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ChromaFold predicts the 3D contact map
from single-cell chromatin accessibility

Vianne R. Gao1,2, Rui Yang 1,2, Arnav Das3, Renhe Luo 4, Hanzhi Luo5,
DylanR.McNally6, IoannisKaragiannidis7,MartinA.Rivas 7,8, Zhong-MinWang9,
Darko Barisic 7, Alireza Karbalayghareh 1, Wilfred Wong 1,2,
YingqianA. Zhan 10,ChristopherR.Chin 7,WilliamS.Noble 3, JeffA. Bilmes3,
Effie Apostolou 11,13, Michael G. Kharas 5,13, Wendy Béguelin 7,13,
Aaron D. Viny 12,13, Danwei Huangfu 4,13, Alexander Y. Rudensky 9,13,
Ari M. Melnick 7,13 & Christina S. Leslie 1

Identifying cell-type-specific 3D chromatin interactions between regulatory
elements can help decipher gene regulation and interpret disease-associated
non-coding variants. However, achieving this resolution with current 3D
genomics technologies is often infeasible given limited input cell numbers.We
therefore present ChromaFold, a deep learningmodel that predicts 3D contact
maps, including regulatory interactions, from single-cell ATAC sequencing
(scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessi-
bility, co-accessibility across metacells, and a CTCF motif track as inputs and
employs a lightweight architecture to train on standard GPUs. Trained on
paired scATAC-seq and Hi-C data in human samples, ChromaFold accurately
predicts the 3D contact map and peak-level interactions across diverse human
and mouse test cell types. Compared to leading contact map prediction
models that use ATAC-seq and CTCF ChIP-seq, ChromaFold achieves state-of-
the-art performance using only scATAC-seq. Finally, fine-tuning ChromaFold
on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of
chromatin interactions across cell subpopulations.

Genome-wide chromosome conformation capture techniques such as
Hi-C, HiChIP, and ChIA-PET1–3 provide powerful tools for mapping cell-
type-specific regulatory interactions that can link enhancers to genes
and enable the interpretation of non-coding disease-associated

variants4,5—at least when there is sufficient input material to generate
high-complexity libraries and allow for very deep sequencing. Indeed,
the use of these assays is often impeded by their substantial costs, time
requirements, and technical difficulty, especially when studying rare
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cell populationswhereobtaining a sufficient number of cells for a high-
quality contact map becomes impractical6,7. On the other hand, single-
cell chromosome conformationmapping technologies, such as single-
cell Hi-C or ChIA-Drop, although exciting, are experimentally challen-
ging and produce sparse datasets that are typically analyzed at
100 kb–1Mb resolution8–11. By contrast, single-cell chromatin accessi-
bility (scATAC-seq) datasets can be readily generated from small
amounts of input material due to the availability of commercial kits12.
Genome-wide chromatin accessibility profiles reflect the extent to
which nuclear molecules, including transcription factors, chromatin
remodelers, histones, and other chromatin-associated proteins, can
physically interact with chromatinized DNA, and single-cell chromatin
accessibility contains subtle information about pairwise 3D
interactions13. This raises the question of whether one can predict
chromatin interactions and connect regulatory elements to their tar-
get genes using scATAC-seq data alone.

Several models have been proposed to predict chromatin inter-
actions fromgenomic sequence and easier-to-obtain bulk or single-cell
epigenomic data14–19. For instance, Cicero was the first method to
leverage the co-accessibility structure between accessible elements
(‘peaks’) in scATAC-seq data to infer chromatin interactions in an
unsupervised fashion18. DeepC19, Akita14, and Orca15 are supervised
deep neural network-based models that predict chromatin contact
maps fromgenomicDNA sequences. Epiphany, amodelwe introduced
recently for cell-type-specific contactmapprediction, uses a collection
of bulk 1D epigenomic input tracks to enable generalization to
novel cell types17. Another recent model, C.Origami, is also capable of
making cell-type-specific predictions using DNA sequence together
with bulk ATAC-seq and CTCF ChIP-seq in the target cell type16.
However, these existing models for chromatin interaction prediction
have practical limitations. Unsupervised models like Cicero offer
modest accuracy, whereas sequence-based models such as DeepC,
Akita, and Orca fail to generalize effectively to new cell types and,
indeed, tend to predict similar contact maps across training cell
types14,16. Meanwhile, C.Origami and Epiphany both require multiple
input datamodalities, which are not always available, andC.Origami, in
particular, employs a more complex model that may be susceptible
to overfitting20.

In this study, we introduce ChromaFold, a supervised deep-
learning model that predicts the 3D contact map from scATAC-seq
data and CTCF motif tracks as input features. Given the linkage
between the accessibility landscape of regulatory elements and 3D
genome organization, our underlying hypothesis is that we can lever-
age the covariation in accessibility stemming from asynchronous
chromatin looping events across single cells. This assumption is fur-
ther substantiated by prior studies showing that pairs of genomic bins
with high co-accessibility are enriched for chromatin looping
events18,21. Additionally, given the crucial role of the CTCF protein in
shaping 3D chromatin structure, the inclusion of CTCF-associated
signals is expected to enhance the model’s predictive power22–24. For
wider adaptability, we do not require CTCF ChIP-seq as an input and
offer two versions of ChromaFold. ChromaFold +CTCF motif uses
CTCF motif score, a measure of the likelihood that a genomic region
contains a binding site for the CTCF protein, as a proxy for CTCF
binding25. ChromaFold +CTCF ChIP uses the actual CTCF ChIP-seq
track as input (unless otherwise noted, ChromaFold refers to Chro-
maFold +CTCF motif).

The key advantages of ChromaFold include its requirement of
only scATAC-seq data as experimental input data, its ability to make
cell-type-specific predictions in new cell types, and its lightweight
architecture, making it compatible with standard GPUs. Importantly,
ChromaFold can also be employed to deconvolve bulk chromatin
interaction data across constituent cell types—resolving the cell-type-
specificity of chromatin interactions—by fine-tuning bulk Hi-C and
scATAC-seq data from the same complex tissue.

We evaluated ChromaFold on five human and three mouse test
cell types and tissues.ChromaFoldwas able tomake accurate cell-type-
specific predictions of 3D contact maps (as evaluated by distance-
stratified Pearson correlation) and peak-level interactions (as eval-
uated by receiver operating characteristic and precision-recall analy-
sis) in new cell types and species. In particular, ChromaFold
predictions at important lineage-defining loci in murine germinal
center B cells (GCBs), regulatory T (Treg) cells, and hematopoietic
stem cells (HSCs) recovered correct cell-type-specific 3D interactions.
Interestingly, despite its smaller model and reduced information
requirements, ChromaFold’s performance was comparable to C.Ori-
gami when using CTCF motif information as input and outperformed
C.Origami when using CTCF ChIP-seq track as input on new cell types.
Finally, using paired Hi-C and scATAC-seq in human pancreatic islets,
ChromaFold successfully deconvolved chromatin interactions into
those specific to alpha cells and beta cells.

Overall, ChromaFold achieves state-of-the-art generalization to
novel cell types while requiring only a single input modality to enable
accurate Hi-C contact map predictions, including regulatory interac-
tion predictions, in any setting where scATAC-seq can be generated.

