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ABSTRACT

Multiplexed RNA in situ hybridization for the anal-
ysis of gene expression patterns plays an impor-
tant role in investigating development and disease.
Here, we present a method for multiplexed RNA-ISH
to detect spatial tumor heterogeneity in tissue sec-
tions. We made use of a microfluidic chip to de-
liver ISH-probes locally to regions of a few hundred
micrometers over time periods of tens of minutes.
This spatial multiplexing method can be combined
with ISH-approaches based on signal amplification,
with bright field detection and with the commonly
used format of formalin-fixed paraffin-embedded tis-
sue sections. By using this method, we analyzed
the expression of HER2 with internal positive and
negative controls (ActB, dapB) as well as predictive
biomarker panels (ER, PgR, HER2) in a spatially mul-
tiplexed manner on single mammary carcinoma sec-
tions. We further demonstrated the applicability of
the technique for subtype differentiation in breast
cancer. Local analysis of HER2 revealed medium to
high spatial heterogeneity of gene expression (Co-
hen effect size r = 0.4) in equivocally tested tumor
tissues. Thereby, we exemplify the importance of us-
ing such a complementary approach for the analysis
of spatial heterogeneity, in particular for equivocally
tested tumor samples. As the method is compatible
with a range of ISH approaches and tissue samples,
it has the potential to find broad applicability in the
context of molecular analysis of human diseases.

INTRODUCTION

Personalized medicine relies on the molecular analysis of
individual tumors. To understand differences in progres-
sion and survival probabilities between patients affected by
cancer, it is necessary to differentiate tumors into subtypes.
For example, the current molecular classification schemes

for breast cancer describe five molecular subtypes: luminal
A, luminal B, human epidermal growth factor receptor 2
(HER2)-positive, triple-negative, and normal-like (1). For
predictive and prognostic reasons, breast tumors are classi-
fied into these subtypes according to their molecular char-
acteristics. Standard clinical methods for subtype differen-
tiation include immunohistochemistry (IHC) to detect the
biomarker expression status at the protein level and fluo-
rescence in situ hybridization (FISH) to analyze gene am-
plification. While most of the tumors can be classified by
using these methods, equivocal cases do exist. For HER2
status determination, for example, 32% of tumors are de-
scribed as equivocal when using IHC and 5% when us-
ing FISH (2). Repeated testing using both methods can re-
duce the total number of equivocal cases to 5%. Ohlschlegel
et al. showed that equivocal testing is largely influenced
by the molecular heterogeneity of the tumor tissue (3).
While genomic heterogeneity was described for 14.7% of the
cases in a general cohort, the number increased to 41% for
equivocal cases. The analysis of molecular heterogeneity is
therefore highly valuable for the subtype differentiation of
breast tumors and thus also for prognostic and predictive
purposes.

Cellular heterogeneity is a driving factor in develop-
ment and disease. It arises from modulations at the gene,
transcript, and protein level and can be detected molec-
ularly and phenotypically. Patient-by-patient or intertu-
mor molecular heterogeneity is commonly analyzed in the
clinical setting (subtype differentiation) and can be distin-
guished and addressed by using existing methods recom-
mended in clinical guidelines (4). However, the impact of
the prognostic and predictive power of spatial intratumor
heterogeneity is less known. Retaining spatial information
is highly important to link the molecular state to function,
development, and disease. This is of special significance in
tumors, as ∼60–70% of all somatic mutations are not de-
tectable in all tumor areas (5) and cell variants with an abun-
dance of as little as 0.1% of the total cell population can
affect the treatment response (6). Recently, the coexistence
of multiple breast cancer subtypes and their plastic conver-
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sion within a single tumor has been proposed (7) and several
clinical trials are currently analyzing the impact of intratu-
mor heterogeneity spatially and temporally (8–11). Interest-
ingly, intermediate levels of genetic intratumor heterogene-
ity have been linked to a poor prognosis (12,13), while, for
high levels of heterogeneity, the prognosis improved in cer-
tain cases (12). To personalize tumor treatment based on
heterogeneity profiles, it is therefore important to capture
the molecular tumor profile to the full extent in the spa-
tial and temporal dimension. In situ techniques intrinsically
provide spatial information and in situ protein detection has
been extended to multiplexed approaches, thus allowing the
spatial detection of multiple proteins of interest. In tumor
analysis, multiplexing is commonly used for the detection
of protein biomarkers, e.g. using the Opal multiplex assay
(14), and tumor associated immune cells (15–17). Through
using automated microfluidic systems, the duration of four-
plex experiments has been reduced from two days to few
hours (14,18). Quantitation of the signal is facilitated by
immunofluorescence approaches and spectral unmixing or
sequential detection (19–21) and can be performed using
automated quantitative analysis (AQUA) (22). Nonethe-
less, when using current standard immunohistochemistry
approaches (23), the quantification of protein expression
levels is difficult (24). Therefore, the analysis and quantifica-
tion of transcripts is a promising alternative, as it provides
information about the genetic content as well as gene ex-
pression levels (25). Recent novel diagnostic developments
for breast cancer thus place a focus on the detection of gene
expression on the RNA level, e.g. 21-gene Oncotype DX Re-
currence Score (26), 70-gene MammaPrint Assay (27) and
a multitude of other signatures (28,29), as mRNA is readily
quantifiable in quantitative real-time polymerase chain re-
actions (qRT-PCR) or microarray-based approaches. Clin-
ical guidelines approve of the use of gene expression pro-
files for additional prognostic and predictive purposes un-
der certain conditions (29,30) and ongoing studies of tu-
mors in the central nervous system show great promise in
using RNA sequencing as a predictive measure (31). Trans-
lating such methods for quantifying gene expression from
the research to the clinical setting therefore plays an impor-
tant role in developing novel diagnostic approaches for ad-
dressing intratumor heterogeneity.

