# Can Yoga Help to Manage the Symptoms of Thyroid Diseases?

#### **Abstract**

Thyroid diseases (TD) involve impaired secretion of thyroid hormones and are more prevalent in women. Risk factors include older age, family history of thyroid disease, hypertension, obesity, pregnancy, and diabetes. Psychological manifestations such as depression and mania are closely associated with TD, necessitating a mind-body-based complementary approach like Yoga. To examine the effectiveness of Yoga on the physiological and psychological symptoms of TD. A systematic search was conducted on three databases - PubMed, Google Scholar, and Web of Science in September 2023 using the keywords (Yoga AND Thyroid Disease, Yoga AND Thyroid Disorder, Yoga AND Thyroid Disorders, etc.,) and 39 results were identified while 34 results were obtained through other sources, hence 73 in total. After removing ten duplicates, and 6 nonrelevant studies, 57 were screened. Finally, 13 studies were selected for the qualitative analysis after the inclusion and exclusion criteria were applied, 9 of 13 studies involving 389 thyroid patients focused on hypothyroidism cases only. Most common Yoga practices were suryanamaskara, bhujangasana, matsyasana, sarvangasana, halasana, ujjayi pranayama, anulomvilom/ nadishodhana, bhastrika pranayama, bhramari pranayama, kapalbhati, and jalandhara bandha. Studies revealed a trend toward balance in thyroid hormone, reduction in psychological symptoms such as stress, anxiety, and depression, and improvement in the quality of life of thyroid patients through Yoga. Yoga has shown beneficial effects in managing the symptoms of TD, especially in hypothyroidism management. However, more randomized controlled trials incorporating larger sample sizes are needed to establish the results. Furthermore, there remains a dearth of research on the efficacy of Yoga in the treatment of hyperthyroidism and other TD.

**Keywords:** Alternative therapy, hyperthyroidism, hypothyroidism, thyroid diseases, thyroid disorders, Yoga

#### Introduction

Thyroid diseases (TD) are medical conditions of impaired production of thyroid hormones. These affect 42 million people, making it one of the most common health issues in India.[1] Thyroid hormones are crucial in regulating metabolism and affect the brain, heart, lungs, and reproductive functions.[2] Imbalance in these hormones may lead to TD like hypothyroidism or hyperthyroidism which may significantly affect one's health. TD may increase the risk of sexual dysfunctions, pre-eclampsia, mortality perinatal and miscarriage in females, erectile dysfunction, and ejaculatory dysfunctions in men while impaired libido in both men and women.[3-5]

Further, both hyperthyroidism and hypothyroidism are associated with increased risk of ischemic heart disease and cardiac mortality.<sup>[6,7]</sup> Psychological health is

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow reprints@wolterskluwer.com

also compromised as TD is associated with depression, dementia, mania, and cognitive impairment.<sup>[8]</sup> Ultimately, it negatively affects the overall health and compromises the professional and financial condition of thyroid patients by increasing the risk of long-term sickness absence, unemployment, and disability pensioning.[9] In addition, diminishing earnings and excluding individuals from the labor force may impact an increasing burden on the global public health and healthcare system with increasing healthcare costs.

Iodine deficiency and Hashimoto's thyroiditis are the main causes of hypothyroidism, whereas Grave's disease is the most common cause of hyperthyroidism.<sup>[10,11]</sup> Hypertension, obesity, women, older age, family history of thyroid disease, pregnancy, and diabetes are the main risk factors for developing thyroid disorders.<sup>[12-15]</sup>

Available treatment options for thyroid dysfunctions are hormone replacement

How to cite this article: Amrita C, Mitali M, Kumari CS, Rupesh K. Can yoga help to manage the symptoms of thyroid diseases? Int J Yoga 2025;18:3-12.

Submitted: 13-Jul-2024 Revised: 12-Nov-2024 Accepted: 14-Nov-2024 Published: 22-Apr-2025

# Chakraborty Amrita, Mukherjee Mitali, Choudhary Swati Kumari<sup>1</sup>, Kumar Rupesh

Department of Yogic Art and Science, Visva-Bharati University, Santiniketan, West Bengal, <sup>1</sup>Interdisciplinary Centre for Swami Vivekananda Studies, Panjab University, Chandigarh, India

Address for correspondence: Mr. Kumar Rupesh, Assistant Professor, Department of Yogic Art and Science, Visva-Bharati University, Santiniketan - 731 235, West Bengal, India. E-mail: profrupeshyoga@ gmail.com

# Access this article online Website: https://journals.lww. com/JJOY DOI: 10.4103/ijoy.ijoy\_147\_24 Quick Response Code:

therapy, antithyroid medications, radioactive iodine therapy, beta-blockers to manage symptoms, and in some cases, surgery, but these have side effects also. As these diseases are linked with psychological health also, a mind-body-based approach may better help to manage the health conditions in a complementary manner. Yoga, an Indian spiritual way of living, provides many health-related benefits. It is a mind-body-based therapy option that may be beneficial in the management of TD as it works holistically. The study is designed to check the effectiveness of the available literature on Yoga for TD.

#### **Methods**

#### **Review question**

Can Yoga bring change in biochemical assessments, psychological variables, quality of life, and symptoms of thyroid patients?

