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Abstract: Herein, we report the synthesis of sulfur-substituted boron(III) subphthalocyanines (SubPcs)
with cationic axial ligands. Subphthalocyanines were synthesized by a condensation reaction using
the corresponding phthalonitriles and boron trichloride as a template. An aminoalkyl group was
introduced on the central boron atom; this process was followed by N-methylation to introduce
a cationic axial ligand. The peripheral sulfur groups shifted the Q band of SubPcs to a longer
wavelength. The cationic axial ligands increased the polarity and enhanced the hydrophilicity of
SubPcs. The effect of axial ligands on absorption and fluorescence properties is generally small.
However, a further red shift was observed by introducing cationic axial ligands into the sulfur-
substituted SubPcs. This change is similar to that in sulfur-substituted silicon(IV) phthalocyanines.
The unique effect of the cationic axial ligand was extensively investigated by theoretical calculations
and electrochemistry. In particular, the precise oxidation potential was determined using ionization
potential measurements. Thus, the results of the present study provide a novel strategy for developing
functional dyes and pigments based on SubPcs.

Keywords: subphthalocyanine; axial ligand; absorption spectra; fluorescence; ionization potential

1. Introduction

Organic dyes and pigments have intense absorption bands in the visible-to-near-
infrared (NIR) regions, demonstrating bright, visible colors. Because the interaction be-
tween light and molecules corresponds to electronic transitions, molecules with bright
colors often exhibit unique electronic properties [1]. In the last decade, many organic dye-
based molecules have been successfully developed and used in the various fields, such as dye-
sensitized solar cells [2,3], organic field-effect transistors [4,5], organic photovoltaics (OPVs) [6,7],
chemical sensors [8], and photodynamic therapy (PDT) photosensitizers [9–11]. Most functional
materials require multiple functional features. In novel functional molecules, an individual
molecule offers multiple functional sites simultaneously, such as intense light absorption
and emission, hydrophilic interaction, and recognition of specific molecules. Molecular
platforms that are easily tunable and can integrate various functions are attractive syn-
thetic targets. Among those are phthalocyanines (Pcs), which consist of four isoindole
units linked by four nitrogen bridges instead of the carbon in normal porphyrins, and are
one of the candidates. Additionally, Pcs have an intense absorption band in the range of
650–700 nm (known as the Q band). Various substituents and elements can be introduced
into the peripheral region and the central core. Appropriate modifications of Pcs induce
unique structural, optical, electrochemical, magnetic, and biological properties [12–14].
These properties can be instigated by introducing various substituents and elements into
the peripheral region and the central core of Pcs. Among the reported Pcs, the modification
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of the two axial ligands of silicon(IV) Pcs (SiPcs) are well established [15]. Although mod-
ifying the axial ligands of typical SiPcs marginally affected the Q-band position [16], we
recently established an exceptional red shift of the absorption of sulfur-substituted SiPcs by
introducing ammonium axial ligands (Figure 1a). The introduction of cationic axial ligands
induced a shift of the Q band toward the NIR region and enhanced hydrophilicity. Thus,
a combination of peripheral sulfur substituents and cationic axial ligands is applicable to
NIR-activatable PDT sensitizers with simple synthetic procedures [17].
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Figure 1. Structures of: (a) silicon(IV) phthalocyanine and (b) boron(III) subphthalocyanine with
cationic axial ligands.

In this study, we describe the effect of the cationic axial ligand on sulfur-substituted
subphthalocyanines (SubPcs). Subphthalocyanines are Pc congeners containing three
isoindole units bridged imino-nitrogen atoms and boron as the central atom. After its
first synthesis by Meller and Ossko in 1972 [18], SubPcs generated attention in the field
of organic functional dyes, such as in supramolecular chemistry [19,20] and OPVs [21,22].
The unique concave structure and intense fluorescence peaks of SubPcs are advantageous
features over that of typical Pcs, suggesting the further potential of SubPcs [23–26]. In
addition, the peripheral substituent effect of SubPcs is similar to that of Pcs; the Q band
of sulfur-substituted SubPcs is red-shifted, with the peak appearing at approximately
600 nm [27,28]. Furthermore, SubPc has an easily convertible single axial ligand on the
central boron. Hence, we expected the occurrence of the cationic axial ligand effect on
sulfur-substituted SubPcs, which is similar to that in SiPcs (Figure 1b).