In research settings, several techniques for the detection
and quantification of transcripts exist. While many of the
early quantitative methods required the extraction of RNA
from the sample (such as Northern blotting, qRT-PCR,
digital PCR, microarrays or high-throughput sequencing),
new developments allow for in situ detection and quantifi-
cation of transcripts. These methods can be divided into
four categories: (I) FISH (32–36), (II) FISH with bar-
coding (37–40), (III) in situ sequencing (41–44) and (IV)
patterned barcoded microarrays (45,46). These methods
have in common that they provide information about tran-
script localization in the sample or even on a subcellu-
lar level. They thus enable the analysis of subpopulations
of cells, whose signals would be averaged in extraction-
based approaches. A methodology combining the advan-
tages of both, localization-retaining methods and high-
throughput sequencing, uses laser capture microdissection
(47–49). While spatial transcriptomic methods, such as in

situ sequencing or combined laser capture microdissection
and RNA sequencing, provide quantitative spatial infor-
mation about a large number of transcripts (up to 6000),
they require the use of specialized instruments and tech-
niques, which are currently not used in the clinical environ-
ment. As DNA-FISH is routinely performed in the clini-
cal setting, the equipment required for in situ hybridization
experiments is available and can be readily used for tran-
script analysis. Wang et al. described the use of RNA in
situ hybridization as a quantitative companion diagnostic
application for HER2 testing, with special importance for
cases with intratumoral heterogeneity or equivocal FISH
results (2). Previous studies have shown the applicability
of RNA-ISH for formalin-fixed paraffin-embedded (FFPE)
tissue sections (50–52). Compared to other spatial tran-
scriptomic techniques, it thus poses an important alterna-
tive for clinical applications because the majority of tu-
mor tissues stored in biobanks are FFPE tissues. Further-
more, nearly all mRNA molecules can be detected using
single molecule FISH, while single-cell mRNA sequenc-
ing captures 5–40% and microarray or in situ barcode se-
quencing only around 5% of mRNA molecules (34). This
makes RNA-ISH a wide-spread technique for quantitative
or semi-quantitative analyses of transcripts, although lim-
ited in the number of species that can be detected simulta-
neously. The detection of single RNA transcripts and their
quantification can either be performed directly, by using hy-
bridization probes containing fluorophores and highly sen-
sitive detection optics (53), or by amplification of the re-
action using branched FISH (54–56), enzymatic processes
(57) and antibodies (58). The use of amplification-based
systems obliviates the need for expensive optical setups
and detection can even be performed using brightfield mi-
croscopy. Its application is currently limited, however, to
one or two detection channels depending on the enzyme-
substrate pairs used. We therefore use a microfluidic system
for the local delivery of probes, which allows for spatial mul-
tiplexing. We make use of a variant of a microfluidic system
called the vertical microfluidic probe (MFP) (59,60) in this
work, which enables the localized delivery of reagents on
the nanoliter scale. To avoid confusion with the usage of
FISH probes, we term the MFP as microfluidic chip in this
manuscript. A basic implementation of the chip consists of
two channels with a size in the range of 50–100 �m, whose
openings are positioned in parallel to and tens of microme-
ters above a surface of interest (59,60). Simultaneous injec-
tion and aspiration of liquid (at certain ratios of flow rates)
from the channels confines the injected reagent to a small
region between the chip and a surface immersed in aque-
ous solution (hydrodynamic flow confinement). Owing to
its compatibility with biological substrates in a liquid envi-
ronment, variants of the microfluidic chip (60) have found
use in life science and biomedical applications (24,61,62).

Here, we established a microfluidic method for the de-
tection of multiple transcripts in FFPE tissues through us-
ing spatial multiplexing in branched probe-based or enzy-
matic amplification RNA-ISH. Even though current clin-
ical approaches are based on the semi-quantitative anal-
ysis of proteins and DNA, the possibility of quantifica-
tion on the transcript level will likely provide advantages
in the description of the spatial heterogeneity of cancers,
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where gene amplification, RNA and protein levels correlate
(2,63). By using this multiplexed RNA-ISH, transcripts of
interest along with tissue internal controls, complex cancer
biomarker panels and spatial tumor heterogeneity can be
evaluated on a single tissue section.

MATERIALS AND METHODS

FFPE cell blocks and tissues

FFPE cell blocks of the cell lines MCF7, BT474 and
SKBR3 (AMS Biotechnology, Abingdon, UK) with HER2
expression levels of 1+, 2+ and 3+, respectively, were used
as references. Breast carcinoma tissue sections were either
obtained from BioChain (T2235086) or were kindly pro-
vided and anonymized by the tissue biobank of the Depart-
ment of Pathology and Molecular Pathology of the Univer-
sitätsspital Zürich.

Hematoxylin and eosin staining of FFPE sections

Tissue sections were stained by incubation in hematoxylin
for 5:30 min. A subsequent washing process in tap water for
5 min, incubation in 1% HCl for 10–20 s, and another wash
in tap water for 1 min were used for colorimetric changes
and removal of excess hematoxylin. Eosin was applied for
1 min, followed by a wash in tap water for 10 s and poste-
rior dehydration of the tissue section using 95% and 100%
ethanol for 1 min each.

Microfluidic system for probe delivery

The microfluidic chip, consisting of one layer of silicon and
one of glass and containing four channels (channel size: 200,
100, 100, 200 �m) was fabricated in clean-room facilities
in-house (60) and is reusable under stringent cleaning con-
ditions. It was positioned on the microscopic system on a
stage adjustable along the z-axis, using a connector system
consisting of a screw, a gasket ring and a circular connec-
tor (Dolomite Microfluidics) (Supplementary Figure S1A–
C). Tubings emerging from four syringes serving as reser-
voirs and a flow system were attached to the microfluidic
chip via the connector. Liquid flows were generated using
NeMESYS low pressure module syringe pumps (Cetoni,
Korbussen, Germany) controlled by the software QMix
Elements (Supplementary Figure S1D). The microfluidic
chip was mounted on a Nikon Ti Eclipse microscope body
placed in an incubating chamber (Life Imaging Services)
and equipped with a Lumencor Sola 6-LCR-SB illumina-
tion (Lumencor, Beaverton, USA) and a Hamamatsu Orca
Flash 4.0 camera (Hamamatsu, Nakaku, Japan). The posi-
tion of the sample was adjusted in the x- and y-direction us-
ing high-precision stages (Phytron, Gröbenzell, Germany)
controlled by the software WinCommander5.

