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Abstract

Background: Legumes are the third largest family of flowering plants and are unique among crop
species in their ability to fix atmospheric nitrogen. As a result of recent genome sequencing efforts,
legumes are now one of a few plant families with extensive genomic and transcriptomic data
available in multiple species. The unprecedented complexity and impending completeness of these
data create opportunities for new approaches to discovery.

Results: We report here a transcriptional analysis in six different organ types of syntenic regions
totaling approximately | Mb between the legume plants barrel medic (Medicago truncatula) and
soybean (Glycine max) using oligonucleotide tiling microarrays. This analysis detected transcription
of over 80% of the predicted genes in both species. We also identified 499 and 660 transcriptionally
active regions from barrel medic and soybean, respectively, over half of which locate outside of the
predicted exons. We used the tiling array data to detect differential gene expression in the six
examined organ types and found several genes that are preferentially expressed in the nodule.
Further investigation revealed that some collinear genes exhibit different expression patterns
between the two species.

Conclusion: These results demonstrate the utility of genome tiling microarrays in generating
transcriptomic data to complement computational annotation of the newly available legume
genome sequences. The tiling microarray data was further used to quantify gene expression levels
in multiple organ types of two related legume species. Further development of this method should
provide a new approach to comparative genomics aimed at elucidating genome organization and
transcriptional regulation.
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Background

The rapidly increasing number of genome and transcript
sequences in recent years is having two marked, complemen-
tary effects on the relatively new discipline of plant genomics
and transcriptomics. The newly available sequences need to
be fully annotated to identify all the functional and structural
elements. Because genome annotation is a reiterative process
that is heavily dependent on large-scale, high-throughput
experimental data, each additional genome sequence comes
as a new challenge. On the other hand, the availability of mul-
tiple genomic and transcriptomic datasets fosters compara-
tive analyses that improve structural annotation of the
genomes and generate new insight into the function and evo-
lution of protein-coding and non-coding regions of the
genomes.

One approach to systematically characterize genome tran-
scription is to use high feature-density tiling microarrays on
which a given genome sequence is represented [1,2]. Genome
tiling arrays have been used in a number of model species for
which the full genome sequence is available [3-8]. Results
from these studies have shown that for well-documented
transcripts, such as those of polyadenylated RNAs from anno-
tated genes, hybridization signals from tiling arrays identify
the transcriptional start and stop sites, the locations of
introns, and the events of alternative splicing [3-8]. Tiling
arrays therefore provide a valuable means for confirming the
large number of predicted genes that otherwise lack support-
ive experimental evidence. However, tiling array signals also
reveal a large number of putative novel transcripts for which
no conventional explanations are yet available.

With respect to plants, the Arabidopsis thaliana genome was
the first to be probed by tiling microarrays [5]. Tiling array
analysis of the more complex rice genome has been carried
out as well [8-10]. The rice tiling array data were used to
detect transcription of the majority of the annotated genes.
For example, of the 43,914 non-transposable element pro-
tein-coding genes from the improved indica whole genome
shotgun sequence [11], transcription of 35,970 (81.9%) was
detected [8]. On the other hand, comprehensive identifica-
tion of transcriptionally active regions (TARs) from tiling
array profiles revealed significant transcriptional activities
outside of the annotated exons [8-10]. Subsequent analyses
indicate that about 80% of the non-exonic TARs can be
assigned to various putatively functional or structural ele-
ments of the rice genome, ranging from splice variants,
uncharacterized portions of incompletely annotated genes,
antisense transcripts, duplicated gene fragments, to potential
non-coding RNAs [10].

In addition to detecting transcriptome components, genome
tiling arrays in theory can be used to directly quantify the
expression levels of individual transcription units. As an
alternative approach to the surrogate expression arrays, tiling
arrays offer two potential advantages. First, in tiling arrays
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each transcription unit is interrogated by hundreds of probes
according to the actual genomic sequence. This strategy elim-
inates the need to arbitrarily select a small number of suppos-
edly gene-specific probes and thus alleviates probe bias and
improves cross-platform comparability in microarray experi-
ments. Second, measurement of gene expression using tiling
arrays allows averaging of the results from multiple probes
per gene, which can reduce inconsistent probe behavior and
thus provide improved statistical confidence.

