models are used to construct more detailed
models, albeit around a narrow region of interest.
The trade-off between relevance and tractability
dictates that the more detailed the model, the
narrower the region. The reasons for this discrim-
ination is, first, that mechanism driven methods
require high complexity data for the interrogated
system (e.g. perturbation data, many time points
etc.), implying a large number of samples, that
very often come at the cost of a small number of
© 2013 The Authors. Biopharmaceutics & Drug Disposition
published by John Wiley & Sons, Ltd.
measured signals; and second, the parameter
estimation problem that eventually has to be solved,
becomes very challenging (computationally) for
large models. On the other hand, data driven
methods are computationally simpler and do not
require such complex, multi-dimensional data,
allowing the construction of models on a whole
systems level. In the following paragraphs we
review methodologies that address: (i) the
modeling of signaling pathways, (ii) identifica-
tion of drug MOA and (iii) prediction of clinical
drug efficacy and toxicity; and discuss how these
could be leveraged in a systems pharmacology
framework to facilitate drug development in
the clinic.
Modeling signal transduction pathways by
leveraging experimental data

Modeling of signaling pathways refers to the
process of identifying relationships that describe
how signal propagates from one protein to the
next, ultimately explaining the way cells respond
to factors of their biochemical microenvironment
[10]. The study of signaling pathways is of the
utmost importance in both the discovery and the
clinical phase of drug development, however, it
takes place very differently in the two phases. In
the discovery phase, typically in vitro data are
used either to construct mechanistic models that
describe in detail how signal transduction takes
place in the cell type/tissue of interest and how
this is affected by disease, or to construct less
detailed but more extensive models, integrating
dozens of pathways that orchestrate all major
cellular processes. In the clinical phase, PD model-
ing of biomarkers mostly expressed in blood and
occasionally in biopsy samples, aims at the identifi-
cation of signaling events only at the very narrow
region of the pathway where the interrogated drug
is expected to act (in the neighborhood of a few
predefined, accessible biomarkers). For the study
of this region, mechanistic PD modeling employs
detailed methods such as ODE modeling and
succeeds in capturing the dynamics of the impli-
cated reactions; it then correlates the expression of
these biomarkers with clinical endpoints. For
example, Ramakrishnan et al. [11] built an ODE
model to study the pharmacodynamic effects of
methylprednisolone, as a series of events initiating
Biopharm. Drug Dispos. 34: 477–488 (2013)
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at the cytosolic glucocorticoid receptor, going
through the heat shock proteins to the nucleus
and resulting to the enhanced expression of STAT,
with STAT being the ultimate pharmacodynamics
endpoint.
Pharmacodynamic modeling often fails to see

the general context and broader processes that
these biomarkers are a part of, and regulated by.
In the following paragraphs we present methodol-
ogies for the modeling of signaling pathways
applied in early stages of drug development, but
also suitable for the clinical phase.
Themethodologies for pathwaymodeling can be

broken down into two classes: (i) Data inference
methods, and (ii) mechanistic methods [12].

Data inference methods. typically employ principal
component analysis (PCA), partial least squares
regression (PLSR), clustering, self-organizing
maps and network inference algorithms such as
mutual information (MI) and Bayesian inference,
to identify cross-talks between the signaling
molecules in the pathway, as these are captured
in the experimental data at hand. They do not
require any form of prior knowledge of the
proteins’ connectivity for their implementation,
but extract all their predictions based on the train-
ing dataset. In more detail, methods such as PLSR
and PCA perform dimensionality reduction on the
experimental dataset by projecting it to the dimen-
sions of maximum variation. This facilitates data
interpretation and the identification of qualitative
trends in the signaling process [13]. PLSR also
performs regression, correlating a perturbations
matrix X with the signaling dataset Y, identifying
in this manner the features of the perturbation
matrix (stimuli, drugs etc.) that best explain the
variance in the measurements [14]. Clustering
and self-organizing maps employ a distance
metric to identify signals in the experimental
dataset that respond in similar fashion across all
samples. Then a threshold is introduced above
which these similarities imply an interaction
between the two signals [12,15]. Mutual informa-
tion instead of using distance metrics uses an
integral function of the joint probability of any
two signals over all samples, to calculate the
dependency between them. A threshold is then
introduced, in similar fashion to the clustering
methods, above which the dependency of the
© 2013 The Authors. Biopharmaceutics & Drug Disposition
published by John Wiley & Sons, Ltd.
two signals is considered strong enough to imply
an interaction between them [16]. Finally,
Bayesian inference is one of the most powerful
methods for data inference. It employs the Bayes
rule to model the probability of an arbitrary signal
to be active as a function of its upstream signals
[17,18]. These probabilities in the Bayesian
framework are called conditional probability
distributions (CPDs) and essentially capture the
proteins’ connectivity in the signaling pathway.
The CPDs can be learned from the data using a
training algorithm such as the expectation
maximization algorithm.