RNA in situ hybridization

RNA-ISH experiments were performed following the in-
structions of the manufacturer (ViewRNA, Thermo-Fisher
Scientific). Solutions for hybridization and washing were
provided as part of the in situ hybridization kit. ISH probes
targeted against dapB (dapB ViewRNA Probe Type 6,

Bacillus subtilis), HER2 (HER2 ViewRNA Probe Type 1),
PgR (PGR ViewRNA Probe Type 1 and Type 6), ERα (ESR
ViewRNA Probe Type 1 and Type 6) and Actinβ (ActB
ViewRNA Probe Type 1) RNA were used.

The FFPE tumor sections were incubated at 60◦C for 1
h prior to the removal of paraffin using a 10 min incuba-
tion in xylene, two 5 min incubations in ethanol and wash-
ing steps in 70% ethanol and H2O. The pretreatment of the
sections was a 20 min incubation of the slides in a 1× prein-
cubation solution at 95◦C. While incubating the sections in
PBS, a hydrophobic pen was applied (ImmEdge Pen, Vector
Laboratories) to limit the spread of the immersion liquid
to a defined area around the tumor section. The sections
were then digested using protease at 40◦C for 5 min (cell
pellet sections) or 10 min (mammary carcinoma sections).
After washing in PBS, the sections were fixed using 10%
neutral buffered formalin solution for 5 min. Sections were
washed in PBS before the primary probe was delivered ei-
ther through using the microfluidic chip (see Delivery of pri-
mary ISH-probes using the microfluidic chip) or by incuba-
tion of the whole slide in probe solution at 40◦C. Varying
hybridization times of the primary probe between 10 min
and 3 h were used as indicated. After washing the sections in
wash buffer three times, they were incubated with preampli-
fier solution (for dual color experiments: preamplifier mix-
ture) at 40◦C for 25 min. Following three washes in wash
buffer at room temperature, the sections were incubated
in amplifier solution (for dual color experiments: amplifier
mixture) at 40◦C for 15 min. Residual probes were removed
by washing the sections three times using wash buffer. When
dual-color experiments were performed, the sections were
incubated with a label-6 alkaline phosphatase (AP) probe
at 40◦C for 15 min, washed three times, and incubated at
room temperature for 30 min using a blue reagent as enzy-
matic substrate. After three washes using wash buffer, resid-
ual alkaline phosphatase was deactivated using AP stop so-
lution at room temperature for 30 min, and the sections
were washed using PBS and wash buffer. The sections were
then incubated with a label-1 alkaline phosphatase probe
at 40◦C for 15 min, residual probes were removed using
wash buffer, and the reaction was enhanced by an incuba-
tion in AP enhancer solution at room temperature for 5
min. The sections were incubated with Fast Red substrate
at 40◦C for 30 min, before being stained using hematoxylin
and 3 �g/ml 4′-6-diamidino-2-phenylindole (DAPI). Sec-
tions were mounted using aqueous ImmunoHistoMount
(Sigma-Aldrich) and imaged using brightfield and fluores-
cence detection (see Signal Visualization). Using CellPro-
filer (64), nuclei and cytoplasm of cells were detected and
the ISH signal intensity was determined and allocated to
each of the cells.

Delivery of the primary ISH-probes using the microfluidic
chip

We performed hematoxylin and eosin staining on sections
consecutive to the ones used for local RNA-ISH. Regions
for delivery of the ISH probes were defined by microscopic
inspection of the hematoxylin and eosin stained tissue sec-
tions. Primary probes were delivered using a microfluidic
chip positioned ∼50 �m above the tissue section immersed
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in PBS. The inner channels of the chip with channel widths
of 100 �m were used for the delivery of the primary probe,
while the outer channels (channel width 200 �m) were used
for the visualization of the hydrodynamic flow confinement
using a red food dye (Trawosa). The flow rates of the inner
and outer injections were 1 �l/min and 0.5 �l/min and the
ones of the inner and outer aspirations were 1 �l/min and 5
�l/min, respectively. When performing the experiments us-
ing the microfluidic chip, primary probe incubation times
ranged from 10 min to 1 h. The positions of local delivery
of the probes were recorded using the software of the x–y–z
stages (WinCommander5).

Whenever multiplexed RNA-ISH experiments of a sin-
gle detection color and involving the use of primary probes
of type 1 and type 6 were performed using the microfluidic
chip, preamplifier and amplifier mixtures were used and the
label probes of type 1 and type 6 were combined in a single
hybridization reaction.

Global and microfluidic chip-based immunohistochemistry

ER, PgR and HER2 detection and quantification through
immunohistochemistry was performed following the guide-
lines of the manufacturer (Herceptest, Dako Denmark
A/S) and primary antibodies were delivered either glob-
ally or locally using the microfluidic chip as described
(24,59). Briefly, after deparaffinization, epitope retrieval
was performed at 95–99◦C for 40 min (+20 min cool-
down). After washing in wash buffer, the sections were
incubated in a peroxidase-blocking solution for 5 min.
For global immunohistochemistry, the sections were incu-
bated in 2 �g/ml anti-HER2 antibody (ErbB2 Monoclonal
Mouse Antibody, Clone e2-4001, ThermoFisher) for 1 h,
in a 1:40 dilution of anti-ER antibody (Monoclonal Rab-
bit Anti-Human Estrogen Receptor �, Clone EP1, Dako)
for 20 min, or in a 1:50 dilution of anti-PgR antibody
(Monoclonal Mouse Anti-Human Progesterone Receptor,
Clone PgR 1294, Dako) for 20 min. For local immunohisto-
chemistry, 20 �g/ml anti-HER2 antibody (Polyclonal Rab-
bit Anti-Human c-erbB-2, Dako) was delivered to the tis-
sue sections using the microfluidic chip for incubation times
ranging from 28 to 600 s. The sections were then washed
in wash buffer and incubated with a visualization reagent
containing secondary antibodies against mouse and rabbit
(EnVision Dual Link System-HRP, Dako) for 30 min. After
washing the sections, the signal was visualized using 3,3′-
diaminobenzidine for 10 min. A hematoxylin counterstain
was performed to visualize the cells.