# Participants/population

Individuals with any thyroid-related disease, regardless of gender and age, who had undergone Yoga therapy were considered in this review.

# Intervention/exposure

Yogic interventions, provided independently, including any practice from asana, pranayama, meditation, and kriya, were considered. Studies were included regardless of the duration or frequency of the intervention.

# Search strategy

A systematic advance search was conducted on three databases - PubMed, Google Scholar, and Web of Science databases from their inception to September 2023 using the keywords (Yoga AND Thyroid Disease, Yoga AND Thyroid Disorder, Yoga AND Thyroid Disorders, Yoga AND Hypothyroidism, Yoga AND Hyperthyroidism, Yoga AND Graves' Disease, Yoga AND Thyrotoxicosis, Yoga AND Congenital Hypothyroidism, and Yoga AND Myxoedema), and 39 results were identified. After removing ten duplicates and six nonrelevant studies, the title and abstracts of 23 studies were screened. This led to the exclusion of 17 more studies that did not meet the inclusion and exclusion criteria, resulting in 6 studies selected for review. On the other hand, 7 studies were selected from 34 studies obtained through other sources. Hence, 13 studies were selected for the qualitative review. A list of the database, keywords, and results is presented in Table 1, the PRISMA flowchart of paper extraction is presented in Figure 1, and a summarized table of all studies is presented in Table 2.

### Inclusion and exclusion criteria

# Inclusion criteria

(i) Yoga as a therapy, (ii) experimental study, (iii) patients with any thyroid disease with any comorbidity, and (iv) full-text published research paper in English.

| Table 1: Results after appl        | ying the l | keyword | ls      |
|------------------------------------|------------|---------|---------|
| Database                           | PubMed     | Google  | Web of  |
|                                    |            | Scholar | Science |
| Yoga AND thyroid disease           | 0          | 0       | 0       |
| Yoga AND thyroid disorder          | 0          | 1       | 0       |
| Yoga AND thyroid disorders         | 1          | 2       | 0       |
| Yoga AND hypothyroidism            | 8          | 17      | 4       |
| Yoga AND hyperthyroidism           | 1          | 1       | 2       |
| Yoga AND grave's disease           | 1          | 0       | 0       |
| Yoga AND thyrotoxicosis            | 1          | 0       | 0       |
| Yoga AND congenital hypothyroidism | 0          | 0       | 0       |
| Yoga AND myxoedema                 | 0          | 0       | 0       |
| Total=39                           | 12         | 21      | 6       |

#### Exclusion criteria

(i) Yoga with other alternative therapies/exercise except for diet or conventional treatment, (ii) no application of inferential statistics, and (iii) studies with unclear Yoga protocol.

#### **Results**

# Description of the studies

After the screening process, 13 studies met the inclusion criteria, in which a total of 389 patients with TD were recruited. Only 7 studies<sup>[17,18,20,21,23,25,26]</sup> reported gender distribution with 112 (99.12%) females and 1 male (0.88%) out of a total 113 patients. Of a total of 13 studies, 6 studies examined only female patients,<sup>[17,18,20,23,25,26]</sup> 1 study examined both male and female patients,<sup>[21]</sup> and the remaining 6 studies did not mention gender distribution.<sup>[19,22,24,27-29]</sup> The age range of thyroid patients varied from 18 to 76 years. However, 221 patients (49.66%) from six studies<sup>[17,20,22,23,25,29]</sup> were between the age range of 18 to 50 years.

Three studies were case reports/series,<sup>[21,23,24]</sup> three single-group pre–post,<sup>[17,18,20]</sup> and two randomized controlled trials (RCTs),<sup>[28,29]</sup> while five were experimental controlled studies<sup>[19,22,25-27]</sup> which did not clear randomization but had a control group. 9 studies were focused on the effect of yogic practices on hypothyroidism,<sup>[17,18,20,21,25-29]</sup> one on both hyperthyroidism and hypothyroidism,<sup>[22]</sup> while single studies were focused on subclinical hypothyroidism,<sup>[23]</sup> thyrotoxicosis,<sup>[24]</sup> and anxiety level in thyroid disorders<sup>[19]</sup> each. A pictorial representation of study areas can be viewed in Figure 2.

#### **Intervention characteristics**

The overall duration of the studies ranged from 10 days to 6 months; out of those, four studies had an overall duration of 6 months. The duration of the single session was reported from 28 minutes to 4 hours, whereas six studies had 1-hour sessions. Some studies did not mention the duration of the session. [21,23,24] Most of the studies incorporated a combination of asanas, pranayama, and meditation. Six studies [17,18,20,21,28,29] included Yoga

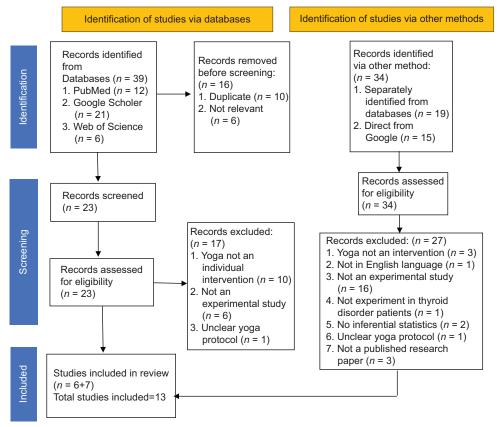



Figure 1: PRISMA flowchart of studies

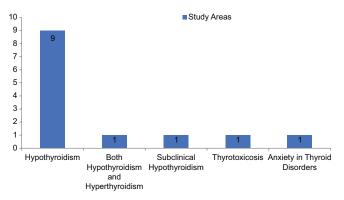



Figure 2: Study areas of Yoga in thyroid diseases

intervention along with prescribed medication, while others did not mention it. Most common practices incorporated for TD (in at least 5 studies) were suryanamaskara, bhujangasana, matsyasana, sarvangasana, halasana, ujjayi pranayama, anulomvilom/nadishodhana, bhastrika pranayama, bhramari pranayama, kapalbhati, and jalandhara bandha.