Results
ChromaFold is a deep-learning model that predicts 3D contact
maps from scATAC-seq data
To enable fast and accurate prediction of chromatin contacts from
scATAC-seq data alone, we developed ChromaFold, a lightweight
convolutional neural network-based model that makes cell-type-
specific predictions. ChromaFold is trained on paired scATAC-seq
and Hi-C data from a panel of training cell types. ChromaFold takes
three input tracks—pseudobulk chromatin accessibility and correla-
tion structures in accessibility (co-accessibility) profiles across cells,
both computed from scATAC-seq, and predicted CTCF motif scores—
all processed for a 4.01Mb genomic region (Fig. 1a). These processed
inputs are passed through two feature extractors in the ChromaFold
architecture. The first feature extractor takes the pseudobulk acces-
sibility and CTCF motif score tracks with a bin size of 50 bp as input,
while the second takes the co-accessibility with a bin size of 500 bp as
input. For memory efficiency, we only compute the co-accessibility
between the genomic bins in the center 10 kb region with the rest of
the bins in the 4.01Mb region as input. These extractors produce a
latent representation of the genomic region, which is then passed
through the linear predictor to predict the chromatin interactions
between the center genomic bin and its neighboring binswithin a 2Mb
distance (V-stripe) at 10 kb resolution, using the HiC-DC +Z-score26

normalized Hi-C contact map for the corresponding region and cell
type as the target (Fig. 1b and Supplementary Fig. 1a).

To process the input data, theCTCFmotif score track is generated
by scanning a set of CTCFpositionweightmatrices27,28 (Supplementary
Fig. 1b) across the DNA sequence. The pseudobulk chromatin acces-
sibility is obtained by aggregating the accessibility profile across single
cells in a population. The co-accessibility is derived by first generating
metacells to combat sparsity, then calculating the Jaccard similarity29

between binarized accessibility profiles across metacells. During
training, we randomly subsample single cells and metacells from the
population per iteration to generate pseudobulk accessibility and co-
accessibility input data, respectively. This data augmentation step is
critical for improving model generalizability to datasets of varying
quality and size30–32. As a sanity check, we observed an enrichment of
CTCF occupancy as measured by ChIP-seq in genomic bins with high
CTCF motif score (Supplementary Fig. 1c), and an enrichment of
chromatin interactions as measured by Hi-C in co-accessible genomic
bins for datasetswith greater variability (Supplementary Fig. 1d). These
results suggest that our input tracks provide valuable information for
predicting chromatin contacts that can be harnessed by ChromaFold
when trained across sufficiently diverse training cell types.
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We trained ChromaFold on three human cell types (IMR-90,
GM12878, and HUVEC) to improvemodel generalizability to novel test
cell types. Fifteen chromosomes were used for training, two for vali-
dation, and four were held out for testing and evaluating model per-
formance. We held out three other human cell types (K562, hESC, and
activated CD4 +T cells) to test howwell ChromaFold can generalize to
new cell types. The full contact map was obtained by combining the
V-stripe predictions along the chromosome (Methods). To evaluate
ChromaFold’s performance, we assessed both the chromosome-wide
contact map and significant interaction prediction (based on HiC-DC+
top-scoring interactions) on held-out chromosomes for both training
and held-out cell types (Fig. 2a, b). ChromaFold achieved an average
distance-stratifiedPearson correlation of 0.55–0.60 and0.45–0.47 and
an average area under the ROC curve (AUROC) of 0.84–0.85 and
0.77–0.79 in training and held-out cell types, respectively. These
results demonstrate ChromaFold’s ability to effectively predict the 3D
contact map in unseen data and capture significant interactions.

Our choice of 10 kb resolution for prediction of the contact map
matches the typical resolutionof currentHi-Cdatasets. However,finer-
grained resolution is feasible given suitable Hi-C training targets. In
particular, we confirmed that a variant of the ChromaFold model that
predicts at 5 kb resolution achieved comparable performance to the
10 kbmodel on held-out chromosomes when trained on GM12878, the
highest-quality training Hi-C dataset (Supplementary Fig. 2a). We fur-
ther confirmed that ChromaFold produced robust predictions over
biological replicate scATAC-seq inputs and substantially different
contact maps between cell types (Supplementary Fig. 2b). Finally, we
found that only mild decreases in prediction accuracy were incurred

by sampling down to about 3000 test cells (Supplementary Fig. 2c),
again confirming the robustness of the model.

Co-accessibility and CTCF information improve contact map
and peak-level interaction prediction
A key goal of ChromaFold is to predict chromatin interactions that
connect regulatory elements to their target genes. To this end, we
examined the interactions between accessible peaks by associating
ATAC-seq peaks with the overlapping genomic bin and calling peak-
level interactions based on the experimental/predicted bin-level con-
tact map (Fig. 2c, Methods). On held-out chromosomes, ChromaFold
achieves an average area under the precision-recall curve (AUPRC) of
0.65–0.7 and 0.45–0.75 and an average AUROC of 0.87–0.89 and
0.81–0.89 in training and testing cell types, respectively (Fig. 2d). It
should be noted that the diminished performance in K562 is likely
attributable to the inferior quality of the Hi-C contact map used for
evaluation.

We also compared ChromaFold against Cicero, an unsupervised
model that first introduced the idea of using co-accessibility to infer
chromatin interactions between accessible peaks18. Cicero identifies
co-accessible pairs of genomic regions based on their correlation in
accessibility across metacells, then uses a graphical lasso regulariza-
tion to predict a sparser contactmap.While peaks with high Cicero co-
accessibility are indeed enriched for chromatin interactions compared
to peaks with co-accessibility <0, the unsupervised nature of Cicero
limits the accuracy of the model, resulting in low precision and recall
(Fig. 2c, d). Spurious interaction calls are frequently made, since pairs
of genomic regions can be correlated in accessibility without
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Fig. 1 | ChromaFold predicts the 3D contact map from scATAC-seq alone.
ChromaFold is a deep-learning model that enables the prediction of 3D contact
maps solely from scATAC-seq data, using pseudobulk chromatin accessibility and
co-accessibility from scATAC-seq as well as predicted CTCF motif tracks as input
features. a Schematic of the ChromaFold input data processing framework.
b ChromaFold model architecture. The model consists of two feature extractors:
feature extractor 1 for the aggregated accessibility and CTCF motif score tracks

with a bin size of 50bp, and feature extractor 2 for the co-accessibility extracted
from a V-stripe region with a bin size of 500bp. The feature extractors produce a
latent representation of the 4Mbgenomic region. The Z-score predictor then takes
this latent representation and predicts the chromatin interactions between the
center genomic tile and its neighboring bins within a 2Mb distance, annotated by
the V-shaped black box. Each genomic tile is 10Kb in length.
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representing true 3D interactions (Fig. 2c). On the other hand, we also
observed numerous examples where interacting regions are uncorre-
lated across metacells, leading to false negative predictions (Supple-
mentary Fig. 4c, d). Additionally, Cicero does not take into account the
pseudobulk accessibility profile of peaks and relies solely on correla-
tion structures overmetacells,whichare heavily influencedby the level
of variability in the scATAC-seq dataset (Supplementary Fig. 1d).

Nevertheless, we did observe a significant improvement in both 3D
contact map and peak-level interaction prediction when we incorpo-
rated co-accessibility as an input to ChromaFold (Fig. 2b, d), suggest-
ing that the supervised model can extract useful information from the
co-accessibility signal.