Signal visualization and analysis

Brightfield and fluorescence imaging was performed on
a Nikon Eclipse 90i microscope using 4 × 0.2 NA, 10
× 0.45 NA, 20 × 0.75 NA, and 40 × 0.6 NA objec-
tives. Brightfield signals were detected on a DXM 1200C
camera.

For fluorescence imaging, the sample was excited using
a Lumencor Sola SE 5-LCR-SB with the excitation filters
531/40 nm or 630/38 nm for visualization of the Fast Red
or the Fast Blue signal, respectively. Fluorescence was col-
lected by 4 × 0.2 NA, 10 × 0.45 NA, 20 × 0.75 NA and

40 × 0.6 NA objectives and separated according to wave-
length by a 562 nm dichroic combined with a 593/40 nm
emission filter or a 757 nm dichroic and a 775/59 nm emis-
sion filter. Stained nuclei were visualized using a DAPI filter
set (377/50, 409, 447/60 nm). The signal was detected on a
Digital Sight DS-1QM camera. Signal intensities were ex-
tracted from the images as integrated intensities of single
cells using CellProfiler (64).

Heterogeneity analysis

The extracted signal intensities were compared between dif-
ferent regions of the tumor tissue section and a Mann–
Whitney U-test was used to determine differences in the ex-
pression levels between regions. The test statistic U was cal-
culated as

U = n1n2 + n1 (n1 + 1)
2

− R1,

where R1 is the larger of the two rank sums, n1 the number
of samples in the group with the larger rank sum and n2 the
number of samples in the group with the smaller rank sum.
The significance z was standardized using

z = U − μU

σU

with the mean μ and the standard error � of the distribution
U. The Cohen effect size r, describing the importance of the
significance in the difference of the means, was determined
as

r =
∣
∣
∣
∣

z√
n

∣
∣
∣
∣
,

where n is the sum of the number of samples in both groups.
A Cohen effect size r = 0.1 typically corresponds to a small
effect, r = 0.3 to a moderate effect, and r = 0.5 to a strong
effect (65). For visualization, the effect size was displayed as
a color-coded matrix.

RESULTS

Localized RNA-ISH by microfluidic implementation

The molecular heterogeneity of tumor tissues is reflected in
spatial differences in gene expression. To investigate these
differences at the transcript level, we developed a microflu-
idic implementation of the RNA-ISH assay (Figure 1A,
Supplementary Figure S1). It makes it possible to increase
the number of transcripts that can be investigated on a sin-
gle tissue section by using amplification-based transcript de-
tection. Theoretically, up to 3000 hybridizations could be
performed on a tissue area of 10 mm × 10 mm. However,
the number of reactions that one can practically perform
depends on multiple factors, ranging from the morphology
of the tissue to availability of probes and design of the mi-
crofluidic chips.

The initial pretreatment of the tumor tissue section, in-
cluding paraffin removal, heat-induced pretreatment and
protease digestion, was performed on the whole tissue slide.
Precise control of the pretreatment steps, especially the pro-
tease digestion times, specific to the tissue of origin was re-
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Figure 1. Local RNA in situ hybridization. (A) Schematic overview of a microfluidic implementation of chromogenic RNA in situ hybridization. The
initial preparation of the tissue section including paraffin removal (1), heat (2) and protease (3) pretreatment, as well as fixation was performed globally.
The primary probe was then hybridized locally to the RNA of interest (4). In this case the detection of HER2 is shown with internal negative (dapB) and
positive (ActB) controls. Finally, the amplification of the signal using preamplifier and amplifier strands (5), the binding of enzyme (6), and the enzymatic
reactions (7) were performed globally on the whole slide. (B) Fluorescence images of RNA-ISH experiments detecting the gene expression of HER2 in cell
pellet sections of the breast cancer cell lines MCF7 (left), SKBR3 (center) and BT474 (right). Probes directed against bacterial dapB and ActB were used
as negative and positive controls, respectively. Scale bar: 100 �m.

quired (Supplementary Note SN1, Figure S2). For the sub-
sequent delivery of the primary probe, we used an open
space microfluidic chip (59,60,66). Through the simultane-
ous injection and aspiration of the primary probe solution,
it was delivered to a spatially defined region of ∼50–100
cell sections (∼150 �m in diameter). Probes for multiple
transcripts of interest can thus be used in neighboring re-
gions within the same tumor area. Additionally, through
using hierarchical flow confinements (66), inner and outer
regions of the confinement can be targeted using different
probes and thus patterns of local delivery can be generated.
The RNA-ISH signal increased for primary probe delivery
times from 10 to 60 minutes, even under conditions with a
constant flow (Supplementary Figure S3). Further increas-
ing the hybridization time of the primary probe beyond 60
min, however, did not increase the signal intensity. There-
fore, an incubation time of 60 min was chosen, when us-
ing the microfluidic chip. Constant delivery of probes un-
der flow leads to the convection-enhanced reduction in hy-
bridization time, which facilitates the sequential delivery of
multiple probes without affecting the time required for the
complete workflow (11–14 h depending on the spatial and
spectral multiplexing conditions). Subsequent signal ampli-
fication and visualization was performed on the whole tu-
mor tissue section, which enables direct comparisons of the

signals within each tumor tissue section without having to
take additional properties of the fluorophores and detection
optics into consideration.

The use of the microfluidic chip system thus allows for the
spatial multiplexing of a number of different RNA targets.
The global delivery of oligonucleotides for amplification of
the signal and enzymatic substrates permits different tar-
gets to be simultaneously amplified and visualized in a sin-
gle reaction, thereby facilitating quantitative comparisons
that are independent of the amplification process.