# Effectiveness of intervention

# Hypothyroidism and its subtypes

Among the several health-related outcomes examined in hypothyroid patients, improvement in overall quality of life, [18] reduction in stress, anxiety, depression, fatigue,

LDL, TL, TR, [17,20,21,26] a decrease in TSH, and improvement in T3 and T4 levels were reported. [17,20,21,23,25,27,28]

# Hyper- and Hypothyroidism

Significant reductions in levels of T3, T4, BMI, an increase in TSH level, and improvement in quality of life were reported in a single study. [22] However, the distribution of subjects between hypothyroidism and hyperthyroidism was not clear. The population was not homogeneous at the baseline. Hence, the results are not clear.

# Thy rotoxicos is

Results were not conclusive in the case of thyrotoxicosis as reported in the only study.<sup>[24]</sup>

#### **Discussion**

The qualitative analysis reveals that most results are seen in hypothyroidism, female patients, and the age group 18–50 years. Studies were focused on balancing thyroid hormones, TSH, and psychological variables such as anxiety, stress, depression, and quality of life through Yoga intervention. Seven studies<sup>[17,20,21,23,25,27,28]</sup> reported an improvement in T3, T4, and TSH levels in hypothyroid patients. However, only two RCTs were available to measure the effect of Yoga. Hence, more RCTs are needed to generate robust evidence. A systematic review<sup>[30]</sup> done by Baishya and Metri in 2024<sup>[30]</sup> also revealed the same

|                                                      |                                                                                                                                                           |                                                                                   |                                                                                              | Table                             | Table 2: Summary of the studies                                                                                                               |                                    |                                                                                                                                                                                                                  |                                                                                                                                                  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Author,<br>year                                      | Yoga<br>components                                                                                                                                        | Outcome<br>parameters                                                             | Tools and measurement                                                                        | Study<br>design                   | Population                                                                                                                                    | Duration                           | Result                                                                                                                                                                                                           | Conclusion                                                                                                                                       |
| Nilakanthan<br>G. M. et al.,<br>2016 <sup>[17]</sup> | Sukshma<br>Vyayama<br>Suryanamaskar<br>DRT<br>Asanas<br>Pranayama and<br>kriyas                                                                           | TL<br>TR<br>HDL<br>LDL<br>TSH<br>Thyroxine                                        | Blood test for lipid profile (TL, TR, HDL, LDL), and TSH                                     | Single group<br>pre-post<br>pilot | Household women with 3–5 year history of hypothyroidism Total=22 Age=30–40 years                                                              | Total 6 months 1 h/day 4 days/week | Significant reduction in TL: <i>P</i> <0.001, LDL: <i>P</i> =0.002, TR: <i>P</i> <0.001, and thyroxine dose at <i>P</i> <0.05 significant increase in HDL: <i>P</i> <0.05, and reduction in TSH: <i>P</i> =0.452 | Yoga helped in balancing lipid profile, however, close to significant reduction in TSH Thyroxine medication dose reduced in 7 out of 22 subjects |
| Singh <i>et al.</i> , 2011 <sup>[18]</sup>           | Loosening<br>exercise,<br>Asanas,<br>Pranayama,<br>Bandha                                                                                                 | OoL                                                                               | WHOQOL-BREF                                                                                  | Single group<br>pre-post          | Hypothyroid female patients Total=20 Age=35–55 years                                                                                          | Total I month<br>daily I h         | Significant increase in overall QoL, Overall perception of health, physical health, psychological, social relationship, environmental domain at $P<0.01$                                                         | Yoga improved<br>in QoL in female<br>hypothyroid patient                                                                                         |
| Gupta <i>et al.</i> ,<br>2006 <sup>[19]</sup>        | Loosening exercises, Asanas, Pranayama (breathing practices), Meditation                                                                                  | Anxiety                                                                           | STAI                                                                                         | Experimental controlled study     | Experimental Total=225 (124 males and controlled 101 females) patients with thyroid disorders=8 only Group 1=175  Group 2=50  Age=19-76 years | Total 10 days<br>3-4 h/day         | Significant reduction in anxiety scores in intervention group at P<0.001 however no change in anxiety levels of thyroid patients                                                                                 | 10 days Yoga practice reduced anxiety in different patients but was not enough for thyroid patient                                               |
| Rani <i>et al.</i> , 2021 <sup>[20]</sup>            | Loosening, Anxiety, Suryanamaskar, depression, Asana and stress, breathing fasting lipic practices, profiles and pranayama sTSH, level meditation fatigue | Anxiety, depression, and stress, fasting lipid profiles and sTSH, levels, fatigue | DASS-21, blood test immunometric assays of thyrotropin (for TSH), the fatigue severity scale | Single arm<br>pre-post<br>design  | Total=38 hypothyroidism<br>women<br>Age=20–50 years                                                                                           | Total 3 months 1 h/day 5 days/week | Significant reduction in stress, anxiety, depression, fatigue, sTSH, LDL, triglyceride, total cholesterol at P<0.01                                                                                              | 3 months' Yoga<br>practice improved<br>psychological and<br>balanced biochemical<br>parameters of<br>hypothyroid patients                        |
| Nanduri<br>et al.,<br>2020 <sup>[21]</sup>           | YPV:<br>Breathing,<br>Asana,<br>meditation, diet                                                                                                          |                                                                                   | Blood test                                                                                   | A case report                     | Case: 1 49-year-old female, suffering from hypothyroid Case: 2 59-year-old male had been suffering from hypothyroid                           | Total I month                      | Case: 1 Pre-YPV: Post-YPV: TSH value of 0.987 uIU/mL Case: 2 Pre-YPV: TSH 12.054 uIU/mL Post-YPV: TSH level was 3.477 uIU/mL                                                                                     | I month Yoga<br>practice reduced<br>depression, body<br>pain and TSH level<br>of hypothyroidism<br>patients                                      |