While ChromaFold yields peak-level interactions that include
regulatory interactions, we caution that neither ground truth nor
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predicted Hi-C contact maps alone are sufficient to infer functional
enhancer-promoter interactions as validated by assays such as
CRISPRi-FlowFISH33. In particular, recent work on the activity-by-
contact model34 and the supervised ENCODE-E2G model33 suggests
that H3K27ac data—in addition to chromatin accessibility and 3D
interactions—is required to accurately predict functional enhancer-
gene links. For example, examining both ground truth and
ChromaFold-predicted promoter-anchored 3D interactions at theMYC
locus in K562 cells, we find that there is reasonable concordance
between high-scoring true and predicted interactions and that both
recover some of the CRISPRi-FlowFISH-validated MYC enhancers
(Supplementary Fig. 3a). However, many ground truth promoter-
anchored Hi-C interactions do not validate as significant functional
enhancers by FlowFISH. Looking more generally at chromosome-wide
results (chr8), most FlowFISH-validated enhancers are close (<50 kb)
to the TSS, and despite good concordance between true andpredicted
HiC-DC Z-scores across candidate enhancer-promoter interactions,
the 3D interaction strength did not discriminate between significant
and insignificant FlowFISH open chromatin regions (Supplementary
Fig. 3b-d). Therefore, ChromaFold accurately predicts 3D interactions
between chromatin-accessible regions but does not directly infer their
regulatory activity.

We next compared ChromaFold’s performance when using dif-
ferent types of CTCF information. A qualitative examination of the
predicted contact maps in hESC revealed that CTCF information—
either predicted binding tracks via motif scores or occupancy from
ChIP-seq—is crucial for accurate prediction of the contact map (Sup-
plementary Fig. 4a). A quantitative analysis of the predicted Hi-Cmaps
and peak-level interactions confirmed this observation, as there was a
significant decline in performance when ChromaFold operated with-
out any CTCF information across all tested cell types. The most pro-
nouncedperformancedegradationoccurred inhESC,which suggests a
potential differential mapping between accessibility, CTCF binding,
and chromatin interactions in this cell type. As expected, in the
majority of cell types examined, ChromaFold performed optimally
when it utilized cell-type-specific CTCFChIP-seq data in themajority of
cell types examined. It should be noted, however, that supplying
ChromaFold with predicted CTCF motif information alone was suffi-
cient to significantly enhance its accuracy in predicting both the con-
tact map and significant interactions (Supplementary Fig. 4b, c).

ChromaFold is able to predict 3D interactions that are not asso-
ciated with CTCF binding, although performance metrics do differ on
interactions that are occupiedbyCTCF at both anchors, one anchor, or
neither anchor (Supplementary Fig. 5a). In particular, the vast majority
of interactionbins in the contactmatrix havenoCTCFbinding at either
anchor, and ROC performance is strongest on this class of candidate

interactions, while precision-recall is weakest due to strong negative
class bias. Meanwhile, ROC performance on CTCF-associated candi-
date interactions is poorer, but precision-recall is much stronger.
Interestingly, when we modified the model to use both forward and
reverse motif tracks in order to capture the known orientation bias of
CTCF-mediated loops, we did not find consistent improvement across
test cell types (Supplementary Fig. 5b). Potentially, the topologically
associating domain structure associated with convergent CTCFmotifs
is already well captured through accessibility and co-accessibility.

ChromaFold competes with state-of-the-art models that use
multiple bulk epigenomic tracks
We next benchmarked ChromaFold against C.Origami, a recent model
that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq as inputs
to predict the 3D contact map16. To ensure a fair comparison, we re-
trainedChromaFold andC.Origami on the samecell type, IMR-90,with
HiC-DC+ Z-score normalized Hi-C contactmaps as the target and used
the same chromosomes for training, validation (Chr10), and testing
(Chr15). While ChromaFold and C.Origami achieved similar perfor-
mance on the held-out chromosome in the training cell type (Sup-
plementary Fig. 6a–c), ChromaFold models outperformed C.Origami
on a new cell type, GM12878 (Fig. 3). Further expanding our compar-
ison to include two additional cell types used in C.Origami’s cross-cell-
type prediction evaluation, K562, and hESC, we found that the Chro-
maFold model consistently surpassed C.Origami across all metrics
when CTCF ChIP-seq data was provided, and achieved comparable
performance when using CTCFmotif information. Given that HiC-DC+
normalization employs negative binomial regression to control for
genomic distance as well as other covariates such as GC content and
mappability to identify statistically significant interactions,wepropose
that this normalization makes contact map prediction more challen-
ging than other normalization methods, such as ICE35. Consequently,
more heavily parameterized models, like C.Origami, may be more
susceptible to overfitting, thereby compromising generalizability.

For completeness, we repeated the comparison of ChromaFold
with C.Origami when both models were trained and evaluated against
ICE-normalized Hi-C target contact maps, maintaining the same
training, validation, and test chromosomes as above. With ICE nor-
malization, TAD structures dominate the target Hi-C contactmap, with
little visible structure within TADs (Supplementary Fig. 7a–d). Relative
to this smoother normalization, Pearson correlation with the target
was higher for both ChromaFold and C.Origami, and we found that
ChromaFold with CTCF ChIP-seq achieved the same performance as
C.Origami across most test cell types (Supplementary Fig. 7e–h).
Potentially, CTCF ChIP-seq is needed for optimal prediction with a
TAD-dominated normalization.

Fig. 2 | Co-accessibility information improves contact map prediction in new
cell types. a Visualization of real vs. ChromaFold-predicted Hi-C contact map,
insulation scores, epigenetic tracks, and co-accessibility onheld-out chromosome5
in HUVEC. b Quantitative evaluation of Hi-C map prediction performance by
ChromaFold, with and without the co-accessibility input, across training and held-
out human cell types/tissues. Box plots show (top) the averaged distance-stratified
Pearson correlation for each of n = 4 held-out chromosomes between the experi-
mental and predicted contact map and (bottom) the averaged distance-stratified
AUROC for each held-out chromosome of significant interactions (top 10% in Z-
score). Performance comparisons were assessed by one-sided paired t-tests on the
distance-stratified Pearson correlation across four test chromosomes from 10Kb to
2Mb incrementing by 10Kb, consisting of n = 796pairs. The p value for the Pearson
correlation of the full model vs. no co-accessibility model from left to right is <10−16

for IMR-90, <10−16 for HUVEC, <10−16 for GM12878, <10−16 for CD4+ activated T cells,
0.999 for hESC and <10−16 for K562 (top); the p value for the AUROC is <10−16 for
IMR-90, <10−16 for HUVEC, <10−16 for GM12878, <10−16 for CD4+ activated T cells,
1.95 × 10−7 for hESC and <10−16 for K562 (bottom); legend *: <0.05, **: <0.01, ***:
<0.001. c Visualization of ChromaFold-predicted Hi-C contact map and significant