2. Results and Discussion
2.1. Synthesis of Subphthalocyanines

The synthetic route to SubPcs with and without peripheral sulfur-based substituents
is shown in Scheme 1. Axial ligands were introduced by a substitution reaction between
the chlorine-substituted SubPc and corresponding alcohols. Nitrogen on the axial ligand
of 1 was quaternized by N-methylation with methyl iodide; the corresponding cation
complex 1Q was obtained in high yield. The sulfur-substituted SubPc 2 was synthesized
from 3,6-bis(phenylthio)phthalonitrile using boron trichloride as a template. Subsequently,
the aminoalkyl-substituted (3 and 4) and ammonium-substituted (3Q and 4Q) macrocycles
were prepared in a manner similar to that used to synthesize 1 and 1Q. The quaternization
of the diamino ligand (4) was completed in one week, whereas the monoamino ligand (3)
was quaternized in 1 h. All SubPcs were fully characterized by 1H NMR spectroscopy and
HR-MALDI-FT-ICR mass spectrometry. Unfortunately, single crystals of SubPcs suitable
for X-ray diffraction analysis could not be obtained.
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4); (v) iodomethane, CHCl3, rt, 1 h, 59% (for 3Q); iodomethane, CHCl3, rt, 7 d, 74% (for 4Q). 

2.2. Cationic Axial Ligand Effect of Sulfur-Substituted Subphthalocyanines 
The absorption spectra of the prepared SubPcs in dichloromethane are shown in Fig-

ure 2. The Q band of the unsubstituted SubPc was observed at approximately 550 nm. The 
intense Q band transition can be assigned to the π–π* transition of the SubPc macrocycle. 
Because the axial ligand located perpendicular to the SubPc macrocycle did not interact 
with the π-orbitals of SubPc, it did not affect the position of the Q band. Hence, the Q band 
positions of 1 (561 nm) and 1Q (563 nm) were almost identical (2 nm, 60 cm–1). By contrast, 
the Q band was blue-shifted in sulfur-substituted SubPcs when the axial ligand changed 
from chloride (2) to alkyl groups (3 and 4). However, the neutral axial ligands did not 
affect the position of the Q band. Remarkably, a further red shift was observed after N-
methylation of the axial ligand in 3 (637 nm) to generate 3Q (650 nm) (13 nm, 310 cm–1). 
This change is similar to the phenomenon observed in sulfur-substituted SiPcs [17]. Alt-
hough a similar red shift was observed for the dicationic SubPc 4Q, its Q band position 
(650 nm) was analogous to that of 3Q. The effect of the cationic axial ligand on SubPc is 
independent of the valency of the axial ligand. The effect of solvents on 3 and 3Q is shown 
in Figure 3a–f. A significant shift was observed for all solvents (DMSO, acetone, THF, 
toluene, 1,2-dichlorobenzene (o-DCB), and chloroform) that dissolved neutral and cationic 
SubPcs. Thus, the red shift of 3Q is not associated with a simple solvent effect. The cationic 
axial ligands also improved the hydrophilicity of the SubPcs (Figure 3g). SubPcs with neu-
tral aminoalkyl ligands (3 and 4) could not be dissolved in model hydrophilic media 
(DMSO/Phosphate-buffered saline (PBS) buffer = 1:1, v/v), but the solubility was improved 
after N-methylation of the axial ligands (3Q and 4Q). 

Scheme 1. Synthesis of subphthalocyanines (SubPcs). Reagents and conditions: (i) 2-(dimethylamino)
ethan-1-ol, toluene, reflux, 12 h, 19%; (ii) iodomethane, CHCl3, rt, 1 h, 62% (iii) BCl3, 1-chloronapthalene,
150 ◦C, 1 h, 2%; (iv) 2-(dimethylamino)ethan-1-ol, 1,2-dichlorobenzene (o-DCB), 135 ◦C, 6 h, 29%
(for 3), 2-[[2-(dimethylamino)ethyl](methyl)amino]ethan-1-ol, o-DCB, 135 ◦C, 8 h, 57% (for 4);
(v) iodomethane, CHCl3, rt, 1 h, 59% (for 3Q); iodomethane, CHCl3, rt, 7 d, 74% (for 4Q).