|                                              |                                                                                         |                                                                                                                                                                                              |                                                                               |                               | Table 2: Contd                                                                                                                                  |                                                                                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                           |
|----------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Author,                                      | Yoga                                                                                    | Outcome                                                                                                                                                                                      | Tools and                                                                     | Study                         | Population                                                                                                                                      | Duration                                                                                                                                                                                                                            | Result                                                                                                                                                    | Conclusion                                                                                                                |
| year                                         | components                                                                              | parameters                                                                                                                                                                                   | measurement                                                                   | design                        |                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                           |
| Mishra <i>et al.</i> , 2019 <sup>[22]</sup>  | Kapalabhati,<br>Ujjayi<br>Pranayama,<br>Sarvangasana,<br>and<br>Halasana<br>OM chanting | T3, T4, TSH,<br>BMI and QoL                                                                                                                                                                  | Blood test, WHOQOL                                                            | Experimental controlled study | 90 male and female (aged 38±5 years) thyroid (hyper and Hypothyroidism) patients Yoga group=45 Om chanting group=45                             | Total 12 weeks<br>1 h/day<br>6 days/week                                                                                                                                                                                            | Significant reduction in T3, T4, and BMI at P<0.001 and an increase in TSH at P<0.001 of Yoga group  No significant change in the CG                      | Yoga improved QoL<br>and balanced the<br>thyroid hormones in<br>thyroid patients                                          |
| Balayogi<br>et al.,<br>2011[ <sup>23</sup> ] | Suryanamaskar,<br>Asana,<br>Pranayama,<br>Mudra<br>Bandh and<br>Relaxation              | TSH, FT4, anti Blood test<br>TPO                                                                                                                                                             | Blood test                                                                    | A case report                 | A 36-year-old female,<br>suffering from subclinical<br>hypothyroidism                                                                           | Total 6 month                                                                                                                                                                                                                       | TSH reduced from 9.39 IU/mL to 2.66 mIU/L, FT4 value from 12.57 pmol/L to 8.98 pmol/L.  Anti-TPO antibodies were positive both before and after the Yoga  | 6 months of Yoga<br>practice helped in<br>balancing the levels<br>of thyroid hormones<br>in subclinical<br>hypothyroidism |
| Singh et al.,<br>1988 <sup>[24]</sup>        | SS<br>S                                                                                 | Constipation, abdominal pain, loss of appetite, vomiting tendency, diarrhea in irritable bowel syndrome, anxiety neuroses, blood urea level in chronic renal failure patients thyrotoxicosis | Not mentioned                                                                 | Case series                   | Total=69 Irritable bowel syndrome: 27 cases Anxiety neuroses: 17 cases Chronic renal failure: 8 cases Thyrotoxicosis: 5 cases Healthy people=12 | Sp in Irritable bowel syndrome: Within an interval of 5 days and then 4 within an interval of 7 days Anxiety Neuroses: Not mentioned Chronic renal failure: Within an interval of 10 days, 5 sessions Thyrotoxicosis: Not mentioned |                                                                                                                                                           | Results not conclusive in case of thyrotoxicosis                                                                          |
| Swami <i>et al.</i> , 2010 <sup>[25]</sup>   | Pranayama,<br>Meditation                                                                | TSH, pulmonary function: FEV1, FVC, FEV/FVC, PEFR, PEF, MVV and IC                                                                                                                           | kit Pulmonary functions by Hypair compact (version 1.28) medisoft S.A Belgium | Experimental controlled study | Total=40 Group 1=20 hypothyroid females Group 2=20 healthy volunteers Age=39.70±8.27 years                                                      | Total 6 months 45<br>min everyday                                                                                                                                                                                                   | Decline in TSH and significant improvement in pulmonary functions within Yoga group; MVV ( <i>P</i> =0.001), IC ( <i>P</i> =0.007) PEF ( <i>P</i> =0.002) | Pranayama and meditation can improve Pulmonary Functions in hypothyroid patients along with conventional treatment        |