peak-level interactions andCicero-predicted peak-level interactions in held-out cell
typeK562onheld-out chromosome5.dQuantitative evaluationof significant peak-
level prediction performance by ChromaFold and Cicero. Box plots show the
AUPRC (top) and AUROC (bottom) of significant peak-level interaction prediction
for each of n = 4 held-out chromosomes. Performance comparisons were assessed
by one-sided paired t-tests on the distance-stratified AUROC and AUPRC across
four test chromosomes from 10 to 500Kb incrementing by 10Kb, consisting of
n = 196 pairs. The p value for the AUPRC of ChromaFold vs. ChromaFold no co-
accessibility from left-to-right is <10−16 for IMR-90, <10−16 forHUVEC, <3.69 × 10−5 for
GM12878, <10−16 for CD4+T cells, 0.782 forhESC and<1.35 × 10−9 for K562 (top). The
p value for the AUROC is <10−16 for IMR-90, <10−16 for HUVEC, <10−16 for GM12878,
<10−16 for CD4+ T cells, 3.41 × 10−4 for hESC and 3.20× 10−7 for K562 (bottom). The p
values for both ChromaFold models vs. Cicero are <10−16. In b, d, boxes show the
quartiles of the dataset while the whiskers extend to show the rest of the dis-
tribution, except for points greater or less than 1.5 times the inter-quartile range
from the first or third quartile respectively. Source data are provided as a Source
Data file.
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Fig. 3 | ChromaFold achieves state-of-the-art performance for predicting sig-
nificant Hi-C interactions in new cell types. C.Origami and ChromaFold were
trained using the same training/test chromosomes on IMR-90 to predict contact
maps normalized by HiC-DC+ Z-score. a Visualization of C.Origami and
ChromaFold-predicted Hi-C contact maps and peak-level interactions in held-out
cell type GM12878. b Line plots show distance-stratified (top) Pearson correlation

between the experimental and predicted contact map, (middle) AUROC and
(bottom) AUPRC of significant interactions (top 10% in Z-score) for ChromaFold
and C.Origami on held-out chromosome 15. c Line plots show (top) PR curves and
(bottom) ROC curves for peak-level interaction prediction on held-out chromo-
some 15. Source data are provided as a Source Data file.
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from 10kb to 2Mb for n = 20 chromosomes. d Box plots show the distance-
stratified AUROC(top) and AUPR (bottom) of significant peak-level interaction
prediction from 10 to 500 kb for n = 20 chromosomes across mouse cell types. In
c, d, boxes show the quartiles of the dataset while the whiskers extend to show the
rest of the distribution, except for points greater or less than 1.5 times the inter-
quartile range from the first or third quartile respectively. Source data are provided
as a Source Data file.
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Finally, we compared against another deep-learning method we
developed, Epiphany17, which usesmultiple bulk epigenomic tracks with
a bi-LSTM model to predict the Hi-C contact map. Here we trained Epi-
phany to predict the HiC-DC Z-score normalized contact map in
GM12878 using the full five-track model (ATAC, H3K27ac, H3K4me3,
H3K27me3, and CTCF) and a two-track model (ATAC, CTCF) and eval-
uated on the same held-out chromosomes as ChromaFold (Supple-
mentary Fig. 7i). ChromaFold achieved comparable performance to the
two-track Epiphany predictions, with the five-track Epiphany model
giving slightly higher Pearson correlation. Interestingly, when we
benchmarked ChromaFold with Epiphany in K562, a held-out cell type,
ChromaFold outperformed the 5-track Epiphany model while achieving
comparable performance to the 2-track Epiphany model. This poorer
generalization for thefive-track Epiphanymodelmaybedue to technical
differences across the epigenomic tracks between cell types, or poten-
tially due to overfitting to training data. Overall, we can conclude that
ChromaFold using only scATAC-seq achieves state-of-the-art perfor-
mance compared to models that use bulk chromatin accessibility and
CTCF ChIP-seq.

ChromaFold can generalize across species and make cell type-
specific predictions
Having shown that ChromaFold can generalize to new human cell
types, we proceeded to test whether the model could generalize to a
different mammalian genome, since we expect evolutionarily con-
served rules governing the mapping between chromatin accessibility
and 3D interactions. We therefore directly applied ChromaFold,
trained on three human cell types/tissues, to mouse germinal center B
cells (GCBs), hematopoietic stem cells (HSCs), and regulatory T (Treg)
cells, and evaluated both the predicted contact maps and peak-level
interactions. We observed performance comparable to that in human
cell types, despite evaluating in a different genome and against lower
quality ground-truth Hi-C contact maps in mouse cell types (Fig. 4c, d
and Supplementary Fig. 8a, b). Similar to observations in human test
cell types, ChromaFold predictions in mouse are compromised when
we ablate the co-accessibility or CTCF motif score input (Supplemen-
tary Fig. 8a). Notably, we achieve goodperformance onGCBswith only
~1500 cells in the scATAC-seq dataset, whereas the smallest training
cell type contains ~3300 cells. These findings suggest that
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ChromaFold, trained on human data, can generalize to mouse and
potentially to other mammalian genomes.

Next, we sought to confirm ChromaFold’s ability to make cell-
type-specific predictions at loci of interest. Although the predicted
CTCF motif score is not cell-type-specific, we expected that the
accessibility inputswould confer cell-type-specificity. To illustrate this,
we zoomed in on two genes of interest in these cell types: B cell lym-
phoma 6 (Bcl6) and Helios (Ikzf2). The Bcl6 gene encodes a transcrip-
tion factor that is critical for GCB development36,37. Upon comparing
the 3D contact maps at the Bcl6 locus in GCBs and in HSCs, we
observed various conformation changes upstream of the Bcl6 gene,
specifically around the region Chr16:24,250,000–24,600,000bp.
These differences were accurately captured by ChromaFold-predicted
contact maps and insulation scores (Fig. 4a). The Ikzf2 gene is a tran-
scription factor that is essential for the development and function of
thymically-derived Treg cells38,39. ChromaFold can predict the pre-
sence of chromatin interactions or lack thereof near the Ikzf2 locus in
Treg cells and GCBs, respectively (Fig. 4b). Taken together, we con-
clude that ChromaFold is able to leverage cell-type-specific single-cell
chromatin accessibility data and make cell-type-specific contact map
predictions.

ChromaFold can deconvolve chromatin interactions in
complex tissue
The ability to study chromatin interactions in fine-grained cell
populations can help dissect cell-type-specific gene regulatory
programs and contribute to elucidating the pathogenesis of
complex genetic diseases. However, the application of experi-
mental techniques such as Hi-C is challenging in rare cell popu-
lations due to the difficulty of acquiring sufficient cells for the
assay. Although single-cell Hi-C sequencing has made significant
advances, the associated experiments remain difficult and
expensive, and the sparse contact maps produced are typically
analyzed at coarse resolution (100 kb–1 Mb bins)11,40.

We therefore sought to use ChromaFold to deconvolve chro-
matin interactions in complex tissues. In scenarios where we possess
scATAC-seq and a bulk Hi-C contact map of a tissue or cell popula-
tion with diverse cell types/states, we decided to fine-tune the pre-
trained ChromaFold model using input and output data from the
mixed population to adapt to the dataset. We then applied the fine-
tuned model to individual cell populations (clusters) to predict
cluster-specific contact maps and thus achieve bulk Hi-C
deconvolution.