2.2. Cationic Axial Ligand Effect of Sulfur-Substituted Subphthalocyanines

The absorption spectra of the prepared SubPcs in dichloromethane are shown in
Figure 2. The Q band of the unsubstituted SubPc was observed at approximately 550 nm.
The intense Q band transition can be assigned to the π–π* transition of the SubPc macrocycle.
Because the axial ligand located perpendicular to the SubPc macrocycle did not interact
with the π-orbitals of SubPc, it did not affect the position of the Q band. Hence, the Q
band positions of 1 (561 nm) and 1Q (563 nm) were almost identical (2 nm, 60 cm–1).
By contrast, the Q band was blue-shifted in sulfur-substituted SubPcs when the axial
ligand changed from chloride (2) to alkyl groups (3 and 4). However, the neutral axial
ligands did not affect the position of the Q band. Remarkably, a further red shift was
observed after N-methylation of the axial ligand in 3 (637 nm) to generate 3Q (650 nm)
(13 nm, 310 cm–1). This change is similar to the phenomenon observed in sulfur-substituted
SiPcs [17]. Although a similar red shift was observed for the dicationic SubPc 4Q, its Q band
position (650 nm) was analogous to that of 3Q. The effect of the cationic axial ligand on
SubPc is independent of the valency of the axial ligand. The effect of solvents on 3 and 3Q
is shown in Figure 3a–f. A significant shift was observed for all solvents (DMSO, acetone,
THF, toluene, 1,2-dichlorobenzene (o-DCB), and chloroform) that dissolved neutral and
cationic SubPcs. Thus, the red shift of 3Q is not associated with a simple solvent effect. The
cationic axial ligands also improved the hydrophilicity of the SubPcs (Figure 3g). SubPcs
with neutral aminoalkyl ligands (3 and 4) could not be dissolved in model hydrophilic
media (DMSO/Phosphate-buffered saline (PBS) buffer = 1:1, v/v), but the solubility was
improved after N-methylation of the axial ligands (3Q and 4Q).



Molecules 2022, 27, 2766 4 of 15Molecules 2022, 27, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. UV-vis-NIR absorption spectra of SubPcs in dichloromethane solutions. (a) 1 (black), 1Q 
(red), and 2 (purple); (b) 3 (blue), and 3Q (light green); (c) 4 (pink) and 4Q (green). 

Figure 2. UV-vis-NIR absorption spectra of SubPcs in dichloromethane solutions. (a) 1 (black), 1Q
(red), and 2 (purple); (b) 3 (blue), and 3Q (light green); (c) 4 (pink) and 4Q (green).



Molecules 2022, 27, 2766 5 of 15
Molecules 2022, 27, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 3. UV-vis-NIR absorption spectra of 3 (blue) and 3Q (light green) in (a) DMSO, (b) acetone, 
(c) THF, (d) toluene, (e) o-DCB, and (f) CHCl3 solutions (c = ca. 1.0 × 10−5 M). (g) Photographs of 
DMSO/Phosphate-buffered saline (PBS) buffer = 1:1 (v/v) solutions of 3, 4, 3Q, and 4Q (c = approxi-
mately 1.0 × 10−5 M). Compounds 3 and 4 were insoluble under this condition. 

  

Figure 3. UV-vis-NIR absorption spectra of 3 (blue) and 3Q (light green) in (a) DMSO, (b) ace-
tone, (c) THF, (d) toluene, (e) o-DCB, and (f) CHCl3 solutions (c = ca. 1.0 × 10−5 M). (g) Pho-
tographs of DMSO/Phosphate-buffered saline (PBS) buffer = 1:1 (v/v) solutions of 3, 4, 3Q, and 4Q
(c = approximately 1.0 × 10−5 M). Compounds 3 and 4 were insoluble under this condition.