Using DNA microarrays to study gene expression in closely
related species has become an important approach to identify
the genetic basis for phenotypic variation and to trace evolu-
tion of gene regulation [12-17]. However, expression levels as
well as sequences may differ between species, creating addi-
tional technical challenges for inter-species comparisons.
Current approaches to control for the effect of sequence
divergence are either to mask probes with sequence mis-
matches [17,18] or to use probes derived from the various spe-
cies of interest to cancel out the sequence mismatch effect
[19,20]. Both approaches, however, rely on a few empirically
or computationally selected probes for each gene of interest.
Consequently, the effectiveness and accuracy of these
approaches is still a matter of debate [18]. In related species
for which genome sequences have all been determined,
genomic tiling arrays could provide an alternative approach
to inter-species comparison of gene expression. Again, the
inclusion of multiple probes per transcription unit in tiling
arrays could potentially improve the accuracy and fairness of
the estimation of gene expression levels in each species,
which in turn could improve cross-species comparison of the
expression patterns of orthologous genes.

As the third largest family of flowering plants, legumes
(Fabaceae) are unique among crop species in their ability to
fix atmospheric nitrogen through symbiotic relationships
with rhizobia bacteria [21]. Extensive expressed sequence
tags have been collected for a number of legume species,
including soybean (Glycine max), lotus (Lotus japonicus),
common bean (Phaseolus vulgaris), and barrel medic (Med-
icago truncatula) [22,23]. Genomes of barrel medic, soy-
bean, and lotus are being sequenced because all are models
for studying nitrogen fixation and symbiosis, tractable to
genetic manipulation, and exhibit diploid genetics and mod-
est genome sizes. Both barrel medic and lotus have a diploid
genome of approximately 475 Mb while soybean has a
diploidized tetraploid genome estimated at 950 Mb [24,25].
Recently, preliminary genome assembly and annotation of
barrel medic (Mt2.0) and soybean (Glymao) became publicly
available [26,27]. As a result, legumes are now one of a few
plant families in which extensive genome sequences in multi-
ple species are available.

Comparisons of genome sequences have revealed various
degrees of synteny (conservation of gene content and order)
among species related at different taxonomic levels. For leg-
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ume plants, early work based on DNA markers demonstrated
substantial genome conservation among some Phasoloid spe-
cies, including mungbean (Vigna radiata) and cowpea (V.
unguiculata) [28], and between Vigna and the common bean
[29]. Genome-wide gene-based analysis among legumes
using a large set of cross-species genetic markers produced
chromosome alignments from five species of the Papilionoid
subfamily, including barrel medic and soybean [30]. More
recently, direct synteny comparison of the finished and
anchored genome sequences from barrel medic and lotus was
made. Results from this study indicated that three-quarters of
the genome of each species may reside in conserved syntenic
segments in the genome of the other [25], which share at least
ten large-scale synteny blocks that frequently extend the
length of whole chromosome arms [26].

Two soybean regions comprising approximately 0.5 Mb each
surrounding the soybean cyst nematode resistance loci, rhg1
and Rhg4, were extensively characterized [31]. Using these
sequences, Mudge et al. [32] identified the syntenic regions
from barrel medic. They found that many predicted genes in
the syntenic regions were conserved and collinear between
the two species. Here, we used tiling microarray analysis to
verify the predicted genes, to identify additional transcripts,
and to compare transcription patterns in six different organ
types in each species. Our results provide transcriptional sup-
port to over 80% of the predicted genes and identified 499
and 660 TARs from barrel medic and soybean, respectively.
The gene expression patterns in the six organ types of some
collinear genes showed significant differences between the
two species despite synteny at the DNA level, demonstrating
the usefulness of genomic tiling analysis in comparative
genomics.

Results

Genes in the syntenic regions between barrel medic
and soybean

In a previous study, two regions in the soybean genome com-
prising approximately 0.5 Mb each surrounding the soybean
cyst nematode resistance loci, rhg: and Rhg4, were used to
identify syntenic regions in the Medicago genome [32].
Because there was a 2 ¢cM gap in the first region, these
sequences were referred to as synteny blocks 1a, 1b, and 2
[32]. The syntenic regions in barrel medic also totaled about
1 Mb, though they were scattered into smaller contigs. For
example, synteny block 1b in barrel medic contained two
additional gaps [32]. In barrel medic, there were two segmen-
tal duplications (block 2i and 2ii) that were both syntenic to
soybean synteny block 2 [32].