To evaluate this approach, we applied ChromaFold to
deconvolve chromatin interactions in alpha and beta cells within
pancreatic islet cell populations using scATAC and bulk Hi-C from
non-diabetic islet donors21 (Supplementary Fig. 9a). The predic-
tions were validated against an independent dataset containing
Hi-C in sorted alpha and beta cells41. Our results show that
ChromaFold can accurately deconvolve chromatin interactions in
the held-out chromosomes (Fig. 5 and Supplementary Fig. 9b).
Further, we visualized the predicted interactions at alpha and
beta cell marker genes glucagon (GCG) and insulin (INS). Notably,
we predicted a large number of contacts between the GCG gene
and distal chromatin regions in the alpha cells but not the beta
cells, consistent with ground truth data in sorted populations
(Fig. 5a). On the other hand, we predicted an increased number of
contacts between the INS gene and both the upstream and
downstream chromatin regions in beta cells compared to alpha
cells, again matching ground truth contact maps (Fig. 5b).

Discussion
Our study demonstrates the utility and potential of ChromaFold for
predicting chromatin contacts and mapping putative regulatory ele-
ments to their target genes. ChromaFold’s performance, as validated

across several metrics and cell types, surpasses previous models such
as Cicero and C.Origami, confirming its robustness and versatility. We
also found that ChromaFold accurately generalized across species by
making cell-type-specific predictions at important loci in diverse
mouse cell types from scATAC-seq alone. These findings underscore
the shared rules governing the mapping from chromatin accessibility
to 3D interaction in mammalian genomes. Furthermore, the ability of
ChromaFold to operate on scATAC-seq datasets with ~1000 cells and
the application of ChromaFold for deconvolving bulk contact maps in
complex tissues enables the study of chromatin interactions in fine-
grained cell populations, providing a novel window into cell-type-
specific gene regulatory programs and the dysregulation of these
programs in complex genetic diseases.

ChromaFold enables the inference of peak-level interactions
between accessible elements, which include regulatory interactions
such as enhancer-promoter (E-P) interactions. However, we caution
that the presence of a promoter-anchored peak-level 3D interaction is
not sufficient to guarantee a functional E-P interaction. Indeed,models
to predict functional E-P links generally use the active histone mark
H3K27ac as well as accessibility and 3D connectivity33. In reanalyzing
published CRISPRi-FlowFISH data, we found that most of the validated
E-P interactions were promoter-proximal, and that 3D interaction
strength alone did not discriminate functional from non-functional
candidate E-P interactions (Supplementary Fig. 5). Therefore, Chro-
maFold’s peak-level interactions provide useful cell-type-specific pre-
dictions about the connectivity of gene promoters and accessible
elements but do not guarantee the regulatory activity of these
interactions.

Our analyses point to several still-unresolved questions for the
predictionof the 3D contactmap: what epigenomic data ismost useful
for achieving good generalization in new cell types, and what infor-
mation is captured by DNA sequence models beyond CTCF motif
information? Ablation experiments with ChromaFold demonstrated
that co-accessibility from scATAC-seq gave a significant performance
improvement over pseudobulk accessibility alone. While a number of
models, including EPCOT42 and C.Origami, have relied on bulk ATAC-
seq as an input signal to help generalization across cell types, our
results suggest that covariation in scATAC-seq provides additional
information that can be leveraged for contact map prediction. Chro-
maFold prediction accuracy improved when cell-type-specific CTCF
ChIP-seq data was provided as an input. However, using predicted
CTCF motif tracks in place of CTCF ChIP-seq data performed com-
parably to C.Origami, a state-of-the-artmodel that uses both a full DNA
sequence model as well as ATAC-seq and CTCF ChIP-seq. This result
suggests that an improved method for predicting cell-type-specific
CTCF ChIP-seq occupancy—in place of the fixed CTCF motif tracks
currently used as input—could increase ChromaFold’s accuracy.
Interestingly, including CTCF orientation information does not sig-
nificantly or consistently improve the model’s prediction (Supple-
mentary Fig. 5b). We hypothesize that the signal from scATAC-seq co-
accessibility, togetherwith non-orientedCTCFmotif data,may already
capture sufficient information about CTCF-mediated looping, and
therefore that motif orientation does not provide addition predictive
value. Furthermore, we note that the performance advantage or dis-
advantageof addingCTCFmotif informationdependson (i) theoverall
similarity of the test cell type Hi-C to that of the training cell types and
(ii) the quality/resolution of the test cell type.

However, it remains unclear what biological information is cap-
tured by introducing a full deep sequence model for contact map
prediction, or whether overfitting to spurious sequence signalsmaybe
masking relevant information beyond CTCF-associated binding
motifs. These questions may be addressed in the coming years
through advances in deep-learning model interpretation and through
ongoing modeling efforts in regulatory genomics. For now, Chroma-
Fold provides a highly favorable trade-off between model complexity,

Article https://doi.org/10.1038/s41467-024-53628-0

Nature Communications |         (2024) 15:9432 9

www.nature.com/naturecommunications


performance, and ease of use, through a lightweight deep-learning
model that achieves state-of-the-art chromatin map prediction from
scATAC-seq alone.

Methods
Ethics statement
Generation of human ESC scATAC-seq data: Experiments were
conducted per National Institute of Health (NIH) guidelines and
approved by the Tri-SCI Embryonic Stem Cell Research Oversight
Committee. Generation of mouse regulatory T cell Hi-C data:
Animals were housed at the Memorial Sloan Kettering Cancer
Center (MSKCC) animal facility under specific pathogen-free
(SPF) conditions on a 12-h light/dark cycle. All studies were per-
formed under protocol 08–10-023, approved by the MSKCC
Institutional Animal Care and Use Committee. Generation of
mouse germinal center B cell scATAC-seq data: The experimental
procedures involving animals were executed in stringent accor-
dance with the institutional guidelines delineated by Weill Cornell
Medicine, as per the Guide for the Care and Use of Laboratory
Animals, and standards established by the Association for
Assessment and Accreditation of Laboratory Animal Care Inter-
national. The Research Animal Resource Center, the Institutional
Animal Care and Use Committee of Weill Cornell Medicine and
Cornell Institutional Animal Care and Use Committee, having
vetted all procedures, duly approved the entirety of the study
involving mice under protocols #2011-0031 and #2017-0035.
Generation of mouse hematopoietic stem cell scATAC-seq: All
animal studies were performed on animal protocol #11-10-025
approved by the Institutional Animal Care and Use Committee
(IACUC) at Memorial Sloan Kettering Cancer Center.

Preprocessing of Hi-C and Micro-C data
We used nine human and three mouse datasets (Supp. Table 1). For
datasets provided in this study and those where a processed.hic file
is not available online, Hi-C FASTQ files were aligned to hg38, hg19,
or mm10 genomes, and reads that are duplicates or invalid ligation
products were filtered out using the HiC-Pro43 pipeline (v3.1.0) with
default settings. Hi-C contact matrices were binned at 10 kb reso-
lution and normalized using the following approaches. ICE-
normalized contact maps were calculated using the HiCExplorer44

package. The counts were log2 normalized using a pseudocount of 1.
Z-score normalization was calculated by the HiC-DC+26 package.
Specifically, HiC-DC+ models observed raw counts for interaction
bins using negative binomial regression to estimate the expected
count based on genomic distance, GC content, mappability, and
effective bin size based on RE sites in the corresponding pair of
genomic intervals.