Biomarker analysis with intrinsic positive and negative con-
trols

The use of the microfluidic chip for spatially defined RNA-
ISH experiments enables the sequential or even simultane-
ous deposition of primary probes targeted at several RNA
sequences of interest on a single tissue section. We lever-
aged this ability to introduce probes for the biomarker of
interest, HER2, as well as 4-hydroxy-tetrahydrodipicolinate
reductase (dapB) from Bacillus subtilis and Actinβ (ActB)
as negative and positive controls on the same slide. The
positive control serves as an indicator for RNA integrity,
while the negative control, which is not expressed in human
tissue, provides information about background enzymatic
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reactions, unspecific binding of amplification probes, and
staining. The absence of dapB signal in the area of local
delivery and the absence of ISH signal in cells surround-
ing the spatially defined regions serve as negative controls.
Figure 1B shows FFPE cell pellet sections of the cell lines
MCF7, SKBR3 and BT474 with RNA-ISH signals of dapB,
HER2 and ActB in spatially defined regions of the section
(see also Supplementary Figures S4). The relative quantifi-
cation of the signal intensity was based on the mean inte-
grated intensity of the FISH signal per cell section (Supple-
mentary Figure S5). The relative comparison of expression
levels within a tissue section is independent of the amplifi-
cation, enzymatic visualization reaction, and imaging con-
ditions, as these are equal to all transcripts of interest in
the same section. The expression levels based on ISH signal
intensities were therefore directly compared within a single
tissue section. The signal of the positive control ActB was
detected for all three cell lines with a mean integrated inten-
sity per cell between 40 and 100, while the dapB signal was
low in all cases (mean integrated intensity of 3–10) (Figures
1B, 2). The signal intensity of HER2 showed a strong varia-
tion between the three cell lines with a high mean integrated
intensity per cell of 438 for SKBR3 and 208 for BT474 and
a weak signal (int = 7) for MCF7. This is consistent with
the expression levels detected for these cell lines when us-
ing immunohistochemistry, where SKBR3 and BT474 are
described as HER2 3+ and MCF7 as HER2 0–1+ (Supple-
mentary Figure S6) (67). The method thus enables the es-
timation of HER2 overexpression in known breast cancer
cell lines. Therefore, we applied the same method to investi-
gate the HER2 expression in breast carcinoma sections and
found HER2 to be strongly expressed when compared to the
positive control ActB in the tumor region analyzed (Figure
2A). The analyzed tumor is thus HER2 positive.

Using this approach, the comparison to a house-keeping
gene, such as ActB, can be used to quantify differences in the
expression level of the gene of interest (68). We calculated
the ratios of HER2 and ActB expression levels based on
the mean integrated intensities per cell section. For MCF7
cells, a ratio of 0.07 was calculated. BT474 and SKBR3
expressed HER2 and ActB in ratios of 5.65 and 6.64, re-
spectively. The investigated mammary carcinoma section
showed an expression ratio of 23. However, as shown by
Aerts et al. (69), we observed that the expression level of
ActB at the transcriptomic level, based on the integrated
intensity of the ISH signal, differs between the breast can-
cer cell lines MCF7, SKBR3 and BT474 (Figure 2B, Sup-
plementary Note SN2). A direct comparison between the
different cell lines therefore has to be considered carefully
when basing the quantification on the house-keeping gene
ActB. While different cell cycle states within a certain cell
line may indeed be compared, additional house-keeping
genes should be considered for the comparison between cell
lines or tumor tissues.

We demonstrated here that transcripts of interest can
be analyzed in a multiplexed fashion using the microflu-
idic chip-based delivery of ISH probes. Nonetheless, house-
keeping genes used for the relative quantification of tran-
script levels must be evaluated carefully. Integrating neg-
ative and positive controls into the experiments pro-
vides measures for unspecific signal and ensures that pre-

analytical and analytical conditions (e.g. fixation, pretreat-
ment of the tissue, assay parameters) do not impact RNA
integrity. Our approach thus provides a robust basis for a
controlled gene expression analysis.

Multiplexed RNA-ISH analysis of a predictive breast cancer
biomarker panel

Spatially multiplexed RNA-ISH allows the analysis of
biomarker panels using single color detection. We focused
the analysis on the predictive breast cancer biomarker panel
estrogen receptor (ER), progesterone receptor (PgR), and
HER2. By using microfluidic chip-based local delivery, we
determined their expression levels in cell pellet sections of
breast cancer cell lines and mammary carcinoma sections
(Figure 3, Supplementary Figures S7). The imaging con-
ditions were kept constant for the analysis of the different
cell lines and the carcinoma tissue in Figure 3. We observed
an elevated expression of ER in MCF7 (int = 29) and PgR
in MCF7 and BT474 cells (int = 16 and int = 535, respec-
tively). HER2 was strongly overexpressed in SKBR3 (int =
1057) and BT474 (int = 836) and mildly expressed in MCF7
(int = 20) (Supplementary Figure S7). The mammary carci-
noma section showed HER2 overexpression, while ER and
PgR signals were not elevated (Figure 3). These results cor-
respond to the ones of the molecular analysis of the cell lines
by immunohistochemistry. In MCF7, the Allred scores for
ER and PgR are 6, whereas HER2 expression is quantified
as 0–1+ (67). SKBR3, on the other hand, shows a high ex-
pression of HER2 (3+) and no overexpression of ER and
PgR (Allred score = 0) and BT474 highly expresses HER2
(3+) and PgR (Allred score = 8) (67).

These results show that the multiplexed analysis of mul-
tiple transcripts, e.g. a biomarker panel, is possible through
using single-color RNA-ISH in fluorescence or brightfield
detection mode. We believe that this facilitates the quantifi-
cation of multiple transcripts at the same time and allows
for the detection of a multitude of transcripts requiring only
a single tissue section or small amounts of valuable tissue.

We further increased the multiplexing modalities by com-
bining spatial multiplexing with dual color detection. By us-
ing only two spatial positions, we could thus visualize gene
expression patterns of the biomarker panel ER/PgR/HER2
and the positive control ActB as well as negative controls in
forms of the surrounding tissue (Supplementary Figure S8).
ActB and HER2 were visualized by using Fast Red, and ER
and PgR using Fast Blue. The ActB signal and the area sur-
rounding the local delivery of probes show the integrity of
the RNA in the sections as well as a negligible signal ow-
ing to unspecific reactions. As expected, MCF7 showed an
overexpression of ER and PgR, while the HER2 signal was
significantly lower than for the other cell lines. On the other
hand, SKBR3 and BT474 as well as the carcinoma sections,
showed a strong HER2 signal. PgR was dominantly over-
expressed in BT474 cell pellet sections. This agrees with the
subtype differentiation of these cell lines into luminal A, lu-
minal B, and HER2-overexpressing with an Allred score of
8 for PgR in BT474 and one of 6 in MCF7 cells.