Genes were predicted in the 1 Mb barrel medic and soybean
sequence contigs using FGENESH [33]. Both the dicot plants
(Arabidopsis) and the Medicago (legume plant) matrixes
were used and their outputs compared [33]. Using the legume
matrix, 229 and 217 genes were predicted for the barrel medic
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and soybean sequences, respectively (Additional data file 1).
These represent significantly more but shorter genes (exons)
compared with the Arabidopsis matrix outputs. However, the
legume matrix prediction also resulted in more base-pairs in
the exons (increases of 10.3% and 8.2% for barrel medic and
soybean, respectively; Additional data file 1). These results
clearly demonstrate that gene prediction output is sensitive to
the training matrix and highlight the importance of experi-
mental means in verifying and improving computational gene
prediction. For simplicity, we selected the gene prediction
from the legume matrix for further analysis.

Tiling microarray detection of predicted genes

We designed two independent sets of overlapping 36-mer oli-
gonucleotide probes offset by five nucleotides to represent
both DNA strands of the 1 Mb syntenic barrel medic and soy-
bean sequences (see Materials and methods). Each set of
probes was synthesized into a single array based on Maskless
Array Synthesis technology [8-10,34]. The barrel medic and
soybean arrays were hybridized in parallel with target cDNA
prepared from six organ types of each plant, namely, root,
nodule, stem, leaf, flower and developing seed. Fluorescence
intensity of the probes was correlated with the genome posi-
tion by alignment of the probes to the chromosomal coordi-
nates (Figure 1). Transcriptional analysis of the syntenic
regions was then achieved by examining expression of the
predicted genes and systematically screening for TARs.

We used a method based on the binomial theorem to score the
tiling array data obtained from the six organ types to detect
transcription of the predicted genes [10]. Analysis of the tiling
array data detected 193 out of 229 (84%) and 176 out of 217
(81%) predicted genes in at least one of the six organ types in
barrel medic and soybean, respectively (Figure 2a), indicating
that most predicted gene loci are transcribed. Among the six
organ types, detection rates of predicted genes ranged from
48% (flower) to 75% (nodule) in barrel medic, and from 60%
(root) to 76% (flower) in soybean (Figure 2b). Interestingly,
the gene detection rate in the nodule was the most similar
between both species (74.7% and 73.3% in barrel medic and
soybean, respectively; Figure 2b). These results suggest that
transcription of the predicted genes from the 1 Mb syntenic
sequences between barrel medic and soybean is, to a large
extent, differentially regulated in the two species, which was
further investigated (see below).

Identification and characterization of TARs

We next scored tiling microarray data blind to the annotated
genes and identified 499 and 660 unique TARs in barrel
medic and soybean, respectively (see Materials and meth-
ods). The barrel medic and soybean TARs exhibited distinct
overall organ specificity. Compared with TARs in barrel
medic, soybean TARs in general were detected in more tissue
types (Figure 3a), implying a more constitutive expression
pattern. Furthermore, roughly equal numbers of barrel medic
(181) and soybean (187) TARs were detected in just one organ
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Figure 2

Tiling microarray detection of the predicted genes in the | Mb region
syntenic between barrel medic and soybean. (a) Pie charts showing the
number and percentage of genes detected by tiling arrays in at least one of
the six examined organ types. (b) Tiling array detection rates of predicted
genes in the six organ types in barrel medic and soybean.

type. These TARs were detected in barrel medic mainly from
stem and leaf while nodule and root were the most abundance
source in soybean (Figure 3b). Thus, these TARs appear to
represent organ-specific transcriptional activities that differ
in the examined sequences between barrel medic and
soybean.

Aligning against the predicted genes, 188 (38%) and 305
(46%) barrel medic and soybean TARs intersect with an exon.
The remaining 311 (62%) barrel medic and 355 (54%)
soybean TARs are located outside of or antisense to the pre-
dicted exons and are referred to as non-exonic TARs. The dis-
tributions of TARs detected in barrel medic and soybean in
the different annotated genome components are illustrated in
Figure 4a. Interestingly, the relative proportion of TARs in
each annotated genome component is largely comparable to
results from a whole-genome tiling array analysis in rice [10].
This observation indicates that predicted exons account for
less than half of the transcriptome detected by tiling arrays in
rice and legume plants, despite their different genome sizes
and distinct genome organization. Furthermore, a significant
portion of TARs was found antisense to the predicted genes in
both barrel medic (14%) and soybean (16%) (Figure 4a),
which adds to previous tiling array analysis in Arabidopsis [5]
and rice [8-10] in showing that antisense transcription is an
inherent property of the plant genomes.