Preprocessing of scATAC-seq data
For datasets provided in this study and those where the processed
scATAC-seq fragment file was not available online, scATAC-seq FASTQ
files were aligned to hg38, hg19, or mm10 and counted by Cell Ranger
ATAC v1.2.045 with default parameters. Arrow files were created from
the scATAC-seq fragments using ArchR v1.0.146. Specifically, we
binarized sparse accessibility matrices binned into 500 bp tiles across
the genome. Cells with fewer than 1000 fragments and TSS <4 were
filtered out. Latent Semantic Indexing (LSI) was performed on the
25,000 top variable tiles identified after two iterations of “IterativeLSI”
byArchR. Tiles fromnon-standard chromosomes, chrMandchrY,were
not included. Cells were clustered (method=Seurat, k.param= 30,
resolution = 1) and visualized with UMAP47 (nNeighbors = 30) using 30
LSI components. For datasets with multiple cell types, we annotated
and extracted the cell type of interest by computing the mean gene
score of marker genes per cluster. This was cross-checked with cell
type annotations provided by the original sources, if available.

Peak calling
For peak calling of the scATAC-seq data, filtered fragments for cells in
each dataset/cell population were aggregated and used as input to the
MACS248 peak caller (parameters -f BED, -g 2.7e9, -no-model, -shift −75,
-extsize 150, -q 0.05). Peaks were filtered using an IDR49 cutoff of 0.05.
Peaks within 500bp of each other were merged. A peak-by-cell count
matrix was then created by ArchR.

Bulk ATAC-seq data processing
Bulk ATAC-seq data were obtained from ENCODE50 in the form of bam
files. Bam files from replicatesweremerged using samtools51, binned at
1 bp resolution for C.Origami, and RPKM normalized using the bam-
Coverage function in deepTools52 to generate bigwig files.

CTCF ChIP-seq and motif score data processing
We obtained the CTCF motif scores from the CTCF R package27, an
AnnotationHub resource that represents genomic coordinates of
FIMO-predicted CTCF binding sites for human and mouse genomes.
Specifically, CTCF motif scores were generated by scanning for all
three JASPAR28 CTCF PWMs in genomic DNA sequence using FIMO25.
CTCF ChIP-seq data were obtained from ENCODE in the form of bam
files. Bam files from replicates were merged using samtools, binned at
50 bp resolution for ChromaFold and 1 bp resolution for C.Origami,
and RPKM normalized using the bamCoverage function in deepTools
to generate bigwig files. The log2 fold change from the control ChIP-
seq in the corresponding cell types were computed using the bigwig-
Compare function in deepTools.

ChromaFold input data processing
ChromaFold takes three inputs: pseudobulk chromatin accessibility,
co-accessibility profiles across cells, and predicted CTCF motif score/
CTCF ChIP-seq. The pseudobulk chromatin accessibility is obtained by
aggregating the accessibility profile across single cells in a population
binned at 50bp, library-size normalizing, and log transforming with a
pseudocount of 1. The co-accessibility is derived by first generating
metacells to combat sparsity in scATAC-seq datasets, then calculating
the Jaccard similarity between binarized accessibility profiles across
metacells, binned at 500bp. Metacells are generated using the same
algorithm used by Cicero18. Specifically, to generate the co-
accessibility input corresponding to the V-stripe region, we directly
compute the co-accessiblity between the 500bp genomic bins in the
center 20 kb region of the input window with all 500 bp genomic bins
flanking the center 10 kb region. The CTCF motif score for each 50 bp
bin in the genome is defined as the maximum score assigned to any
genomic region that overlaps at least 10 bp with the 50 bp bin.

ChromaFold model architecture
The ChromaFold model consists of two feature extractors and a linear
predictor module. The first feature extractor takes the pseudobulk
accessibility and the CTCF motif score or ChIP-seq signal as two
channels. This feature extractor consists of fifteen 1D convolutional
layers followed by batch normalization and ReLU activation. Next, we
perform outer-concatenation where the model transforms the result-
ing L ×Cmatrix, where L is the length of the output vector and C is the
number of channels, into a L × L × 2C by performing point-wise con-
catenation of the output features. This operation allows the informa-
tion frompairs of genomic bins to be joined together.We implement a
skip connection with the input layer by average-pooling the input and
transforming it into a 3D tensor via outer concatenation. After con-
catenation, the data is passed through three 2D convolutional layers
followed by a linear layer to consolidate the extracted features, pro-
ducing a latent representation of the two input tracks.

The second feature extractor takes the co-accessibility data as
input. For memory efficiency, we only compute the co-accessibility
between the bins in the center 10 kb region with the rest of the bins in
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the 4.01Mb region as input. We use three 1D convolutional layers
followed by two residual blocks and three additional 1D convolutional
layers. Finally, a linear layer consolidates the extracted features and
produces a latent representation of the co-accessibility input. These
latent representations of the genomic region are concatenated and
passed through a final linear layer to predict the contact between
genomic bin t and its neighboring bins within a 2Mb distance, which
corresponds to a V-shaped stripe (V-stripe) in the contact map
centered at t.

ChromaFold model training
We trained ChromaFold using data pooled from three cell types, IMR-
90, GM12878, and HUVEC. Chromosomes 3 and 15 were used for
validation, chromosomes 5, 18, 20, 21 were held out for testing and
evaluatingmodel performance, and the restwereused for training. For
each V-stripe prediction centered at genomic bin t, the input is the
4.01Mb region centered at t. During training, we randomly sub-
sampled 500–5000 single cells and 400–1000 metacells from the
population per iteration for pseudobulk accessibility and co-
accessibility computation, respectively. This data-augmentation step
was critical for improvingmodel generalizability to datasets of varying
quality and size. We injected additional variation into the input by
randomly shifting by −50 or 50 bp. Since neither our input nor output
data contain directionality information, we further reduce redundan-
cies in our model by predicting only one side of the V-stripe, and we
simply reversed the input to predict the other side (shared model
weights). To improvemodel stability,weused a two-step approach and
first train ChromaFold’s feature extractor 1 to predict the target con-
tact map by appending a dummy linear predictor at the end. After
convergence, we froze the weights for this part of the network while
training feature extractor 2 and the final linear module. Genomic
regions with lowmappability were masked from training based on the
total signal for each bin in the contact map. We took the training
window to start and end 4 and 5Mb after the chromosome starting
location and before the ending location, respectively, to create buffer
regions since ChromaFold requires 4.01Mb windows as inputs. The
prediction target is the HiC-DC+ normalized Z-score, with outlier tar-
get values clipped to lie between −16 and 16 to avoid training bias. We
optimized the MSE loss using stochastic gradient descent. We trained
the model for 30 epochs and implemented early stopping with a
patience of 10 epochs, the learning rate of 1e-6 and weight decay 1e-3.
Themodel was trained on a single NVIDIA Tesla V40GPU for ~5 hwhen
using one training cell type and ~14 h when using three training
cell types.

De novo contact map prediction in a new cell type
The ChromaFoldmodel trained on IMR-90, GM12878, and HUVEC can
be directly applied to other cell types and species without retraining.
To perform de novo contact map prediction, we supplied scATAC-seq
data of the new cell type and predicted CTCF motif scores in the
corresponding genome to ChromaFold. If CTCF ChIP-seq data was
available for the test cell type, we could alternatively use the Chro-
maFold +CTCF ChIP-seq model.

ChromaFold Hi-C contact map prediction
To generate the complete predicted contact map for each chromo-
some, we first performed inference and predicted the interaction
between each genomic bin t and all its neighboring bins within a 2Mb
distance, producing a V-stripe. Since the input region is 4.01Mb cen-
tered at the bin t, we zero-padded the input vectors if they extended
beyond the chromosome edges. We combined the predicted V-stripes
and averaged the two predictions for each genomic bin. Contact map
prediction for one full chromosome took on average ~1.5min on a
standard GPU like NVIDIA Tesla V40.