The fluorescence spectra in dichloromethane are illustrated in Figure 4. Clear fluo-
rescence bands were observed for all SubPcs. The cationization effect of the axial ligand
in the sulfur-substituted SubPcs was also observed in the emission properties, whereas a
slight difference was observed between the Stokes shift of neutral and cationic compounds.
Because the Stokes shift depends on the peripheral substituents, the values of sulfur-
substituted SubPcs (approximately 700 cm–1) were larger than that of the unsubstituted
SubPcs (approximately 400 cm–1). Fluorescence quantum yields (ΦPL) and lifetimes (τ) of
SubPcs were measured to obtain further insights into emission properties. The fluorescence
parameters are listed in Table 1. The fluorescence quantum yields were almost similar
(ΦPLs = 0.05–0.07), excluding for 1Q and 2. The fluorescence lifetime of 1Q (τ = 1.5 ns) was
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longer than that of 1 (τ = 0.90 ns), suggesting the increase in ΦPL was due to the decrease
in the nonradiative decay rate constant (knr). The ΦPL of sulfur-substituted SubPc 2 with a
chloride axial ligand was high (ΦPL = 0.11), whereas that of other sulfur-substituted SubPcs
with alkyl axial ligands was low. Although the fluorescence rate constant (kr) was almost
unchanged, the knr increased, suggesting the decrease in the thermal deactivation of ΦPL
due to free rotation of the axial ligand. Remarkably, compared to the unsubstituted SubPcs,
sulfur-substituted SubPcs’ emission properties did not change significantly when the axial
ligands were changed from neutral to cationic. Although the peripheral substituent effects
on the emission properties are estimated to be more significant than the axial ligand effects,
the details are still unclear within the scope of these analyses.
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Table 1. Optical parameters for SubPcs dichloromethane solutions.

Compound λabs/nm λex/nm λfl/nm ΦPL τ/ns kr/×107 s−1 knr/×108 s−1

1 561 500 575 0.07 0.90 7.7 10
1Q 563 500 574 0.11 1.5 7.5 5.9
2 650 600 681 0.11 1.4 7.8 6.3
3 637 600 666 0.06 1.0 6.4 9.4

3Q 650 600 681 0.06 0.99 5.6 9.5
4 638 600 668 0.07 0.92 7.9 10

4Q 650 600 682 0.05 0.80 6.6 12

2.3. Electrochemical Properties

Cyclic voltammograms were recorded in o-DCB (Figure 5) to gain insight into the
origin of the cationic axial ligand effect of SubPcs. The highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO) energies of Pc derivatives
correlate well with their first oxidation and reduction potentials [29,30]. In the case of
unsubstituted SubPcs, the redox potentials shifted anodically when the neutral axial lig-
and (1) was substituted by the cationic axial ligand (1Q), indicating the stabilization of
the molecular orbitals of SubPc by the electron-deficient cationic moiety. However, the
difference between the first oxidation and reduction potentials (E1ox–E1red) did not change
significantly, supporting the absorption spectrum results. When sulfur groups were in-
troduced into the peripheral position, the reduction potential shifted anodically, similar
to that in Pcs [28,31], resulting in a decrease in the E1ox–E1red values. Furthermore, the
effect on the cationization of the axial ligand was similar to that of unsubstituted SubPc.
The first reduction potential of 3Q at −1.38 V corresponds to the anodic shift of 0.17 V
upon N-methylation, whereas the first oxidation potential at 0.60 V corresponds to the
anodic shift of 0.07 V. Therefore, the value of E1ox–E1red was decreased further, which
was observed for the sulfur-substituted SiPcs [17]. Conversely, the difference between the
monocationic SubPc (3Q) and dicationic SubPc (4Q) was insignificant. Although these
results nearly describe the changes in the absorption spectra, the difficulty in determining
the precise oxidation potential using cyclic voltammetry (or differential pulse voltammetry)
remains persistent, which is a common problem for SubPcs [32]. The oxidation wave was
irreversible for all compounds, and no evident wave was obtained, indicating that the
changes in oxidation potential could not be compared precisely. Therefore, we measured
the ionization potentials of SubPc as a direct method to estimate the HOMO level. Ioniza-
tion potentials were measured on spin-coated SubPc films on indium tin oxide substrates
(Figure 6). The obtained ionization potentials correlate with the HOMO, which is estimated
from the oxidation potentials of the cyclic voltammograms [33]. The ionization potential of
the unsubstituted 1 (−5.64 eV) was larger than that of the sulfur-substituted SubPcs 2–4
(−5.51–−5.58 eV), indicating the destabilization of the HOMOs due to the introduction
of electron-donating sulfur groups. The potentials of 1Q (−5.75 eV), 3Q (−5.74 eV), and
4Q (−5.63 eV) with cationic axial ligands increased compared to the corresponding neu-
tral compounds, which also supports the absorption spectra and cyclic voltammograms.
However, the change in the potential from 4 to 4Q (0.08 eV) was smaller than that from 3 to
3Q (0.23 eV) because the reduction potential of 4Q (−1.45 V) appeared at the cathode side
as compared to 3Q (−1.38 V). In particular, the stabilization of molecular orbitals in the
dication compound is smaller than that in the monocation compound, and the apparent
absorption spectra between 3Q and 4Q are almost similar.
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and 4Q (green) recorded from 1.0 mM solutions of the analytes in [nBu4N]ClO4/o-DCB. Ferrocene
was used as the internal standard, and the Fc/Fc+ couple was set to 0 V.