The non-exonic TARs were further analyzed in terms of their
physical location relative to the predicted genes. In this
analysis, genome regions were divided into eight different
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Figure 3

Analysis of the frequency of TARs in different organ types. (a) Percentage
and number of TARs detected by tiling arrays in one, two, three, four, five
and all six organ types in barrel medic and soybean. (b) Organ-specific
number of TARs detected from only one organ type by tiling arrays in
barrel medic and soybean.

configurations against the predicted exons (Figure 4b). Inter-
estingly, in almost all antisense configurations, there were
more TARs in soybean than in barrel medic (Figure 4b), sug-
gesting that antisense transcription is more prevalent in soy-
bean than in barrel medic. This analysis also revealed a
surprisingly large number of intergenic TARs (36 in barrel
medic and 45 in soybean) located in close proximity on the
antisense strand 5' to the start of a predicted gene (Figure 4b).
Because the predicted genes do not include untranslated
regions, it is conceivable that transcripts derived from these
TARs and the corresponding genes are arranged in a diver-
gent antisense orientation and could potentially form duplex
transcript pairs.

Differential gene expression in the syntenic regions

The binomial theorem-based method used to detect gene
transcription does not assign a value to the expression level
and is only useful for present calls [35]. Therefore, we used a
median polishing-based method that fits an additive linear
model [36] to determine differential expression of the pre-
dicted genes in the six examined organ types and to assess the
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Classification of TARs based on physical location relative to the predicted genes. (a) Pie charts showing percentage of all identified TARs in different
genome components relative to the predicted gene structures in barrel medic and soybean. (b) Number of non-exonic TARs in different sub-genic regions

in barrel medic and soybean.

relative deviation of gene expression level in each organ type
(see Materials and methods). In barrel medic, 67 (29%) of the
229 predicted genes were identified as differentially
expressed (p < 0.001) among the six examined organ types
(Figure 5). In soybean, 72 (33%) of the 217 predicted genes
displayed differential expression (Figure 5).

Precise transcriptional and developmental controls are
required for the establishment of the complex interaction
between the nitrogen-fixing rhizobia and plant cells in the
nodule. To begin to understand the transcriptional program
in nodules, we identified and compared genes specifically
expressed in the nodule. Within the syntenic regions in barrel
medic, 11 (16%, including one duplicated gene) differentially
expressed genes showed higher transcription levels in the
nodule than in the other five organ types (Additional data file
2). In soybean, there were 10 (14%) differentially expressed
genes showing higher transcription levels in the nodule
(Additional data file 3). Nodule-enhanced expression levels of

six randomly selected genes in soybean were all confirmed by
RT-PCR analysis (Figure 6a), indicating that the median pol-
ishing-based method used to score the tiling data is accurate
in detecting organ type-specific transcripts. A particular
example is illustrated in Figure 6b. This gene (Gm_121) is
homologous to the Ljsbp gene from Lotus japonicus that
encodes a putative selenium binding protein [37]. In situ
hybridization analysis revealed that the Ljsbp transcripts
were localized in the young nodules, the vascular tissues of
young seedpods and embryos [37], which is consistent with
the tiling array and RT-PCR data on the soybean ortholog
(Figure 6b).

In soybean, all but one of the detected nodule-enhanced
genes are known genes (Additional data file 3). In contrast,
only three of the 11 nodule-enhanced genes detected in barrel
medic match with a known gene while the other eight genes
have no assigned functions (Additional data file 2). When the
nodule-enhanced genes detected in barrel medic and soybean

Genome Biology 2008, 9:R57
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Analysis of differentially expressed genes. Heat maps represent
unsupervised clustering of differentially expressed genes in barrel medic
and soybean. The red, yellow, and blue colors depict positive deviation, no
deviation, and negative deviation of the transcription level, respectively.

were compared for synteny, six of the ten soybean genes were
found to have a collinear counterpart in barrel medic,
although transcription of the collinear genes in barrel medic
was not nodule-enhanced (Additional data file 3). Conse-
quently, there was only one gene encoding a TGACG-binding
transcription factor that is collinear as well as specifically
expressed in the nodule in both species.