Although the sensitivity of detection is higher when us-
ing fluorescence excitation and detection, the spatial multi-
plexing approach allows the detection of multiple different
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Figure 2. Detection of HER2 expression status by RNA in situ hybridization using internal positive and negative controls. (A) Fluorescence images of the
signals detected for HER2, dapB, and ActB in a mammary carcinoma section. Scale bar: 100 �m. (B) Quantitative analysis of the fluorescence intensity
of FISH signals detected for HER2, dapB, and ActB integrated per sectioned cell for FFPE sections of the breast cancer cell lines MCF7, SKBR3, and
BT474 (see Figure 1) as well as the mammary carcinoma from (A). 100 ms excitation.

types of transcripts when using brightfield microscopy on
a single tissue section (Supplementary Figures S4, S9). By
using micrometer sized areas of hybridization, thousands of
transcripts could theoretically be detected on a single tissue
section through spatial multiplexing. By additionally em-
ploying dual-color detection schemes, the number of differ-
ent types of detected transcripts can be doubled.

Spatially multiplexed RNA-ISH for detecting molecular tu-
mor heterogeneity

Having shown that multiplexed RNA-ISH detection meth-
ods allow for the spatial analysis of several biomarkers si-
multaneously, including internal positive and negative con-
trols (Figure 2) or panels of biomarkers (Figure 3), we ap-
plied the technique to investigate spatial heterogeneity in
the expression levels of the detected transcripts. By using
globally or locally applied RNA-ISH, we analyzed the spa-
tial heterogeneity of HER2 expression in mammary carci-
noma sections (Figure 4, Supplementary Figure S10). Each

tumor region (distance between regions 5 mm to 1 cm, sep-
arated by fibrous tissue) was represented by multiple po-
sitions within the region (areas with a distance of a few
100 �m). Differences within each of the regions (intrare-
gional differences) and between the different regions (inter-
regional differences) were analyzed. Regions are shown in
hematoxylin-stained tissue sections in Supplementary Fig-
ure S11. Intraregional and interregional differences in ex-
pression level were analyzed by using a Mann–Whitney test
and the Cohen effect size (65). For a carcinoma strongly ex-
pressing HER2 (35 HER2 copies, HER2 IHC 3+), the in-
terregional heterogeneity was weak with Cohen effect sizes
ranging from r = 0.09 to r = 0.11 (Figure 4B, left, Sup-
plementary Table S1). The intraregional differences within
regions 2 and 3 were low, while region 1 showed a slightly
increased heterogeneity in HER2 expression levels (Figure
4B right). The carcinoma section with a lower HER2 pro-
tein expression status (five HER2 copies, HER2 IHC 2+)
showed weak interregional heterogeneity between regions 2
and 3 (r = 0.04) and moderate to strong differences in HER2
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Figure 3. Single color multiplexed RNA-ISH for the detection of breast cancer biomarkers. (A) The primary probes for ER, PgR, and HER2 were delivered
to spatially distinct regions of a mammary carcinoma section using a microfluidic chip (schematic in upper left corner). Fluorescence images of the signal
detected for the breast cancer biomarkers ER, PgR and HER2 in a mammary carcinoma section. Scale bar: 100 �m. (B) Fluorescence intensity of FISH
signals detected for ER, PgR and HER2 integrated per sectioned cell for FFPE sections of the breast cancer cell lines MCF7, SKBR3 and BT474 (see
Supplementary Figure S7) as well as the mammary carcinoma from (A). 500 ms excitation.

expression levels when comparing them to region 1 (r = 0.36
and r = 0.34 for regions 1 and 2, and 1 and 3, respectively)
(Figure 4C). Additionally, intraregional heterogeneity was
moderate for region 1 with effect sizes ranging from r = 0.05
to r = 0.4 between different areas within the region. These
results show that the molecular heterogeneity of the HER2
status differs between tumors and patients. While some tu-
mors display a homogeneous distribution of HER2 expres-
sion levels, others show moderate to large variations. His-

tological and pathological evaluations of the tissue sections
corresponded to the HER2 expression patterns observed us-
ing RNA-ISH. The highly HER2-overexpressed tissue sec-
tion (Figure 4B) contained 35 copies of the HER2 gene and
was classified as HER2 3+ when using immunohistochem-
istry, while the low HER2 expressing carcinoma carried 5
HER2 gene copies and had a HER2 score of 2+. The evalu-
ation of this tumor tissue was equivocal. Interestingly, these
equivocal results corresponded to a tissue with moderate to
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Figure 4. Spatially multiplexed RNA-ISH to detect spatial tumor heterogeneity in mammary carcinoma sections. (A) Fluorescence images of RNA-ISH
signals detected for HER2 and ActB by global ISH or local ISH experiments on mammary carcinoma sections. Nuclei visualized using DAPI. The images
display the inter- and intratumor heterogeneity of the HER2 expression. Scale bar: 100 �m. (B, C) Integrated fluorescence intensity of the HER2 signal per
sectioned cell in three different regions of a strongly (B) (35 HER2 copies, HER2 IHC 3+) and low (C) (five HER2 copies, HER2 IHC 2+) HER2-expressing
carcinoma tissue section (left). Using a Mann–Whitney test, the Cohen effect size (r) for interregional heterogeneity was calculated from the combined
areas (I–IV) within a region and displayed by the values given in the graph on the left. A matrix of Cohen effect sizes calculated for the individual areas
within or between regions (intraregional and interregional heterogeneity) is shown on the right. Corresponding regions are shown on hematoxylin and
immunohistochemically stained tissue sections in Supplementary Figure S11A and B.
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high spatial heterogeneity in HER2 transcript levels, sug-
gesting the importance of molecular tumor heterogeneity
for the differentiation of breast carcinomas into subtypes.