|                                                              |                                                                                    |                                                               |                       |                               | Table 2: Contd                                                                                                     |                                                                            |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                           |
|--------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Author,<br>year                                              | Yoga<br>components                                                                 | Outcome parameters                                            | Tools and measurement | Study<br>design               | Population                                                                                                         | Duration                                                                   | Result                                                                                                                                                                                                                                                                                                                                  | Conclusion                                                                                                                                |
| Kamatchi<br>Scholar and<br>Professor<br>2022 <sup>[26]</sup> | Loosening the joints Surya Namaskar Asanas Pranayama Bandhas and mudras Yoga Nidra | TR and self-esteem                                            | Not mentioned         | Experimental controlled study | Women suffering from hypothyroidism  Total - 30  Group A (experimental group)=15  Group B (CG)=15  Age=45-55 years | Total 8 weeks 60 min/day 6 days/week                                       | Significant decline in TR and yogic practices comprovement in self-esteem of decrease TR and Yoga group at P<0.05 level improve self-estent of women suffering from hypothyroid                                                                                                                                                         | yogic practices can<br>decrease TR and<br>improve self-esteem<br>of women suffering<br>from hypothyroidism                                |
| Sharma<br>Chairman<br>2016 <sup>[27]</sup>                   | Asana,<br>Pranayama,<br>Bandha<br>Yoga nidra                                       | T3, T4, TSH                                                   | Blood test            | Experimental controlled study | Total=20 hypothyroid patients Group 1=10 (Yoga group) Group 2=10 (CG) Age=18-60 years                              | Total 3 months 1<br>h/day                                                  | Significant increase in T3 and T4 at P<0.05 while significant decrease in TSH at P<0.05                                                                                                                                                                                                                                                 | Yogic practices can balance the thyroid hormones of hypothyroid patients                                                                  |
| Ranjna <i>et al.</i> , 2019 <sup>[28]</sup>                  | OM chanting,<br>Loosening<br>exercises,<br>asana, bandha,<br>pranayama,<br>kriya   | fT3, fT4, TSH, Blood test<br>Anti-TPO,<br>FBS,<br>cholesterol | Blood test            | Prospective<br>RCT            | Total=83 hypothyroidism patients Group 1=42 (Yoga group) Group 2=41 (CG) Age=21-65 years                           | Total 6 months 45 min First 2 months 3 days/week Next 4 months 2 days/week | Significant increase in fT4 levels ( $P$ =0.001 for control and $P$ =0.004 for Yoga group)<br>Significant decrease in TSH levels ( $P$ =0.000 for both the group)<br>Anti-TPO levels ( $P$ =0.002 and $P$ =0.02 for control and Yoga group respectively)<br>FBS level (Yoga group $P$ =0.04), cholesterol level (Yoga group $P$ =0.000) | Yoga helps in the management of thyroid function tests, and biochemical parameters                                                        |
| Chintala et al., 2019 <sup>[29]</sup>                        | Loosening<br>procedures,<br>Pranayama,<br>Asana                                    | Short-term<br>HRV                                             | ECG                   | RCT                           | Total=50 hypothyroidism patients Group 1=25 PG Group 2=25 CG Age=18-30 years                                       | Total 1 month 3<br>days/week for 28<br>min                                 | ly<br>HF<br>0001<br>RR<br>: at                                                                                                                                                                                                                                                                                                          | Pranayama in addition to standard medical therapy is more beneficial to improve cardiovascular autonomic function in hypothyroid patients |

WHOQOL-BREF: WHO QoL Scale-brief version, STAI: State Trait Anxiety Inventory, DASS-21: Depression, Anxiety, and Stress Scale, sTSH: Serum TSH, YPV: Yoga Prana Vidya, expiratory flow, fT3: Free triiodothyronine, FBS: Fasting blood sugar, ECG: Electrocardiogram, RMSSD: Root mean square of successive differences, HF: High frequency, RR: RR T3: Triiodothyronine, T4: Thyroxine, BMI: Body mass index, FT4: Free thyroxine, Anti-TPO: Antithyroid peroxidase, SP: Shankhaprakshalana, FEV,: Forced expiratory volume in 1st, FEV: Forced expiratory volume, MVV: Maximum voluntary ventilation, IC: Inspiratory capacity FVC: Forced vital capacity, PEFR: Peak expiratory flow rate, PEF: Peak interval, LF: Low frequency, PG: Pranayama group, CG: Control group, HRV: Heart rate variability, RCT: Randomized control trial, DRT: Deep relaxation techniques TL: Total cholesterol, TR: Triglycerides, HDL: High-density lipoprotein, LDL: Low density lipoprotein, TSH: Thyroid stimulating hormone, QoL: Quality of life,

findings of few available RCTs measuring the effect of Yoga on hypothyroidism. Still, the studies found a positive change in managing the symptoms of thyroid patients. These results are aligned with other studies that could not be included in the review as they did not satisfy the inclusion and exclusion criteria. [31-34] In the case of psychological variables, two studies [19,20] showed a reduction in anxiety, stress, and depression, and two studies [18,22] showed improvement in the quality of life of thyroid patients after a Yoga intervention. The results were again similar to other nonreviewed studies. [35-38]

It has been seen that autoimmune TDs (AITD) such as Grave's disease and Hashimoto's thyroiditis are the main causes of developing hyperthyroidism and hypothyroidism, respectively. [10,11] Stress, immune dysregulation, reduced gut microbiota diversity, and genetic predisposition may contribute to AITD. [39-42] Researches are indicating that Yoga can reduce these factors which may help to manage the symptoms of TD. A systematic review [43] concluded that Yoga is a promising practice to reduce stress, based on reduction in the various biosignals such as galvanic skin response, muscle tension, heart rate, and increased heart rate variability which indicated a stress reduction.