Distance-stratified correlation
To evaluate the overall performance of genome-wide chromatin con-
tact map prediction, we computed the distance-stratified correlation
between the experimental and predicted contact maps. The rationale
for distance-stratification is to remove any remaining genomic dis-
tance effect and avoid inflating the correlation. Specifically, we com-
puted the Pearson correlation for all interactions with genomic
distance d for d from0 to 2Mb, for each chromosome.We then used a
paired t-test53 to compare the performance between models. In the
boxplot visualizations, each point represents the Pearson correlation
averaged across genomic distance, per chromosome.

Topologically associated domain (TAD) annotations
We called TADs at 10 kb resolution using TopDom54 (v0.0.2) using
w= 30 on normalized Hi-C contact maps and predicted contact maps
and used the insulation scores to evaluate ChromaFold’s ability to
predict TAD structures.

Significant interactions
We defined significant interactions at the genomic bin level as
interactions with the top 10% HiC-DC + Z-scores per chromosome.
For each chromosome and at each genomic distance (incrementing
by 10 kb), we used AUROC and AUPRC to evaluate how well sig-
nificant interactions are captured by ChromaFold’s predicted con-
tact map. We used a paired t-test to compare the performance
between models. In the boxplot visualizations, each point repre-
sents the corresponding metric averaged across genomic distance,
per chromosome. To define significant peak-level interactions, we
first mapped each peak to the overlapping genomic bin(s) at 10 kb
resolution. If a peak overlapped two bins, it was assigned to both.
Next, we labeled pairs of peaks as significantly interacting if the
corresponding HiC-DC + FDR-corrected p value is less than 0.25. The
distance-stratified AUROC and AUPRC were computed in a similar
fashion as described above.

Benchmarking against Cicero
We used Cicero to calculate co-accessibility for pairs of peaks. The
same metacell groupings used for ChromaFold training/inference
were used for running Cicero. We then used Cicero to calculate co-
accessibility using a window size of 1Mb and a distance constraint of
500 kb. We evaluated the performance of peak-level significant inter-
action prediction using Cicero co-accessibility at various cutoffs and
compared that using ChromaFold-predicted contact maps. All eva-
luations of peak-level significant interactions were distance-
constrained to 500 kb for comparison with Cicero.

Benchmarking against C.Origami
To ensure a fair comparison, we re-trained ChromaFold (with CTCF
motif score or with CTCF ChIP-seq) and C.Origami on the same cell
type, IMR-90, towards HiC-DC+ normalized Hi-C contact maps and
used the same chromosomes for training, validation (Chr10) and
testing (Chr15) as specified in C.Origami16. The training procedure
for ChromaFold was the same as described above, and that for
C.Origami was the same as described in the original paper. C.Ori-
gami converged after training for 45 epochs. After training, we
evaluated the performance of both models on the test chromosome
in IMR-90, as well as in three held-out cell types GM12878, K562, and
hES. For held-out cell types, we used the IMR-90-trained models but
used GM12878/K562/hESC inputs to make de novo contact map
predictions. For both models, we merged predictions into a
chromosome-wide Hi-C contact map and evaluated the following
metrics: (1) distance-stratified Pearson correlation, (2) distance-
stratified bin-level significant interaction prediction, and (3) peak-
level significant interaction prediction.
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Deconvolution of chromatin interactions in alpha and beta cells
in the pancreatic islet
ChromaFold can be used for deconvoluting chromatin interactions in
complex tissues. Using the scATAC-seq and bulk 3D contact map for
pancreatic islet cells, we fine-tuned the pretrained ChromaFoldmodel
for 1 epoch on the training chromosomes to better adapt the model
predictions to the dataset. We then applied the fine-tuned model to
alpha and beta cell populations to achieve deconvolution. Specifically,
we extracted the alpha and beta cell clusters from the scATAC-seq to
use as input to ChromaFold to generate deconvolved contact map
predictions. Next, we used the deconvolved contact maps to generate
peak-level interaction predictions as described in the section above.
We evaluated the deconvolved chromatin interaction predictions
using an independent dataset with Hi-C of sorted human alpha and
beta cell populations. For peak-level interaction visualization, we
restricted to only interactions involving peaks that lie within 10 Kb of
the TSS of the highlighted genes. The overall contact map prediction
quality was evaluated using distance-stratified Pearson correlation.
Significant bin- and peak-level interaction predictions were evaluated
using distance-stratified AUROC and AUPRC.

Single-cell ATAC sequencing data collection
Human embryonic stem cells were harvested for single-cell multi-
ome analysis with a targeted collection of ~7000 cells. Nuclei were
isolated with Demonstrated Protocol Nuclei Isolation for Single-Cell
Multiome ATAC+Gene Expression Sequencing_RevA. 500 K cells
underwent lysis in 500 μl lysis buffer in ice for 3min, then were
subjected to the standard protocol for wash and counting. Single-
cell Multiome libraries were generated with the 10x Genomics
Chromium Next GEM Single-Cell Multiome ATAC + Gene Expression
Kit following the manufacturer’s guidelines. The libraries were
sequenced on the NovaSeq 6000 platform following the manu-
facturer’s guidelines.

To collect scATAC-seq data in mouse hematopoietic stem cells
(Lin-Kit+ cells), bone marrow cells were harvested from a total of n = 3
C57BL6 wildtype mice and subjected to red blood cell lysis. Bone
marrow cells were then incubated with MACS beads (CD117, Miltenyi
Biotec, 130-091-224). Then enriched c-Kit+ cells were collected by
running AutoMACS (Miltenyi Biotec) according to the manufacturer’s
instructions. The cells were then stained with a cocktail: Lineage
marker (CD3, CD8, Gr1, B220, CD19, and Ter119)- PE-Cy5 (dilution
1:100), cKit-APC-Cy7 (1:100), and DAPI (1:5000). Live Lin-cKit+ cells
were sorted on BD Aria machine. Freshly sorted cells were then
resuspended in PBS + 0.04% BSA at around 300 k/250ul, followed by
scATAC-seq protocol.

Hi-C data collection
Isolation of murine regulatory T cells was conducted as previously
described55. The cell suspension was made from pooled secondary
lymphoid organs (spleen; peripheral and mesenteric lymph nodes) of
Foxp3-GFPmice56, and CD4 T cells were enriched using the Dynabeads
Flowcomp Mouse CD4 Kit (Thermo Fisher, 11461D) according to
manufacturer’s instructions. The resulting cells were stained with
antibodies, washed extensively, and resuspended in isolation buffer
(PBS w/ 2% FBS, 10mMHEPES buffer, 1% L-glutamine, and 2mM EDTA)
containing 0.01% SYTOX Blue dead cell stain (Thermo Fisher, S34857)
to facilitate dead cell exclusion, and sorted on a FACSAria (BD)
instrument. Treg cells (TCRβ +CD4 + Foxp3-GFP+) and naïve conven-
tional CD4 T cells (TCRβ +CD4+ Foxp3-GFP−CD44loCD62Lhi) were
sorted by gating on the respective populations. Hi-C was performed as
previously described57. Briefly, sorted T cell populations (~1 × 105) were
cross-linked in 1% formaldehyde for 10min and quenched in 125mM
glycine. Cross-linked cells were lysed, and chromatin was restriction
enzyme digested using restriction enzymes that digest chromatin at
^GATC and G^ANTC, where N can be any of the four genomic bases

(Arima Genomics, San Diego, CA). Digested chromatin was reverse
cross-linked using NaCl and eluted in 20 uL 2X Shearing buffer (Cov-
aris, Woburn, MA) and fragmented to 350 base pair fragments using a
Covaris LE220Rsc sonicator (Covaris, Woburn, MA). Sheared genomic
material was biotinylated and enriched using streptavidin beads.
Genomic libraries were prepared to streptavidin-bound DNA using
Arima protocol modifications for Accel-NGS 2S DNA plus library kit
(IDT, Coralville, IA). After end repair and ligation, libraries were
quantified using the KAPA library quantification kit (Roche, Indiana-
polis, IN) and PCR amplified for the number of cycles required to
generate >4 nM per library. Hi-C libraries were sequenced on an Illu-
mina NovoSeq at 500M read depth, and raw sequencing data in the
Fastq format were obtained.