Verification of tiling array detected differentially expressed genes. (a) RT-
PCR analysis of the transcript abundance in six organ types for six selected
soybean genes that are preferentially expressed in the nodule. Total RNA
(5 pg) was reverse transcribed and 5% of the product used as template for
PCR, which was carried out for 35 cycles. (b) Organ type-specific
variation of the expression level of the gene Gm_I21, as determined by
median-polishing of the tiling array data. Dashed lines indicate the
deviation value at p = 0.001.

Transcriptional pattern of collinear genes in the
syntenic regions

The barrel medic and soybean sequences interrogated by the
tiling microarray are highly syntenic. In the previous report,
a total of 68 pairs of genes were found to be collinear with
both the gene order and orientation conserved between barrel
medic and soybean homologs [32]. In the current study, we
were able to identify 78 collinear gene pairs based on the gene
prediction output from the legume matrix.

To begin to obtain information on the variation in gene
expression between barrel medic and soybean, which is
important for defining transcriptional regulatory networks
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that contribute to their phenotypic variations [38], we exam-
ined the expression pattern of the collinear genes. To this end,
we used the transcription level deviation in the six organ
types for each collinear gene as a parameter to profile gene
expression patterns. Consistent with the fact that most genes
were not differentially expressed in different organ types, a
majority of the collinear genes showed relatively small organ
type deviation (Figure 7). However, a number of collinear

Genome Biology 2008, Volume 9, Issue 3, Article R57

genes exhibited drastic variation in transcription levels across
the organ types. In barrel medic, the most conspicuous exam-
pleis a group of genes that are down-regulated in the seed but
up-regulated in the stem. In soybean, the root exhibited the
greatest gene expression variation (Figure 7). Importantly,
the transcription pattern of these collinear genes is not con-
served in the reciprocal species, suggesting that the regula-
tory sequence of these genes is under positive selection.
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Analysis of the transcription patterns of collinear genes. The collinear genes in both barrel medic and soybean are ordered by chromosome position. For
each gene, the deviation of transcription level was calculated based on median polishing for the six organ types (see Materials and methods). The gene
order was then plotted against the corresponding deviation value in each of the six organ types, which is color-coded.
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Discussion

The rapidly accumulating amount of genome and transcrip-
tome data in recent years is having profound effects on
biological research. Elucidating all the functional and struc-
tural elements of the genome sequences and how they are
organized and regulated, and how they evolved has thus
become the focus of the next phase of genome projects. In
these regards, genome tiling microarray analysis is emerging
as a new powerful approach, which involves the development
of tiling arrays containing progressive oligonucleotide tiles
that represent a target genome. Recent advances in microar-
ray technologies allow oligonucleotide arrays to be made with
several hundred thousand to several million discrete features
per array, which permits tiling complex genomes with a man-
ageable number of arrays [1,2]. This in turn has resulted in
transcriptomic tiling data for a large number of model species
[1-10].

Application of tiling array analysis in genomics studies has
significantly broadened our understanding of the genetic
information encoded in the genome sequences. When probed
against various RNA samples, tiling array hybridization pat-
terns identify transcript ends and intron locations [3-8]. Til-
ing array analysis thus provides a valuable means for
verifying genome annotation, which is a challenge that must
be met for each new genome sequence. In the current study,
we generated tiling array data for a 1 Mb region syntenic
between barrel medic and soybean in six different organ types
(Figure 1). Analysis of the tiling array data detected 193 out of
229 (84%) and 176 out of 217 (81%) predicted genes in barrel
medic and soybean, respectively (Figure 2), similar to results
reported from tiling array analysis of the rice genome [8,9].
Because genome annotation is a highly reiterative process
that improves with the parallel refinement of gene-finding
programs and the availability of experimental evidence, we
anticipate further application of tiling array analysis to facili-
tate annotation of the fast emerging legume genome
sequences [25,30,39].