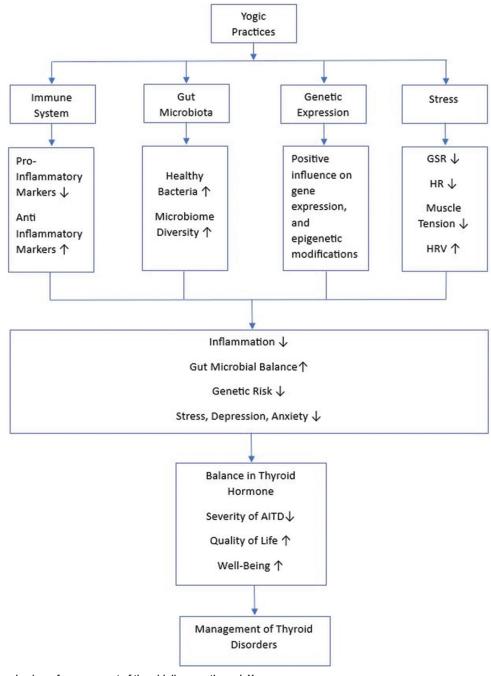



Figure 3: Potential mechanism of management of thyroid diseases through Yoga

Inflammation, a component of immune imbalance, is also seen to contribute in AITDs.[44] A systematic review of RCTs revealed that Yoga increases the anti-inflammatory markers such as transforming growth factor beta (TGF-β), Human leukocyte antigen-G (HLA-G), and peroxisome proliferator-activated receptor-γ (PPAR-γ) and decreases pro-inflammatory markers - interleukin (IL)-1α, IL-2, IL-17A, and cytotoxic T lymphocyteassociated antigen-4 (CTLA-4), ultimately reducing the inflammation and balancing the immune system.<sup>[45]</sup> The effect of Yoga on particular inflammatory markers involved in corresponding TD may be explored further. Moreover, gut microbiome composition and diversity differ in different TD and may be linked with thyroid peroxidase antibodies. [46] Yoga may also alter gut diversity and composition. Significant higher bacteria such as prevotella, bacteroides, megamonas, and fecalibacterium were found in the experienced meditation practitioners<sup>[47]</sup> indicating Yoga's potential beneficial role. Furthermore, long-term exposure to a vegan diet and meditation enriched the gut with bifidobacterium, roseburia, and subdoligranulum microbiome which were associated with enhanced immunity and adjusting metabolic levels.[48] Another factor – genetic predisposition is also linked with AITDs which may be positively influenced by Yoga to manage TD.[49,50] Based on the discussion, a potential mechanistic model has been developed in Figure 3.

However, there has been limited research on Yoga for autoimmune thyroid disorders like Hashimoto's thyroiditis and Graves' disease. For instance, a case report in 2019<sup>[51]</sup> focused on Graves' disease where Yoga was a lifestyle intervention involving dietary change, daily physical exercise, meditation sessions, and some natural supplements helped to bring free triiodothyronine (FT3) and free Thyroxine (FT4) back to normal limits, and TSH receptor antibodies (TRAb) were also found negative. A study done by Banerjee in 2019<sup>[52]</sup> revealed that diet in conjunction with Yoga intervention reduced the BMI and severity of hypothyroidism in female patients. A study by Mehta and Parwe, 2021<sup>[53]</sup> showed improvement in the general well-being of patients with hypothyroidism. Most of the studies aimed at managing the symptoms of hypothyroidism through Yoga interventions. Few studies were lacking in properly reporting the description of the intervention and variables. Further, RCTs are also very limited. Hence, the authors could observe consistent positive effects of Yoga in hypothyroidism only.

# **Conclusion**

Yoga helped to balance the thyroid hormones and other biochemical parameters such as TSH, TL, TR, and LDL toward the normal limits. Psychological parameters of thyroid patients, such as the overall quality of life, stress, anxiety, and depression, were also managed through yogic practices. The overall direction of the experimental studies shows that Yoga may help to manage the symptoms of TD with most evidence on hypothyroidism. However, more randomized controlled studies with larger sample sizes are much needed to generalize the findings, especially on hyperthyroidism and AITDs.

#### **Future recommendations**

- Randomized controlled Studies with larger sample sizes may be done
- Studies on hyperthyroidism and AITDs are lacking which can be conducted further.

# Financial support and sponsorship

Nil.

#### **Conflicts of interest**

There are no conflicts of interest.