Mechanistic methods. implement a mathematical
formalism to model how signal propagates from
one protein to the next within the signaling
pathway. Typically these formalisms include that
of ODEs, some form of logic modeling (such as
Boolean logic or constrained fuzzy logic), or
employ custom rules to model the signaling
pathway as an interaction graph. Either of these
formalisms essentially translates the pathway
from an abstract graphical representation of
protein interactions (as obtained from the litera-
ture) into an executable model of the cell’s signal-
ing mechanisms, capable of simulating the signal
flow from the receptor level, through the several
kinases implicated in the signaling process, all
the way into the transcription level. Mechanistic
models offer the clear advantage of in silico
experiments, i.e. what will the signaling process be
like if I stimulated the cells with a growth factor, or
with a candidate drug? The difference between the
various formalisms lies in their perception of the
signal transduction processes. The ODEs are one
of the most detailed formalisms, employing the
law of mass action kinetics to calculate the
proteins’ activation state over time [19,20].
Boolean logic assumes binary (0/1) values for
the activation state of the included proteins and
uses logic gates (AND/OR/NOT) to model the
proteins’ connectivity in the pathway. Then, signal
flow is simulated by imposing boundary
conditions on input nodes (receptors, or targets
of compounds) and by propagating the signal
downstream via the logic gates [21–25].
Constrained fuzzy logic also employs logic gates
(AND/OR/NOT) but also incorporates a transfer
function (typically a sigmoid curve) to calculate
Biopharm. Drug Dispos. 34: 477–488 (2013)
DOI: 10.1002/bdd



482 I. N. MELAS ET AL.
the activation state of a given node as a function of
the activation state of its upstream nodes [26,27].
Finally, the simplest representation of a signaling
pathway is that of a graph model and in
particular, that of a signed directed graph. In
signed directed graphs each edge indicates either
a positive or a negative effect of one node upon
another. In the work by Melas et al. (Detecting and
removing inconsistencies between experimental
data and signaling network topologies using
integer linear programming on interaction graphs,
accepted in PLoS Comp Biol, 2013), a set of rules is
proposed based on the definition of the signed
directed graphs that models signal transduction
from one node to the next, implemented as a set
of linear constraints.
In principle, mechanistic methods could be

applied without using experimental data, their
predictive power, however, is limited by the
accuracy of the proteins’ connectivity in the
signaling pathways used as a scaffold, on top of
which the models are built. Thus, if the signaling
pathways (as obtained from the literature)
represent the proteins’ connectivity inaccurately,
then the resultant models will yield erroneous
predictions. To capture the true signaling motifs
of the interrogated cell type, experimental data
are usually incorporated and a training algorithm
is employed to calibrate the model to best fit the
data at hand. On this front, significant work has
been published using (i) optimization algorithms,
such as genetic algorithms or regular optimization
formulations and (ii) sensitivity analysis.
Regarding optimization formulations, in the

work by Saez-Rodriguez et al. [28,29], a signaling
pathway was put together downstream of six
receptors of interest, based on literature citations
of protein interactions, and Boolean logic was
used to model signal transduction in the pathway.
Then, a genetic algorithm pruned the pathway
by removing reactions that seemed to contradict
high throughput experimental data. In the work
by Mitsos et al. [30–32], an Integer Linear
Programming formulation was introduced to
prune the pathway so that it best fits the experimen-
tal data at hand, diminishing the required CPU
time, thus, allowing the interrogation of complex
pathways and phosphoproteomic datasets. An ILP
formulation was also used in the work by Melas
et al. (Detecting and removing inconsistencies
© 2013 The Authors. Biopharmaceutics & Drug Disposition
published by John Wiley & Sons, Ltd.
between experimental data and signaling network
topologies using integer linear programming on
interaction graphs, accepted in PLoS Comp Biol,
2013) to identify and remove inconsistencies
between signaling pathway topologies and
phosphoproteomic data. In addition to pruning the
network, two more strategies were employed: (i)
addition of de novo reactions and (ii) identification
of minimum correction sets, defined as the
minimum set of nodes that have to be corrected
to obtain a perfect fit of the data. Other than
optimization algorithms, methodologies based
on sensitivity analysis are also used [33]. In these
approaches, the connectivity of the proteins in
the signaling pathway is inferred by considering
infinitesimal changes in the activation of an
arbitrary node A and monitoring changes in the
activation of node B, while keeping the activation
of other nodes constant. If the two nodes are co-
regulated then an interaction may be present
between them.