Multiplexed analysis revealed heterogeneity in HER2
gene expression in relation to the expression levels of ActB
(Figure 5A). While only a low variation in the expression of
ActB was detected between three different regions of the tis-
sue (r = 0.08–0.21), the expression level of HER2 was signif-
icantly lower in region 3 compared to the other two regions
(r = 0.74 for both, comparison between regions 1 and 3, and
between regions 2 and 3). This suggests a differential reg-
ulation of HER2, while the overall RNA content between
the regions is constant. A comparison of the HER2/ActB
expression ratios showed an expression of HER2 in region
3 that was 15 times lower than in both other regions ana-
lyzed (HER2/ActB (region 1) = 0.7, HER2/ActB (region
2) = 0.6, HER2/ActB (region 3) = 0.04).

Correlation between transcript and protein expression

We further investigated the correlation between differences
in expression at the transcript and protein level. We deter-
mined HER2 expression levels and their intraregional and
interregional differences of a carcinoma tissue section with
HER2 status of 3+ in immunohistochemistry results (Fig-
ure 5B and C, Supplementary Table S1). HER2 protein
levels were analyzed using standard immunohistochemistry
and quantitative immunohistochemistry (Figure 5B and D)
(24). Between the four regions analyzed, the heterogeneity
of HER2 gene expression showed a small effect size between
regions 1, 2, and 4. It was moderate when comparing these
regions to region 3 (r = 0.26 for regions 1 and 3 as well as 4
and 3, and r = 0.19 for regions 2 and 3). Correspondingly,
HER2 protein showed a higher expression in region 3 when
compared to the other regions (Figure 5C). Evidently, we
observed a correlation in the spatial heterogeneity of HER2
between the transcript and protein levels.

In summary, spatially multiplexed RNA-ISH can be used
to detect spatial molecular tumor heterogeneity of a panel
of biomarkers or in combination with house-keeping genes
and internal controls. The transcript level can thereby pro-
vide additional quantitative information about the gene ex-
pression status and may be used in a complementary fash-
ion to existing approaches for biomarker analysis, being es-
pecially advantageous for equivocal tumor cases.

DISCUSSION

Spatial tumor heterogeneity is an important driver in tumor
progression and resistance development and is currently
rarely considered in clinical decision making. Therefore, a
feasible approach describing molecular tumor heterogene-
ity is needed. A variety of research methods to study spatial
cellular heterogeneity at the protein and transcript expres-
sion level exists. Multiplexed immunohistochemistry, which
is commercially available as Opal and UltiMapper detec-
tion schemes for automated platforms, allows to spatially
detect up to 16 different proteins (14,70–72). Recent de-
velopments additionally explore the label-free detection of
biomarkers using infrared imaging (73–76) or deep learning
approaches on histological images (77–80). Furthermore,

a multitude of new techniques for the spatial analysis of
transcripts have recently been developed. They range from
location-inference for single-cell sequencing data (81–85) or
next-generation sequencing of laser capture microdissected
sections (47–49) to in situ sequencing (41–44) or patterned
microarrays (45,46). Depending on the application, each of
the methods has its own advantages, such as the number of
different transcripts detectable, the efficiency of detection,
or the quantification of gene expression. However, many of
these methods require the use of live cells or fresh frozen
tissue to ensure a stable quality of RNA. As FFPE sam-
ples are one of the most common sample types in pathology
laboratories and tissue biobanks (86), a method to detect
gene expression levels despite formalin-fixation is highly ad-
vantageous and may lead to translation of the technique to
other laboratories. To limit the technical complexity and
make spatial transcript analysis potentially accessible for
clinical use, we therefore developed a novel method for mul-
tiplexed RNA-ISH, which has been shown to be compati-
ble with FFPE tissues (50–52). RNA-ISH provides the ad-
ditional advantage of detecting transcripts with low expres-
sion levels, such as non-coding RNAs. The method is based
on existing RNA detection schemes that use amplification
and brightfield or single-color fluorescence detection. We
leveraged the microfluidic chip’s ability to precisely and lo-
cally deliver chemicals (59,60) to spatially confine primary
ISH-probes on FFPE sections and thus achieve spatial mul-
tiplexing with simple detection schemes.

By using spatial multiplexing, the number of different tar-
gets for amplification-based RNA-ISH techniques can be
increased. Current non-fluorescent and enzyme-based am-
plification approaches for ISH have the advantage of abol-
ishing the need for highly sensitive detection optics (56).
However, they are limited to two different target samples.
By applying spatial multiplexing, the number of different
targets can easily be scaled and is only limited by the num-
ber of positions available in a homogeneous region of the
tissue section. The established method provides the addi-
tional advantage that signal intensities within a section can
be directly compared without the need to control for varia-
tions in pretreatment conditions or saturation of the am-
plification reaction. As multiplexing using a single color
is possible, differences in quantum yield, excitation power,
and excitation and emission filter bandwidth do not have
to be corrected for. Furthermore, the spectral multiplexing
of transcripts may be advantageous when assessing highly
expressed genes, where the dense distribution hinders hy-
bridization to multiple targets.

We demonstrated the utility of the technique by the detec-
tion of HER2 transcripts with tissue internal positive and
negative controls and the analysis of the predictive breast
cancer biomarker panel ER/PgR/HER2 in a single tumor
tissue section. In clinical decision making, control reac-
tions are extremely important as they provide information
about tissue processing conditions, integrity of the molec-
ular content, and performance of the analytical assay. In-
ternal controls are the most precise measure and are there-
fore preferred over external controls on consecutive tissue
sections or other samples (87). Including internal controls
in RNA-ISH facilitates the evaluation of RNA integrity
and stability of the experimental conditions and is thus
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Figure 5. Differential HER2 gene expression in mammary carcinoma sections. (A) Integrated RNA-ISH fluorescence intensity per cell section for ActB
and HER2 in a mammary carcinoma section (lower image). Cohen effect sizes describing interregional differences in expression levels calculated using a
Mann–Whitney test are shown as matrices for ActB and HER2, respectively (upper images). (B) Histological overview of the tumor tissue section stained
with hematoxylin and eosin (upper image) and HER2 immunohistochemistry (lower image) with the regions 1–4 used for local RNA-ISH detection in
(C). Scale bar: 1 mm. (C) Integrated RNA-ISH fluorescence intensity (HER2) per cell section for four areas in each of the four different tumor regions in
a mammary carcinoma section with a HER2 IHC status of 3+. The entire tissue sections including the regions of interest are shown as hematoxylin and
IHC stained tissues in Supplementary Figure S11C. The Cohen effect size (r) for interregional heterogeneity was calculated from all areas (1–4) within each
region combined by using a Mann-Whitney test and its values are displayed above the graph. (D) Quantitative immunohistochemistry using a gradient
of primary antibody incubation times by local antibody delivery (24). The graph shows the relative mean intensity of the diaminobenzidine (DAB) signal
after the amplification of the secondary antibody signal through a horseradish peroxidase reaction versus the incubation time of the primary antibody. It
provides a quantitative measure of protein expression levels.
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an important measure for assay performance. The estab-
lished assay can thereby aid in implementing these internal
controls.