2.4. Molecular Orbital Calculations

Based on the experimental optical and electrochemical results, we rationalized the
cationic axial ligand effects on SubPcs by performing molecular orbital (MO) calculations.
According to previous studies, the effect of sulfur atoms is much higher than that of the
substituent groups on sulfur atoms [28,31,34]. Because the effect of the phenyl groups on
the absorption spectra was insignificant, model structures 3′ and 3Q′ were used, where
the phenyl groups on the sulfur atoms were replaced by the methyl groups. The partial
MO energy diagrams of the unsubstituted SubPcs (1 and 1Q) and model sulfur-substituted
SubPcs (3′ and 3Q′) along with the calculated absorption spectra are illustrated in Figure 7.
The results of time-dependent density functional theory (TD-DFT) calculations are listed in
Table 2. We also conducted TD-DFT calculations using theωB97XD/6-31G* (Table S1 and
Figure S1). The trend of the stick absorption spectra and the energy level of frontier orbitals
are identical. However, the calculated absolute values of transition wavelengths were worse
than the B3LYP/6-31G*. The B3LYP/6-31G* is suitable for explaining electronic structures
in this study. The envelopes of the frontier orbitals of the SubPc ligand were almost identical,
and the calculated transitions in the Q-band region were composed of the HOMO, LUMO,
and LUMO+1; LUMO and LUMO+1 and almost degenerated. These features are typical
characteristics of the 14π aromatic macrocycle, indicating that these absorption bands can
be described similarly to that of typical SubPcs even after introducing cationic axial ligands.
The energy levels of the frontier orbitals were completely stabilized for the change from
1 to 1Q. The HOMO–LUMO energy gap (∆HL) (1: 2.72 eV, 1Q: 2.70 eV) and calculated
absorption wavelengths (1: 506 nm, 1Q: 509 nm) are almost identical, indicating that the
cationic axial ligand does not affect the envelope of the absorption spectrum in typical
unsubstituted SubPcs. A similar stabilization of the frontier orbitals was estimated for the
change from 3′ to 3Q′, whereas the ∆HL decreased from the neutral 3′ (2.35 eV) to cation
3Q′ (2.30 eV). Moreover, the calculated absorption peak of 3Q′ (628 nm) was longer than 3′