Even though a fewyears ago thephosphoproteomic
data needed to perform this type of analysis were
not easy to obtain, recent advancements in high
throughput proteomics technologies now allow
the quantification of dozens of proteins per sample
with minimum sample requirements. The three
platforms most suitable for this endeavor are
protein microarrays (or planar arrays) [34,35], the
xMAP technology (or suspension arrays) [36] and
flow cytometry [37] since they combine high signal
and sample throughput (see Box 1). MassSpec on
the other hand, is ideal for exploratory purposes
(identify which proteins are expressed in a specific
tissue etc.) but cannot be used in the clinic because
of its sample requirements.

The systematic modeling of signaling pathways,
as implemented in the discovery phase, results in
predictive models of the signaling mechanisms
in the cell type/tissue of interest. In particular,
the various data inference algorithms and logic
modeling, via leveraging high throughput
proteomic data, succeed in integrating in predic-
tive models a multitude of pathways, responsible
for most major cellular functions. If applied
within a systems pharmacology framework, these
approaches could potentially uncover the
signaling processes that take place in the patient
and provide a systems framework for the
interpretation of PD biomarker data. For example,
Biopharm. Drug Dispos. 34: 477–488 (2013)
DOI: 10.1002/bdd
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instead of only measuring the activation levels of a
few biomarkers relative to the interrogated disease,
without truly identifying the mechanisms that
regulate their expression, one could also measure
phosphoproteins that play a central role in cellular
functions and construct extensive models that
correlate them with the predefined biomarkers. In
this way, a broader view of the mechanisms that
regulate the expression of these biomarkers is
obtained and the processes that govern clinical
response may be deconvoluted. For example,
Iadevaia et al. [38] constructed anODEmodel based
on phosphoproteomic data, to model signal
transduction downstream of the IGF1 receptor
and was then leveraged to identify optimal drug
combinations for inhibiting cell proliferation. In
addition to PD modeling, these approaches can
also be used in personalized medicine. The
construction of patient specific models may
uncover mechanisms in the progression of the
disease that differ from patient to patient, facilitat-
ing the selection of optimal therapies. On this front,
significant work has been published using reverse
phase protein arrays (RPPA) [39,40]. For example,
Wulfkuhle et al. [41] studied the role of ERK1/2
pathway in ovarian cancer, demonstrating that
patterns in signaling pathway activation in ovarian
tumors may be patient-specific rather than stage-
specific. Moreover, in the work by Ihle et al. [42],
RPPA data were used in combination with
transcriptomic data to study the effects of KRAS
substitutions to protein behavior and how that af-
fected signaling and clinical outcome. Finally, path-
way modeling, applied longitudinally during the
course of treatment, may uncover mechanisms of
drug resistance [43] and facilitate the selection of
the optimal frequency of administration.
Identification of drug mode of action (MOA)

Identification of drug mode of action (MOA)
refers to the process of understanding how a drug
affects signaling activity. Even though the binding
affinities of the drug are well known from
bioactivity assays performed at earlier phases of
drug development, the functional effects of the
drug on the signaling mechanisms of the target
tissue are usually not fully characterized. As a
result, off target effects may still be identified
several years after the drug has beenmade available
© 2013 The Authors. Biopharmaceutics & Drug Disposition
published by John Wiley & Sons, Ltd.
to patients. A number of methods have been
proposed for the identification of drug MOA that
either employ extensive phosphoproteomic mea-
surements to capture directly drug effects on the
signaling level, or exploit public repositories,
screening the effects of hundreds of drugs on cell
lines and then use a machine learning algorithm
to deconvolute these signatures and identify where
the interrogated drug acts. Unfortunately, these
approaches are generally not part of clinical
development. In clinical trials the effects of the
drug are usually evaluated with respect to a set
of predefined PD and safety biomarkers and/or
well-established clinical endpoints. However,
adverse drug effects of low incidence may stay
undetected until enough patients have been
exposed to the drug. In the following paragraphs
we present commonly used methodologies for
the identification of drug MOA that could be
leveraged within a systems pharmacology frame-
work with great benefits.