Another use of the tiling array data is to identify transcription
units in addition to the predicted genes [1,2]. Previous tiling
analyses indeed documented large numbers of putative novel
transcripts in virtually all the genomes examined [3-10]. For
example, detailed characterization of the non-exonic TARs
identified in the japonica rice genome showed that they could
be assigned to various putatively functional or structural ele-
ments of the genome, ranging from splice variants, uncharac-
terized portions of incompletely annotated genes, antisense
transcripts, duplicated gene fragments, to potential non-cod-
ing RNAs [10]. In carrying out tiling array analysis of the
legume sequences, we identified 499 and 660 unique TARs in
barrel medic and soybean, respectively (Figure 3). Aligning
against the predicted genes, 311 (62%) barrel medic and 355
(54%) soybean TARs were found to locate outside of or anti-
sense to the predicted exons (Figure 4). Interestingly, in a
promoter trapping study in lotus in which a promoter-less
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GUS reporter system was used, GUS activation, often tissue-
specific, was found beyond the predicted genic regions [40].
Together, these observations indicate that novel transcripts
missed by gene annotation account for a significant portion of
the transcriptome in legume plants.

As anovel use of tiling array data for transcriptomic profiling,
we used a median polishing-based procedure [10,36] to
determine the relative transcription levels and differential
expression of the predicted genes. Because there are multiple
probes involved in tiling a given gene, the median polishing-
based procedure will have the corollary benefit of improved
statistical confidence. Based on this method, approximately
30% of genes were found to be differentially expressed among
the six examined organ types (Figure 5). The nodule-
enhanced expression pattern of six selected soybean genes
was subsequently verified by RT-PCR analysis (Figure 6).
Collectively, these results indicate that genomic tiling array
analysis can be extended to quantitatively examine the tran-
scription levels of individual genes. This may prove particu-
larly useful for quantifying transcription levels of members of
paralogous gene families, which are notoriously hard to dis-
criminate in conventional expression arrays that employ rel-
atively fewer probes per gene.

Interestingly, 11 and 10 genes were identified as preferentially
expressed in the nodule in barrel medic and soybean, respec-
tively. These genes exhibited little overlap between the two
species (Additional data files 2 and 3). Barrel medic and soy-
bean diverged from a common ancestor approximately 50
million years ago, and represent two distinct groups of nodu-
lating plants [41]. Barrel medic forms indeterminate nodules,
which maintain an active meristem inside nodule primordia
during the early stages of nodule development; while soybean
forms determinate nodules that, after initial cell divisions,
grow by cell expansions. These morphological differences
may thus affect the architecture and gene expression in the
nodules [42].

The availability of multiple genomic and transcriptomic data-
sets fosters comparative analyses that improve structural
annotation and generate new insight into the function and
evolution of coding and non-coding regions of the genomes
[43]. A major principle of comparative genomics is that the
functional DNA sequences in related species conserved from
the last common ancestor are preserved in contemporary
genome sequences, which encode the proteins and RNAs and
the regulatory sequences controling genes with similar
expression patterns [43]. Alignment of primary DNA
sequences is the core process in most comparative analyses.
The resulting information on sequence similarity among
genomes is a major resource for infering gene functions, iden-
tifying other candidate funcational elements, and finding
conserved genes missed from annotation in one genome or
another.
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Transcriptomic data from multiple species are also being
extensively used in comparative analysis. For example, direct
comparison of multiple transcript datasets using genome
annotation tools has been shown as an effective way to
uncover 'unannotated' genes. In rice, 255 new candidate
genes were identified by cross-species spliced alignment of
expressed sequence tags and cDNA to the genome sequence
[44]. In this regard, the rich transcriptional activity docu-
mented from genomic tiling analysis constitutes an excellent
complement to other tag-based transcriptome data. In the
present tiling analysis of syntenic regions between two leg-
ume species, we identified over 300 unique TARs in both bar-
rel medic and soybean in addition to the predicted exons.
Transcripts tagged by these TARs should be useful for further
comparison aimed at improving genome annotation and elu-
cidating the transcriptome.

Furthermore, comparison of transcription levels in six differ-
ent organ types revealed that a large portion of the collinear
genes between barrel medic and soybean exhibit different
expression patterns (Figure 7). It should be noted that there
is a segmental duplication of synteny block 2 (block 2i and 2ii)
in barrel medic [32]. The process of subfunctionalization fol-
lowing gene duplication, where degenerative mutations in
both genes result in the partitioning of ancestral functions or
expression patterns in the duplicated genes, could, therefore,
contribute to the observed expression divergence among the
examined collinear genes between barrel medic and soybean.
Further analysis of the cis-regulatory regions of the syntenic
genes should help to identify the key regulatory sequence
divergence that accounts for the differences in related legume
species and add to our general knowledge of plant genome
evolution and regulation.