(614 nm). When cationic axial ligands were introduced in sulfur-substituted SubPcs, the
LUMO stabilization was higher (∆LUMO: 0.26 eV) than that of HOMO (∆HOMO: 0.21 eV),
which was consistent with the experimental results of the optical and electrochemical
measurements. A small MO contribution at the central boron was observed for the frontier
orbitals of all the calculated SubPcs, indicating that the cationic axial ligand effect could
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be assigned to the inductive effect of an electron-deficient cationic moiety, as previously
observed for phosphorus(V) phthalocyanines [13,31]. Additionally, the peripheral sulfur
substituents can synergistically enhance the axial ligand effect.
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Figure 7. Partial molecular energy diagram and orbitals of (a) peripherally unsubstituted SubPcs (1
and 1Q), (b) peripherally substituted (MeS)6SubPcs (3′ and 3Q′), and (c) their calculated absorption
spectra. Calculations were performed at the B3LYP/6-31G* level of theory, using a polarizable
continuum model (PCM), which mimicked the solvation effect of dichloromethane. (Details in
Supplementary Material).
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Table 2. Calculated excited wavelengths (λ) and oscillator strengths (f ) for components of selected
transition energies. Calculations were performed at the B3LYP/6-31G* level of theory using a
polarizable continuum model (PCM), which mimicked the solvation effect of dichloromethane.

λ/nm f Composition

1
506 0.41 HOMO–4→LUMO+1 (2.4%), HOMO→LUMO (96.8%)
505 0.41 HOMO–4→LUMO (2.5%), HOMO→LUMO+1 (96.7%)

1Q 509 0.41 HOMO–3→LUMO+1 (2.5%), HOMO→LUMO (96.8%)
507 0.41 HOMO–3→LUMO (2.5%), HOMO→LUMO+1 (96.7%)

3′
614 0.43 HOMO→LUMO (98.2%)
612 0.43 HOMO→LUMO+1 (98.2%)

3Q′ 628 0.42 HOMO→LUMO (98.4%)
624 0.42 HOMO→LUMO+1 (98.4%)

3. Materials and Methods
Synthesis of Subphthalocyanines

3,6-Bis(phenylthio)phthalonitrile was synthesized according to published procedures [31].
Boron subphthalocyanine chloride was purchased from Merck KGaA.

Unsubstituted SubPc (Axial: 2-(dimethylamino)ethoxy) (1) [35]: A mixture of boron
subphthalocyanine chloride (purity: ca. 85%, 115 mg, 0.23 mmol) and 2-(dimethylamino)
ethan-1-ol (0.57 mL, 5.7 mmol) in toluene (6.0 mL) was heated for 12 h under reflux. After
cooling, the volatiles were removed under reduced pressure. The residue was then loaded
onto a silica gel column and eluted with CHCl3/MeOH (from 40:1 (v/v) to 20:1 (v/v)). After
evaporation of the solvent in vacuo, the precipitate was recrystallized from acetone/hexane
to give 1 as a violet powder (21 mg, 19%).

400 MHz 1H NMR(CDCl3) δ (ppm): 8.87–8.82 (m, 6H, SubPc-H), 7.91–7.86 (m, 6H,
SubPc-H), 1.69 (s, 6H, CH3), 1.54 (t, J = 6.2 Hz, 2H, CH2), 1.40 (t, J = 6.2 Hz, 2H, CH2). UV-vis
(CH2Cl2) λmax nm (ε × 10−4): 561 (7.8), 302 (4.0), 267 (3.2). λPL, max (CH2Cl2): 575 nm,
ΦPL = 0.070.

Unsubstituted SubPc (Axial: 2-(trimethylammonium)ethoxy) (1Q) [35]: A mixture of 1
(10 mg, 0.020 mmol) and iodomethane (1.0 mL) in chloroform (10 mL) was stirred at room
temperature for 1 h. After evaporation of the solvent in vacuo, the precipitate was washed
with diethyl ether, and then dried in vacuo to give 1Q as a violet powder (8.0 mg, 62%).

500 MHz 1H NMR(CDCl3) δ (ppm): 8.89–8.85 (m, 6H, SubPc-H), 7.97–7.93 (m, 6H,
SubPc-H), 2.86–2.84 (m, 2H, CH2), 2.71 (s, 9H, CH3), 1.88 (brs, 2H, CH2). UV-vis (CH2Cl2)
λmax nm (ε × 10−4): 563 (5.2), 302 (3.6), 265 (4.2). λPL, max (CH2Cl2): 574 nm, ΦPL = 0.11.