There are two classes of methods that have
been proposed for the identification of adverse
drug effects: (i) machine learning approaches, (ii)
mechanistic approaches [44]. Machine learning
approaches leverage extensive data repositories,
capturing the effects of hundreds of compounds
on different cell lines/patients, and a clustering
or classification algorithm is employed to predict
the effects of new (uncharacterized) drugs based
on their signature and known targets of similar
drugs [45–47]. Any type of data can be used in a
machine learning framework including pheno-
typic, transcriptomic, signaling, chemoproteomic,
structural, or other data, as long as there are
enough drugs available in the training dataset to
guarantee the statistical significance of the predic-
tions. For example, Campillos et al. [47] used drug
side effects, as these are listed in package leaflets,
to identify more than 1000 drug–drug relations
between 746 marketed drugs. In this context,
drug–drug relations refer to data driven predic-
tions that show when two drugs share a target.
Interestingly, 261 of these relations are between
chemically dissimilar drugs, while a number of
them were validated experimentally. In another
application of machine learning approaches, Iorio
et al. [46] exploited the cMAP repository [48],
screening the effects more than 6000 compounds
on the transcriptomic level of cell lines, to identify
Biopharm. Drug Dispos. 34: 477–488 (2013)
DOI: 10.1002/bdd
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more than 40000 relations between 1300 drugs.
Iorio et al. used a distance metric to score the
similarities in drug signatures and when two
drugs demonstrated a statistically significant
similarity, a drug–drug correlation was intro-
duced. In another work by Gregori-Puigjané
et al. [45], a chemoinformatics approach was used
leveraging the DrugBank.ca repository to identify
previously unreported mechanisms of action
targets for drugs.
Even though machine learning approaches

make robust predictions, they do not provide
insight into the exact mechanism of action of the
interrogated drug. This is an inherent limitation of
the use of gene expression data, phenotypic,
structural, or other data in drug development, since
most of the drugs act on the phosphoproteomic
level; thus, any effects on the gene expression or
other level are second order (i.e. indirect) effects
[49]. Mechanistic approaches are based on
phosphoproteomic data, circumventing this limita-
tion. Mechanistic approaches use in vitro data in
the presence or absence of the interrogated drug
and either identify their differences, estimating in
this manner the drug MOA directly [50–52], or
construct models of the signaling pathway before
and after drug treatment in order to identify drug
induced model alterations. For example, Bantscheff
et al. [50] used mass spectrometry (MS) to reveal
mechanisms of action of clinical ABL kinase
inhibitors, including unreported targets of imatinib.
Mass spectrometry is themethod of choice for these
questions outside clinical development, since it
allows the complete proteomic profiling of the
sample (measuring up to 20000 proteins at the
same time), essentially measuring the effect of
the interrogated drug on the whole proteome of
the target tissue. Unfortunately, MS cannot be
used effectively in the clinical phase because of
its sample requirements; on the other hand,
protein microarrays, Luminex xMAP and flow
cytometry can be used. These technologies
provide much lower signal throughput compared
with MS, however, their output data can be used
for the construction of mechanistic models; these
models may then be leveraged to identify drug
effects on the signaling level. For example, Mitsos
et al. [30] used Luminex xMAP to construct
signaling models of HEPG2 cells upon treatment
with four different hepatocellular carcinoma
© 2013 The Authors. Biopharmaceutics & Drug Disposition
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drugs and then identified their differences with
the control model (specific to HEPG2 cells), thus
obtaining topology alterations caused by the drug.
In this manner, previously unreported off-target
effects were uncovered. Protein microarrays can
also be used in this context. Their very low sample
requirements make them an ideal approach for
clinical applications and they have already been
used extensively in the study of signaling
pathways. Moreover, in a very interesting work
by Kumar et al. [53], gene expression data were
leveraged using causal reasoning to identify the
MOA of a novel AKT kinase inhibitor
(GSK690693). Causal reasoning is a methodology
that infers patterns in the phosphoproteomic level
that best explain the observed changes in the gene
expression level [54].