#### References

- Unnikrishnan AG, Menon UV. Thyroid disorders in India: An epidemiological perspective. Indian J Endocrinol Metab 2011;15:S78-81.
- Shahid M, Ashraf MA, Sharma S. Physiology, thyroid hormone.
   In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.
- Veronelli A, Mauri C, Zecchini B, Peca MG, Turri O, Valitutti MT, et al. Sexual dysfunction is frequent in premenopausal women with diabetes, obesity, and hypothyroidism, and correlates with markers of increased cardiovascular risk. A preliminary report. J Sex Med 2009;6:1561-8.
- van den Boogaard E, Vissenberg R, Land JA, van Wely M, van der Post JA, Goddijn M, et al. Significance of (sub) clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: A systematic review. Hum Reprod Update 2011;17:605-19.
- Gabrielson AT, Sartor RA, Hellstrom WJ. The impact of thyroid disease on sexual dysfunction in men and women. Sex Med Rev 2019;7:57-70.
- Ning Y, Cheng YJ, Liu LJ, Sara JD, Cao ZY, Zheng WP, et al. What is the association of hypothyroidism with risks of cardiovascular events and mortality? A meta-analysis of 55 cohort studies involving 1,898,314 participants. BMC Med 2017;15:21.
- Sohn SY, Lee E, Lee MK, Lee JH. The association of overt and subclinical hyperthyroidism with the risk of cardiovascular events and cardiovascular mortality: Meta-analysis and systematic review of cohort studies. Endocrinol Metab (Seoul) 2020;35:786-800.
- Lekurwale V, Acharya S, Shukla S, Kumar S. Neuropsychiatric manifestations of thyroid diseases. Cureus 2023;15:e33987.
- Nexo MA, Watt T, Pedersen J, Bonnema SJ, Hegedüs L, Rasmussen AK, et al. Increased risk of long-term sickness absence, lower rate of return to work, and higher risk of unemployment and disability pensioning for thyroid patients: A Danish register-based cohort study. J Clin Endocrinol Metab 2014;99:3184-92.
- Gessl A, Lemmens-Gruber R, Kautzky-Willer A. Thyroid disorders. Handb Exp Pharmacol 2012;214:361-86.
- De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet 2016;388:906-18.

- Liu F, Zhang X. Hypertension and obesity: Risk factors for thyroid disease. Front Endocrinol (Lausanne) 2022;13:939367.
- Fang T, Lin L, Ou Q, Lin L, Zhang H, Chen K, et al. An investigation on the risk factors of thyroid diseases in community population in Hainan. Int J Endocrinol 2022;2022:4514538.
- Alyahya A, AlNaim A, AlBahr AW, Almansour F, Elshebiny A. Knowledge of thyroid disease manifestations and risk factors among residents of the Eastern province, Saudi Arabia. Cureus 2021;13:e13035.
- Grigoriadis G, Koufakis T, Kotsa K. Epidemiological, pathophysiological, and clinical considerations on the interplay between thyroid disorders and type 2 diabetes mellitus. Medicina (Kaunas) 2023;59:2013.
- Sara Rosenthal M. The Thyroid Sourcebook. 5<sup>th</sup> ed. McGraw Hill: America; 2008.
- Nilakanthan S, Metri K, Raghuram N, Hongasandra N. Effect of 6 months intense yoga practice on lipid profile, thyroxine medication and serum TSH level in women suffering from hypothyroidism: A pilot study. J Complement Integr Med 2016;13:189-93.
- 18. Singh P, Singh B, Dave R, Udainiya R. The impact of yoga upon female patients suffering from hypothyroidism. Complement Ther Clin Pract 2011;17:132-4.
- Gupta N, Khera S, Vempati RP, Sharma R, Bijlani RL. Effect of yoga based lifestyle intervention on state and trait anxiety. Indian J Physiol Pharmacol 2006;50:41-7.
- Rani S, Maharana S, Metri KG, Bhargav H, Nagaratna R. Effect of yoga on depression in hypothyroidism: A pilot study. J Tradit Complement Med 2021;11:375-80.
- Nanduri VS, Revathi R, Janani N. Successful healing treatment of hypothyroidism using integrated Yoga Prana Vidya (YPV) healing approach as complementary medicine: Case reports. J Prev Med Holist Health 2020;6:42-8.
- Mishra A, Gowda P, Mishra A, Gowda P. Impact of yoga on patients suffering with hyper and hypothyroidism. Int J Physiol 2019;4:543-5. Available from: https://www.journalofsports.com. [Last accessed on 2023 Oct 01].
- Balayogi A, Sri B, Vidyapeeth B, Sanjay Z. Effect of Yoga on Subclinical Hypothyroidism: A Case Report; 2011. Available from: https://www.kdham.com. [Last accessed on 2023 Oct 01].
- Singh SN, Jaiswal V, Maurya SP. "Shankha Prakshalana" (gastrointestinal lavage) in health and disease. And Sci Life 1988;7:157-63.
- Swami G, Singh S, Singh KP, Gupta M. Effect of yoga on pulmonary function tests of hypothyroid patients. Indian J Physiol Pharmacol 2010;54:51-6.
- Kamatchi C, Elangovan R. Effect of yogic practices on triglycerides and Self Esteem among middle aged women suffering with hypothyroidism. Journal of Education 24:64-70.
- Sharma K, Mahabala P, Treatment of Hypothyroidism through yoga therapy – A study. Global Journal For Research Analysis 2016;5:37-9.
- 28. Ranjna C, Rukamani N, Somnath M, Yendrenbam Ibotombi M, Sood VR. Effect of Yoga on Thyroid Function Tests and Biochemical Parameters in Patients Suffering From Hypothyroidism. International Journal of Applied Ayurved Research. Available from: https://www.ijaar.in. [Last accessed on 2024 Nov 06].
- Chintala KK, Samudrala V, Krishna BH. Effect of short term pranayama on cardiovascular autonomic function in hypothyroidism. Int J Physiol 2019;7:35.
- Baishya A, Metri K. Effects of yoga on hypothyroidism: A systematic review. J Ayurveda Integr Med