αα-Hexa-(phenylthio)-SubPc (Axial: chloride) (2) [28]: BCl3 in p-xylene (1.0 mL,
1.0 mmol) was placed in a mixture of a solution of 3,6-bis(phenylthio)phthalonitrile (344 mg,
1.0 mmol) and dry 1-chloronaphthalene (3.0 mL) under argon. The reaction mixture was
heated to 150 ◦C for 1 h. The reaction mixture was poured onto a vigorously stirred cold
mixture of MeOH and hexane (20 mL, v/v, 1:1). The precipitate was submitted to column
chromatography on silica gel using chloroform as eluent and the resulting blue solid was
washed with methanol, followed by GPC-HPLC (CHCl3) to give 2 as a blue powder (8.7 mg,
2%).

500 MHz 1H NMR(CDCl3) δ (ppm): 7.78–7.74 (m, 12H, Ar-H), 7.46–7.41 (m, 18H,
Ar-H), 7.01 (s, 6H, SubPc-H). UV-vis (CH2Cl2) λmax nm (ε × 10−4): 650 (6.9), 294 (8.2).
λPL, max (CH2Cl2): 681 nm, ΦPL = 0.11.

αα-Hexa-(phenylthio)-SubPc (Axial: 2-(dimethylamino)ethoxy) (3): A mixture of 2 (25 mg,
0.023 mmol) and 2-(dimethylamino)ethan-1-ol (58 µL, 0.58 mmol) in 1,2-dichlorobenzene
(2.0 mL) was heated to 135 ◦C for 6 h. After cooling down to room temperature, the
solvent was submitted to column chromatography on a silica gel column and eluted with
CHCl3/MeOH [changing gradually from 100:0 (v/v) to 20:1 (v/v)]. The resulting blue solid
was washed with methanol to give 3 as a blue powder (7.7 mg, 29%).

400 MHz 1H NMR(CDCl3) δ (ppm): 7.76–7.72 (m, 12H, Ar-H), 7.45–7.38 (m, 18H,
Ar-H), 7.00 (s, 6H, SubPc-H), 1.76 (s, 6H, CH3), 1.63–1.62 (m, 2H, CH2), 1.49 (brs, 2H,
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CH2). UV-vis (CH2Cl2) λmax nm (ε × 10−4): 637 (4.5), 291 (7.0). λPL, max (CH2Cl2): 666 nm,
ΦPL = 0.064. HR-MALDI-FT-ICR-MS calcd for C60H36BN6S6 [M – L]+: 1043.1423. Found:
1043.1409.

αα-Hexa-(phenylthio)-SubPc (Axial: 2-(trimethylammonium)ethoxy) (3Q): Synthe-
sized according to the procedure for 1Q. Blue powder. (4.0 mg, 59%)

500 MHz 1H NMR(CDCl3) δ (ppm): 7.77–7.74 (m, 12H, Ar-H), 7.47–7.43 (m, 18H,
Ar-H), 7.03 (s, 6H, SubPc-H), 2.91–2.89 (m, 2H, CH2), 2.80 (s, 9H, CH3), 2.00 (brs, 2H,
CH2). UV-vis (CH2Cl2) λmax nm (ε × 10−4): 650 (5.7), 289 (7.4). λPL, max (CH2Cl2): 681 nm,
ΦPL = 0.056. HR-MALDI-FT-ICR-MS calcd for C65H49BN7OS6 [M – I]+: 1146.2421. Found:
1146.2386.

αα-Hexa-(phenylthio)-SubPc (Axial: 2-[[2-(dimethylamino)ethyl]methylamino]ethoxy)
(4): Synthesized according to the procedure for 3. Blue powder. (9.5 mg, 57%)

500 MHz 1H NMR (CDCl3) δ (ppm): 7.76–7.73 (m, 12H, Ar-H), 7.45–7.40 (m, 18H,
Ar-H), 6.98 (s, 6H, SubPc-H), 2.10 (s, 6H, CH3), 2.08–2.03 (m, 4H, CH2), 1.77 (s, 3H, CH3)
1.65–1.56 (m, 4H, CH2). UV-vis (CH2Cl2) λmax nm (ε × 10−4): 638 (5.4), 290 (7.8). λPL, max
(CH2Cl2): 668 nm, ΦPL = 0.073. HR-MALDI-FT-ICR-MS calcd for C60H36BN6S6 [M – L]+:
1043.1423. Found: 1043.1415.