The information from the multiplexed RNA-ISH anal-
ysis of panels of biomarkers can be used to allocate
breast cancer cell pellet sections to their molecular subtype
(MCF7: luminal A, BT474: luminal B, SKBR3: HER2-
overexpressed (67)). Complementary to protein expression
analysis, the same information derived from transcript ex-
pression levels can therefore be used to classify tumor tis-
sue sections into their molecular subtypes. This is in accor-
dance with the results by Alba et al. (2012), who have shown
a 95.2% correlation of gene expression in RNA-ISH com-
pared to immunohistochemistry and a 96.5% concordance
of RNA-ISH with gene amplification by DNA-FISH (63).
Baehner et al. (2010) additionally investigated the correla-
tion between the RNA expression levels of HER2 detected
by qRT-PCR and DNA-FISH. The observed concordance
of 97% between the two methods shows that RNA expres-
sion levels are a reliable indicator for patient stratification
(88), a finding further confirmed by Vassilakopoulou et al.
(89), Wang et al. (2), and Wu et al. (90). Although multi-
plexing with spectral unmixing and AQUA analysis enable
a certain degree of quantitation of immunohistochemistry
and immunofluorescence results (14,18,22,23), the quan-
tification of immunohistochemistry results is still not pre-
cise and leads to 32% equivocal results, 84% of which can
be resolved by subsequent DNA-FISH (2,63). The analy-
sis of expression at the RNA level presents an alternative
approach with the additional advantage of using oligonu-
cleotide probes over antibodies, many of which are not suit-
able for obtaining reproducible IHC results on FFPE tis-
sue (91,92). For PD-L1 testing, for example, different an-
tibodies, assays, and evaluation criteria are used to predict
PD-1/PD-L1 inhibitor therapy (93). Through using RNA-
ISH, the standardization of PD-L1 testing may be facili-
tated. The clinical application of approaches such as On-
cotype DX, 70-gene signature, or PAM-50 have illustrated
the usefulness of analyzing transcript expression levels for
breast cancer prognosis and prediction (26–29,94,95). Fur-
ther studies showed the advantages of using mRNA ex-
pression profiles for the therapeutic stratification of patients
with breast cancer (TAILORx (96), MINDACT (27), En-
doPredict (97,98)). When using these techniques, the rela-
tive quantification of gene expression levels is achieved by
using PCR and microarrays, while the spatial information
is not preserved. Therefore, combinations of quantitative
gene expression analysis at the transcript level with spa-
tially resolved DNA-FISH or immunohistochemistry can
reveal additional important information on molecular het-
erogeneity. Alternatively, RNA-ISH offers the possibility of
the relative quantification of transcripts directly in a spa-
tially defined manner on a single tissue section. Annaratone
et al. quantified ER and HER2 transcripts in FFPE tissue
sections and successfully stratified the tissues into molecu-
lar subtypes (99). Using the method described in this paper,
spatial differences of multiple transcripts of interest can be
assessed on a single tissue section. We used the approach
to evaluate the spatial heterogeneity of HER2 transcripts
and observed varying interregional and intraregional dif-
ferences in the gene expression level for the carcinoma sec-

tions investigated. Interestingly, we observed heterogene-
ity in HER2 transcript levels with moderate to strong ef-
fect size in carcinoma tissue with equivocal results from
HER2 gene copy number analysis and immunohistochem-
istry. This suggests that spatial heterogeneity contributes to
the significance of molecular subtype differentiation, mak-
ing it an even more important parameter to consider in clini-
cal decisions. Especially in equivocal cases, spatially defined
transcript levels can provide a complementary approach
and additional indicator for predictive and prognostic deci-
sions. We observed a correlation of interregional differences
in the HER2 expression between the transcript and protein
level. This is in accordance with previous results revealing
spatial heterogeneity of HER2 breast cancer on the tran-
script or protein level (24,99,100).

We believe that the local delivery of probes and antibod-
ies will facilitate the multimodal detection of RNA and pro-
teins on single tissue sections by combining RNA-ISH and
immunohistochemistry. Previous studies have shown the si-
multaneous detection of transcripts and proteins on a single
monolayer of cells or tissue section (101–103) and recent
elaborate techniques combine RNA-ISH and immunoflu-
orescence with metal-based detection using mass cytom-
etry (104). Furthermore, owing to its immense flexibility,
the microfluidic chip may be used for the simultaneous lo-
cal delivery of in situ detection moieties (e.g. hybridization
probes, antibodies) and local removal of cells for genetic
or transcriptomic analysis (61,105). We can thus imagine
its capabilities to provide spatial information about whole
genomes, transcriptomes, or even proteomes. The quantita-
tion of transcripts and proteins in a spatially defined man-
ner holds great promise for the elucidation of tumor devel-
opment and progression. Future studies on cohorts of tu-
mor biopsies can provide information on the applicability
of the technique for clinical interpretation.

To summarize, our work provides a versatile approach
for multiplexed in situ detection of transcripts using single-
color or brightfield detection. As methods that recover spa-
tial information provide the possibility to investigate dy-
namic processes, development of lineages, connectivity, and
alterations in tissue architecture in development and dis-
ease, we believe that the developed technique will find appli-
cation in a wide variety of biological and medical contexts.
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