Germinal centerBcell centrocytes andcentroblast cellswere sorted
from the spleens of mice immunized with SRBCs for 8 days. Briefly,
single-cell suspensions were stained with antibodies against B220
(BV786, BD 563894), CD95/Fas (BUV805, BD 741968), GL7 (AF647, BD
561529), CXCR4 (PE, BD 561734), and CD86 (PECy7, BioLegend 105014).
Centrocytes (Live B220+CD95/Fas+GL7 +CXCR4–CD86+) and centro-
blasts (Live B220+CD95/Fas+GL7+CXCR4+CD86–) were FACS sorted.
All antibodies were used at 1/500 dilution, except CXCR4 and CD86,
which were used at 1/250 dilution in PBS+2% FBS+0.5mM EDTA. DAPI
was used at 1 µg/mL for the exclusion of dead cells. Cell sorting was
performed in a BD Influx cell sorter in the Weill Cornell Medicine Flow
Cytometry Core Facility. Flow-sorted CB and CC were fixed in 2% for-
maldehyde for 10min. Fixationwas quenchedby the addition of 0.125M
glycine for 10min. In situ Hi-C was performed as described (Rao et al.
Cell 2014). Nuclei were permeabilized, and DNA was digested overnight
with 100U DpnII (New England BioLabs). The ends of the restriction
fragments were labeled using biotin-14-dATP and ligated in a 1-ml final
volume. After reversal of cross-links, ligated DNA was purified and
sheared to a length of ~400bp, at which point ligation junctions were
pulled downwith streptavidin beads, DNA fragments were repaired, and
dA-tailed and Illumina adapters were ligated. The library was produced
by 6–10 cycles of PCR amplification. Sequencing (paired-end, 50bp)was
performed in a HiSeq 2500 Illumina sequencer in the Weill Cornell
Medicine Epigenomics Core.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. In all
cases, we held out chromosomes during training of the ChromaFold
model and reported the model’s performance on the previously held-
out test chromosomes. Cell-type-specific ChromaFold predictions
were performed on pre-clustered cells using scATAC-seq data. Addi-
tionally, we conducted a down-sampling analysis and observed robust
performance of ChromaFold with as few as 3000 randomly selected
test cells.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Some of the scATAC-seq, Hi-C, and CTCF ChIP-seq data used for
training and evaluation were obtained from publicly available
repositories, and the remainder were generated for this study and
deposited to NCBI Gene Expression Omnibus (GEO) database under
accession code GSE246859. The accession numbers for publicly
available datasets are listed in the Supplementary Information and
described below. IMR-90 data were obtained from the ENCODE data
portal with accession numbers ENCSR778RZT (scATAC-seq),
ENCSR345VTI (Hi-C), and ENCSR000EFI (CTCF ChIP-seq).
HUVEC data were obtained from ENCODE with accession
numbers ENCSR516MHK (scATAC-seq), ENCSR788FBI (Hi-C), and
ENCSR000ALA (CTCF ChIP-seq). GM12878 scATAC-seq data were
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obtained from 10X Genomics (https://www.10xgenomics.com/
resources/datasets/10-k-1-1-mixture-of-fresh-frozen-human-gm-
12878-and-mouse-a-20-cells-next-gem-v-1-1-1-1-standard-2-0-0) and
from ENCODE (ENCSR680NPV), Hi-C data from the 4DN data
portal with accession numbers 4DNFI1UEG1HD and 4DNESCIHJOXA,
and CTCF ChIP-seq data from ENCODE (ENCSR000AKB).
K562 scATAC-seq data were obtained from ENCODE (ENCSR308ZGJ,
ENCSR217VXJ), Hi-C data from the 4DN data portal
(4DNFITUOMFUQ), 4DNES9J6QJQS [https://data.4dnucleome.org/
higlass-view-configs/2fb04ff2-b951-4f3d-857c-40a7e22ec56e/],
CTCF ChIP-seq data from ENCODE (ENCSR000AKO), and IDR thre-
sholded peak data from ENCODE (ENCFF598YSU). Human ESC Hi-C
data were obtained from the 4DN data portal (4DNFI2TK7L2F) and
CTCF ChIP-seq data from ENCODE (ENCSR000AMF), and scATAC-
seq data were generated in this study and deposited to GEO
(GSE246859). Human CD4 + T cell scATAC-seq data were obtained
from ENCODE (ENCSR628NXO) and Hi-C data from ENCODE
(ENCSR421CGL). Mouse germinal center B cells Hi-C data was
obtained from GEO (GSE143853), and scATAC-seq data were gener-
ated in this study and deposited to GEO (GSE246859). Mouse reg-
ulatory T cell scATAC-seq data were obtained fromGEO (GSE156112),
and Hi-C data were generated in this study and deposited to GEO
(GSE246859). Mouse hematopoietic stem cell Hi-C data were
obtained from GEO (GSE135031), and scATAC-seq data were gener-
ated in this study and deposited to GEO (GSE246859). Human pan-
creatic islet cell, sorted alpha cell, and sorted beta cell scATAC-seq
data were obtained from GEO (GSE160472). Human pancreatic islet
cell Hi-C data were obtained from the Accelerating Medicines Part-
nership data portal under accession number (DFF064KIG). Sorted
human alpha and beta cell Hi-C were obtained from GEO
(GSE188311). CRISPRi-FlowFISH data were obtained from EPCrispr-
Benchmark_ensemble_data_GRCh38.tsv.gz (https://github.com/
EngreitzLab/CRISPR_comparison/tree/main/resources/crispr_data).
A minimum dataset of processed input data and normalized Hi-C
contact maps for IMR-90 (hg38) is available at Zenodo58 [10.5281/
zenodo.13362537]. Source data for generating the figures are pro-
vided at Zenodo58 [10.5281/zenodo.13362537].

Code availability
TheChromaFoldmodel codehasbeendeposited intoGitHubunder the
MIT license and is publicly accessible at ChromaFold Github59 [10.5281/
zenodo.13862915] (https://github.com/viannegao/ChromaFold/tree/
main). The data preprocessing code incorporates components from
external software packages ArchR, which is used under the terms of the
GNUGeneral Public License (GPL) version 2 or later. The original ArchR
code and its associated copyright information can be found at https://
www.archrproject.com/index.html.
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