αα-Hexa-(phenylthio)-SubPc (Axial: 2-[[2-(trimethylammonium)ethyl]dimethylammonium]
ethoxy) (4Q): Synthesized according to the procedure for 1Q. Blue powder. (5.5 mg, 74%)

400 MHz 1H NMR(CDCl3) δ (ppm): 7.77–7.73 (m, 12H, Ar-H), 7.47–7.43 (m, 18H, Ar-
H), 7.05 (s, 6H, SubPc-H), 4.32–4.28 (m, 2H, CH2) 4.02 (brs, 2H, CH2), 3.53 (s, 9H, CH3), 3.01
(s, 6H, CH3), 2.91 (brs, 2H, CH2), 2.04 (brs, 2H, CH2). UV-vis (CH2Cl2) λmax nm (ε × 10−4):
650 (4.7), 291 (6.9). λPL, max (CH2Cl2): 682 nm, ΦPL = 0.053. HR-MALDI-FT-ICR-MS calcd
for C68H56BN8OS6 [M – 2I – CH3]+: 1203.3000. Found: 1203.2981.

4. Conclusions

In summary, sulfur-substituted SubPcs with cationic axial ligands were synthesized.
The macrocyclization of SubPc from the sulfur-substituted phthalonitrile, introduction
of axial ligands, and quaternization of axial ligands could be performed according to
the method used for unsubstituted SubPcs and SiPcs. The hydrophilicity of cationic
SubPcs 3Q and 4Q was enhanced, suggesting their potential applications to amphiphilic
materials and biology. The absorption spectra of unsubstituted SubPcs 1 and 1Q were
almost unchanged by varying the axial ligand. By contrast, the sulfur-substituted SubPcs
demonstrated a further red shift of the Q band by the cationization of the axial ligands.
The shift in the emission wavelength and absorption spectra were also observed. No
significant change in the ΦPL and τ indicates that the fluorescence wavelength can be
varied by cationization of the axial ligand without changing the emission properties. The
electrochemical measurements showed that the cationization of the axial ligand completely
stabilized the frontier MOs. The cationization remarkably changed the reduction potential
of the sulfur-substituted SubPcs. Conversely, owing to the instability of the oxidized
species of SubPcs, we were unable to observe an evident oxidation wave. Nevertheless,
this problem was overcome by ionization potential measurements. The observed ionization
potentials described the absorption and cyclic voltammogram measurements well. The
calculated transitions using MO calculations reproduced the experimental results, which
also indicated that introducing peripheral and cationic axial ligands did not change the
aromaticity of SubPc. The MO diagrams indicated the selective stabilization of the LUMO
level due to the introduction of peripheral sulfur moieties. These results conclude that
a synergistic effect [31] of peripheral and axial substituents can occur in SubPcs. This
strategy shows that a single functional group can add multiple functions in SubPcs. Thus,
integrating various functions into the unique structural and emission properties of SubPcs
allows the development of novel functional materials.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27092766/s1. Table S1: Calculated excited wavelengths
(λ) and oscillator strengths (f) for components of selected transition energies. Calculations were
performed at theωB97XD/6-31G*//B3LYP/6-31G* level of theory using a polarizable continuum
model (PCM), which mimicked the solvation effect of dichloromethane; Figure S1: Partial molecular
energy diagram and orbitals of (a) peripherally unsubstituted SubPcs (1 and 1Q), (b) peripherally
substituted (MeS)6SubPcs (3’ and 3Q’), and (c) their calculated absorption spectra. Calculations were
performed at theωB97XD/6-31G*//B3LYP/6-31G* level of theory, using a polarizable continuum
model (PCM), which mimicked the solvation effect of dichloromethane [36–44].
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