The rigorous study of drug MOA, as presented
above, has repeatedly identified unreported drug
targets, even years after the drug has made it to
the market. If applied in clinical development it
could uncover fully the mechanism of action,
possibly identifying off-target effects that would
otherwise remain unnoticed and, thus, affect the
outcome of subsequent clinical trials. In this
manner the identification of drug MOA may
decrease the attrition rate of clinical trials by
advancing drug candidates with minimum adverse
effects or help towards personalized medicine,
where optimal combination therapies and drug
dosage can be devised for each patient. Drug
repurposing could also be another application.
Prediction of clinical efficacy and toxicity

Prediction of clinical efficacy and toxicity refers to
the process of predicting the clinical response to a
drug, in terms of validated endpoints, based on phe-
notypic, transcriptomic, signaling, chemoproteomic,
structural or other (preclinical) data. The prediction
of efficacy/toxicity is a key issue in all phases of
drug development. In the discovery phase, systems
approaches either leverage extensive in vitro
datasets via machine learning or clustering analy-
sis, in an attempt to predict the clinical efficacy/
toxicity of uncharacterized drugs based on their
signatures and known clinical outcomes of
similar drugs; or construct predictive models to
describe the signaling, metabolic or transcriptomic
processes in the cell type/tissue of interest and
Biopharm. Drug Dispos. 34: 477–488 (2013)
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uncover how these are altered in disease or
orchestrate the expression of key toxicitymediators.
In the latter case either in vitro or in vivo data can be
used, with the in vivo data demonstrating clear
advantages in terms of predictive power. Typically
though, in vivo data availability is considerably
lower than in vitro data due to cost.
Regarding the data driven methodologies, in

similar fashion to the identification of drug MOA
(discussed above) where such methodologies are
applied, any types of data can be used in a
machine learning or clustering framework to
predict the clinical efficacy and toxicity of the
interrogated drug based on clinical outcomes of
similar drugs. In the work by Barretina et al. [55]
it was demonstrated how the Cancer Cell Line
Encyclopedia (CCLE) can be leveraged to predict
drug sensitivities of cell lines according to their
genotype, facilitating application to personalized
medicine. The CCLE includes the full transcriptomic
screening of around 1000 cancer cell lines (fully
characterized) and for 500 of these also includes
the pharmacological profiling of 24 compounds.
It is, thus, a valuable resource for personalized
medicine. Another valuable resource in gene
expression-driven prediction of efficacy is the
Genomics of Drug Sensitivity in Cancer (GDSC)
project [56], where the effects of 140 drugs were
screened against 1200 cancer cell lines, also
including dose response data. Moreover, Iorio
et al. [46] presented a clustering-based approach to
identify suitable drug repositionings, exploiting
the cMAP repository of gene expression profiles;
while in the work by Wessels et al. [57], a clinical
pharmacogenetic model was developed based on
custom data to predict the efficacy of methotrexate
in rheumatoid arthritis, further demonstrating
how genomic data can be leveraged to obtain
robust predictions of drug efficacy. Apart from
genomic data, Xiang-Qun Xie [58] demonstrated
how chemoproteomic and structural data in
pubChem can be used for virtual screening purposes,
including the prediction of efficacy and toxicity.
Regarding mechanistic driven methodologies,

these include the construction of predictive models
(mostly network models) to either describe the
signaling, metabolic or transcriptomic processes
in the cell type/tissue of interest and how these
are altered in disease; or correlate the drug target
with key efficacy and toxicity mediators. On this
© 2013 The Authors. Biopharmaceutics & Drug Disposition
published by John Wiley & Sons, Ltd.
front, the work by Klipp et al. [59], Folger et al.
[60] and Kim et al. [61] demonstrates how
signaling and metabolic network models can be
used for effective drug targeting. In another
interesting work by Hwang et al. [62], the authors
presented a systems approach to tackling prion
disease, also suggesting possible therapeutic
approaches. Regarding toxicity studies, Cosgrove
et al. [63], leveraged cytokine release measure-
ments to associate toxicity in human hepatocytes
with signaling network dysregulation.

This type of analysis if applied in the clinical
phase in conjunction with standard PD modeling,
could provide investigators with valuable
predictions on the clinical efficacy and toxicity of
the interrogated drug, as well as feedback to
research for the identification of new targets.
Conclusion

Computational modeling offers an unmatched
solution for the interpretation of extensive
datasets, increasingly becoming the norm in drug
development, as proteomic technologies generate
high content data with minimum sample
requirements. Unfortunately, the community still
seems skeptical to apply elaborate modeling
methodologies, such as those applied in the
discovery phase of drug development into the
clinic. Here we presented a number of systems
biology methodologies addressing: (i) the model-
ing of signaling pathways, (ii) the identification
of drug MOA and (iii) the prediction of clinical
drug efficacy and toxicity which are currently
applied in the discovery phase that could be
leveraged within a systems pharmacology frame-
work with great benefits.
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