Conclusion

We report here a transcriptional analysis using high-resolu-
tion tiling microarrays of syntenic regions totaling 1 Mb
between the legume plants barrel medic and soybean in six
different organ types. This analysis generated transcriptomic
data that is useful for three purposes. First, we detected tran-
scription of over 80% of the predicted genes in the interro-
gated genome regions in both legume species. As genome
annotation is a reiterative process that is heavily dependent
on experimental data, genomic tiling analysis is thus one
valid option to meet the challenge of analyzing large-scale
transcriptomic datasets for newly sequenced legume
genomes. Second, we identified 499 and 660 TARs from bar-
rel medic and soybean, respectively, over half of which are
outside of the predicted exons. Further functional
characterization of these candidate transcripts should be use-
ful to better our understanding of the complexity and dynam-
ics of the transcriptome of legume plants. Third, we used the
tiling array data to detect differential gene expression and to
compare transcription patterns of collinear genes. This novel
approach was validated by the high confirmation rate by RT-
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PCR analysis of genes that are preferentially expressed in the
nodule. Further investigation revealed that some collinear
genes exhibited drastically different transcription patterns
between the two species. Collectively, these results demon-
strate that genomic tiling analysis is an effective approach to
simultaneously complement computational annotation of
newly available genome sequences and to facilitate compara-
tive genomics aimed at elucidating genome organization and
transcriptional regulation in closely related species.

Materials and methods

Plant materials and treatments

Barrel medic (Medicago truncatula cv. Jemalong A1) seed
was treated with concentrated H,SO 4 for 10 minutess, rinsed
with water and then allowed to germinate on moist filter
paper at room temperature for a week. Seedlings 1-2 cm in
length were planted in soil and maintained in the greenhouse
with nitrogen-free plant nutrient solution as previously
described [45]. Soybean (Glycine max cv. William 82) seed
was directly sown in soil and maintained in the greenhouse
with nitrogen-free plant nutrient solution as described by
Subramanian et al. [46].

The Rhizobium bacterium Sinorhizobium meliloti 1021 and
Bradyrhizobium japonicum USDA110 was used to inoculate
barrel medic and soybean plants, respectively. The bacteria
were grown in a yeast extract-mannitol medium for three
days at 28°C as previously described [47]. The bacterial cells
were then suspended in nitrogen-free nutrient solution to an
ODg,,, of 0.08 and used to water four-week-old plants. This
flood-inoculation step was repeated after two weeks. The
nodules were collected three weeks after the second treat-
ment. Each nodule was separated from the roots with sharp
tweezers and placed on dry ice immediately. The stem, root,
and leaf organs were harvested from four-week-old plants
that were maintained with nitrogen containing plant nutrient
solution. The same plants were maintained until maturity for
collection of the flower and seed organs.

Sequence selection and gene prediction

Soybean sequences from four bacterial artificial chromo-
somes (BACs) were obtained from GenBank (accession num-
bers: AX196204.1, AX196295.1, AX196297.1, and
AX197417.1). The BACs AX196294 and AX196295, and
AX196297 and AX197417 form two contigs. There is a physi-
cal gap (represented by 100 Ns) between AX196294 and
AX196295, and an approximately 50 Kb overlap between
AX196297 and AX197417. Thus, the two contigs represent a
total of 977 Kb of non-redundant sequences. Putative
homologs to these soybean sequences in barrel medic were
identified from sequenced barrel medic BACs as previously
reported [32]. A total of 12 BACs (accession numbers:

ACi141115.22, ACi149303.10, CR378662.1, CR378661.1,
AC142408.20, AC146585.18, AY224188.1, AC146706.8,

AY224189.1, AC146705.11, AC144644.3, and AC146683.9)

Genome Biology 2008, 9:R57

Lietal R57.10


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AX196294.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AX196295.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AX196297.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AX197417.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC141115.22
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC149303.10
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR378662.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CR378661.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC142498.20
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC146585.18
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY224188.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC146706.8
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY224189.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC146705.11
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC144644.3
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AC146683.9

http://genomebiology.com/2008/9/3/R57

were identified. The sequences were aligned and merged in
regions of sequence overlap on the basis of >99% identity
[32]. The merged barrel medic sequences form 7 contigs and
total 1,060 Kb. Genes were predicted from soybean and barrel
medic sequence contigs using FGENESH [33]. Both the dicot
plants (Arabidopsis) and the Medicago (legume plant)
matrix was used and their output compared.