- 2024;15:100891.
- Chatterjee S, Mondal S. Effect of Combined Yoga Programme on Blood Levels of Thyroid Hormones: A Quasi-Experimental Study; 2017. Available from: https://www.researchgate.net/ publication/340731341. [Last accessed on 2024 Jun 23].
- 32. Nirwan M, Jyothish KJ, Halder K, Chakraborty S, Saha M, Pathak A, *et al.* Yoga intervention as a potential countermeasure for polar T3 syndrome. Def Life Sci J 2019;4:163-9.
- Chaturvedi A. Efficacy of yoga in balancing the deranged biochemical profile in healthy perimenopausal women hailing from South Kanara district of Karnataka, India. Asian J Biomed Pharm Sci 2015;5:20-5.
- Rani M, Singh U, Agrawal GG, Natu SM, Kala S, Ghildiyal A, et al. Impact of yoga nidra on menstrual abnormalities in females of reproductive age. J Altern Complement Med 2013;19:925-9.
- Shohani M, Badfar G, Nasirkandy MP, Kaikhavani S, Rahmati S, Modmeli Y, et al. The effect of yoga on stress, anxiety, and depression in women. Int J Prev Med 2018:9:21.
- Chauhan S, Babu AM, Galgalo DA, Melczer C, Prémusz V, Karsai I. Effect of yoga in medical students to reduce the level of depression, anxiety, and stress: Pilot study (Goodbye Stress with Yoga GSY). BMC Complement Med Ther 2024;24:203.
- 37. Tawari PR, Sheetal Bamhane D. Effectiveness of Power Yoga on Anxiety and Quality of Life in Young Females with Polycystic Ovarian Syndrome (Pcos)-an Experimental Study. Vol. 11; 2023. Available from: https://www.ijcrt.org. [Last accessed on 2024 Jun 24].
- Akhter J. Role of yoga in improving quality of life of hypothyroidism patients. Int J Adv Med 2019;6:341.
- Bagnasco M, Bossert I, Pesce G. Stress and autoimmune thyroid diseases. Neuroimmunomodulation 2006;13:309-17.
- Bogusławska J, Godlewska M, Gajda E, Piekiełko-Witkowska A. Cellular and molecular basis of thyroid autoimmunity. Eur Thyroid J 2022;11:e210024.
- 41. Gong B, Wang C, Meng F, Wang H, Song B, Yang Y, *et al.* Association between gut microbiota and autoimmune thyroid disease: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2021;12:774362.
- Panicker V. Genetics of thyroid function and disease. Clin Biochem Rev 2011;32:165-75.
- Khajuria A, Kumar A, Joshi D, Kumaran SS. Reducing stress with yoga: A systematic review based on multimodal biosignals. Int J Yoga 2023;16:156-70.
- 44. Stensland ZC, Coleman BM, Rihanek M, Baxter RM, Gottlieb PA, Hsieh EW, et al. Peripheral immunophenotyping of AITD subjects reveals alterations in immune cells in pediatric versus adult-onset AITD. iScience 2022;25:103626.
- Yeun YR, Kim SD. Effects of yoga on immune function: A systematic review of randomized controlled trials. Complement Ther Clin Pract 2021;44:101446.
- Alkader DA, Asadi N, Solangi U, Singh R, Rasuli SF, Farooq MJ, et al. Exploring the role of gut microbiota in autoimmune thyroid disorders: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023;14:1238146.
- Sun Y, Ju P, Xue T, Ali U, Cui D, Chen J. Alteration of faecal microbiota balance related to long-term deep meditation. Gen Psychiatr 2023;36:e100893.
- 48. Jia W, Zhen J, Liu A, Yuan J, Wu X, Zhao P, *et al.* Long-term vegan meditation improved human gut microbiota. Evid Based Complement Alternat Med 2020;2020:9517897.
- Saatcioglu F. Regulation of gene expression by yoga, meditation and related practices: A review of recent studies. Asian J Psychiatr 2013;6:74-7.

- Giridharan S. Beyond the mat: Exploring the potential clinical benefits of yoga on epigenetics and gene expression: A narrative review of the current scientific evidence. Int J Yoga 2023;16:64-71.
- Brogan K, Marcelino G, Pedro C, Siefert A. Healing of graves' disease thorough lifestyle changes: A case report. Adv Mind Body Med 2019;33:4-11.
- 52. Banerjee S. Study on yoga intervention along with diet on hypothyroidism associated with obesity among sedentary working women in West Bengal. Int J Yoga Allied Sci 2019;8:18-23.
- Mehta A, Parwe S. Evaluation of Vamana and Virechana karma in the treatment of hypothyroidism – A study protocol. J Pharm Res Int 2021;33:161-9.