Tiling microarray design, production, and
hybridization

Both the barrel medic and soybean tiling arrays were pro-
duced on the Maskless Array Synthesizer platform as previ-
ously described [6,8,34]. Briefly, tiling paths consisting of 36-
mer oligonucleotides offset by five nucleotides were designed
to represent both DNA strands of the selected barrel medic
and soybean genome sequence. Probes were synthesized at a
feature-density of 390,000 probes per array in a 'chessboard’
design [34]. Microarray production and storage were carried
out previously described [6,8,34].

Total RNA and mRNA were sequentially isolated using the
RNeasy Plant Mini kit (Qiagen, Valencia, CA, USA) and the
Oligotex mRNA kit (Qiagen), respectively, according to the
manufacturers' recommendations. mRNA from different
organ types was reverse transcribed using a mixture of
oligo(dT),gs and random nonamer primers [6,34], during
which amino-allyl-modified dUTP (aa-dUTP) was incorpo-
rated. The aa-dUTP decorated cDNA was fluorescent labeled
by conjugating the monofunctional Cy3 dye (GE Healthcare,
Piscataway, NJ, USA) to the amino-allyl functional groups in
the cDNA. We used 2 pg dye-labeled targets for hybridization
as previously described [6,8,34]. Tiling microarray design
and experimental data are available in the NCBI Gene
Expression Omnibus under the SuperSeries GSE10151, which
is composed of subset series GSE10055 and GSE10056 for the
barrel medic and soybean arrays, respectively.

Tiling array analysis of gene expression

Raw microarray data were first Log, transformed and then
quantile normalized for the six organ types. A sign-test was
used to determine transcription of the predicted gene [10,35].
First, probes lying within the exons of a predicted gene were
checked to determine if their intensity was greater than the
median of all probes in the array. Next, we determined
whether or not the number of probes with intensity above the
median was more than expected by chance alone. The proba-
bility, p, of obtaining h probes with intensity above median
out of N probes is given by the equation:

N
Z N
i=h

Finally, genes with a p-value smaller than 0.05 were consid-
ered as detected.
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Determination of differential gene expression was carried out
based on the Tukey's median polish procedure, which fits an
additive linear model [10,36]. The expression level of a given
gene in the six organ types, M, is estimated by the equation:

Oj=M+a;+vj+e;

where Oj; is the observed intensity of the ith probe in the jth
organ type, a; is the probe affinity effect of the it probe, v;is
the organ type variation of the jth organ type, and e; is the
experimental error. A series of iterations of residue subtrac-
tion was performed using Tukey's median polishing until the
matrix reaches a stable status, and the organ type deviation v
was determined for each organ type. To obtain the false neg-
ative error rate, a permutation test was applied. The intensi-
ties of every probe were randomly shuffled among the organ
types and median polishing repeated 1,000 times. A signifi-
cant level at p < 0.001 was selected for organ-specific expres-
sion calling.

Identification of TARs

To identify TARs in each organ type, the Log,-transformed,
quantile-normalized data that were anchored to the chromo-
some coordinates were scanned from the 5' end of each DNA
strand one probe at a time. TARs were identified as regions
with length >70 nucleotides (spanning roughly 14 probes)
with no 2 consecutive probes having an intensity below the
cutoff of 11.0.

Identification of collinear genes

To identify collinear genes, repetitive sequences were masked
and tandemly duplicated genes were counted as one. The
BLAT [48] program was then used to search the protein
sequences of the predicted genes between barrel medic and
soybean. The gene pairs with more than 10 amino acids
mapped and more than 40% identity over the entire mapped
sequences were identified as potential collinear genes, which
were further manually inspected for gene order and
orientation.
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BAC, bacterial artificial chromosome; TAR, transcriptionally
active region.
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Mb syntenic regions between Medicago truncatula and Gly-
cine max. Additional data file 2 is a table listing the Medicago
truncatula genes preferentially expressed in the nodule.
Additional data file 3 is a table listing Glycine max genes pref-
erentially expressed in the nodule.
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