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The immune escape signature
predicts the prognosis and
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pancreatic ductal
adenocarcinoma
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and Sui-Cai Mi*

Xiamen Hospital of Traditional Chinese Medicine, Xiamen Hospital, Beijing University of Chinese
Medicine, Xiamen, China
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest

malignancies worldwide. Immune escape is considered to be a reason for

immunotherapy failure in PDAC. In this study, we explored the correlation

between immune escape-related genes and the prognosis of PDAC patients.

Methods: 1163 PDAC patients from four public databases, including The

Cancer Genome Atlas (TCGA), International Cancer Genome Consortium

(ICGC), Array-express, and Gene Expression Omnibus (GEO), were included

in our study. Cox regression analysis was used to identify the 182 immune

genes which were significantly associated with overall survival (OS). And then

we established an immune escape-related gene prognosis index (IEGPI) score

using several datasets as the training cohort and validated it using the validation

cohort. Kaplan-Meier (KM) and Cox regression analysis were used to detect the

relationship of IEGPI score with OS. We further explored the relationship

between the IEGPI and immune indexes. And the prediction value of

response for immunotherapy in Tumor Immune Dysfunction and Exclusion

(TIDE) dataset.

Results:We establish an IEGPI score based on 27 immune escape genes which

were significantly related to the prognosis of OS in PDAC patients. Patients in

the high-IEGPI group had a significantly worse overall survival rate compared

with that in the low-IEGPI groups by KM curves and cox-regression. 5 of the 32

cancer types in TCGA could be significantly distinguished in survival rates

through the low- and high-IEGPI groups. Moreover, the correlation between

the IEGPI score was negatively correlated with an immune score in several

datasets. And higher IEGPI better recurrence-free survival (RFS) and OS in the

patients after patients were treated with both PD-1 and CTLA4 in the public

datasets (P<0.05). Intriguingly, by using RT-PCR, we verified that the gene of

PTPN2, CEP55, and JAK2 were all higher in the BxPC-3 and PANC-1 than

HPDE5 cells. Lastly, we found that the IEGPI score was higher in K-
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rasLSL.G12D/+, p53LSL.R172H/+, Pdx1Cre (KPC) mice model with anti-PD-L1

than that without anti-PD-L1.

Conclusion: Using the immune escape-related genes, our study established

and validated an IEGPI score in PDAC patients from the public dataset. IEGPI

score has the potential to serve as a prognostic marker and as a tool for

selecting tumor patients suitable for immunotherapy in clinical practice.
KEYWORDS

Pancreatic ductal adenocarcinoma, immune escape, immune infiltration,
prognosis, immunotherapy
Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly

malignant exocrine cancer with a dismal prognosis. Although

PDAC has a relatively low incidence worldwide, it ranks the

fourth leading cause of cancer-related death in the world (1).

Radical surgery is the only effective treatment for the cure of

PDAC. Unfortunately, most PDAC patients are present in

advanced stages when they are diagnosed and not amenable

for surgery. Even when PDACs undergo surgery, the 5-year

postoperative survival rate is still not ideal. Despite great

advances in chemotherapy for pancreatic cancer, chemo-

resistance and toxic side effects also inhibited the

improvement of PDAC patients’ prognosis after treatment (2).

Previous studies have demonstrated the 5-year survival rate of

PDAC is less than 9%, which is far lower than that of other

malignancies (3, 4).

Recent years, besides chemotherapy (5–7), immunotherapy

has become a research hotspot in the treatment of malignances

(8, 9), included pancreatic cancer. However, it has a poor effect

on pancreatic cancer with PD-1/PD-L1 blockade monotherapy

(10). Immune evasion might be the main cause of

immunotherapy failure, which reflected in the resistance to

immune checkpoint blockade (ICB) therapy (11, 12). More

and more studies have disclosed the molecular mechanisms of

immune evasion in pancreatic cancer (5, 13, 14), which increases

the difficulty in the treatment of PDAC.

Considering the highly lethal characteristic and the poor

effect of immunotherapy, PDAC patients’ prognosis should be

assessed for surgeons to evaluate the treatment benefits through

some immune-re lated gene markers or s ignatures

before surgery.

In this study, we developed and validated an immune

escape-related prognostic signature (IEGPI score) with the

whole genome expression data from several datasets for

PDAC. More importantly, the IEGPI score could identify
02
PDAC patients with an unfavorable prognostic outcome after

surgery, and PDAC patients with a high sensitivity to

immunotherapy after received with both PD-1 and CTLA4.
Materials and methods

Data source

The gene expression profiles and corresponding clinical data

of PDAC were obtained from the TCGA (https://portal.gdc.

cancer.gov), ICGC (https://dcc.icgc.org/), Arrayexpress (https://

ebi.ac.uk/arrayexpress/), and GEO (GEO, http://www.ncbi.nlm.

nih.gov/geo) databases. After we excluded some datasets 1)

without overall survival (OS) and survival status; 2) sample

size<50, a total of 1137 PDAC patients from seven datasets were

enrolled in this study. Six datasets of TCGA-PAAD-US (n=146),

ICGC-PACA-AU (n=267), E-MTAB-6134(n=288), GSE71729

(n=125) and GSE57495 (n=63) and GSE62452 (n=66) were used

as the training cohorts; one other independent cohort, ICGC-

PACA-CA (n=182) was served as an external validation cohort

(Supplementary Table S1). The Single-cell dataset for PDAC was

extracted from CRA001160. Lastly, the immunotherapy cohorts

were downloaded from the TIDE (Tumor Immune Dysfunction

and Exclusion, http://tide.dfci.harvard.edu/). The expression

data of 6 pair KPC mice with PD-L1 and without PD-L1 were

downloaded from GSE196435.
Processing of the immune escape-
related genes

Totally, 182 immune escape genes were downloaded from

previous study (Supplementary Table S1) (15). First, we stratified

each immune escape gene into two groups by the median value in 7

datasets. Second, a univariate Cox regression analysis was
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conducted to filter the 182 immune escape genes which are

associated with OS in the PDAC patients. Finally, through the

fixed-effects model based on meta-analysis, the pooled hazard ratio

(HR) with 95% CI of immune escape gene was estimated.
Establishing the prognostic immune
escape-related genes signature

For those immune escape genes, the pooled HRs with their

standard estimates (SE) which were significantly related to

prognosis were then integrated as the prognostic immune

escape genes weight, and generated the immune escape-related

gene prognosis index (IEGPI) score. In sum, IEGPI from a

sample is given by:

IEGPIscore =o
i

1

HR − 1
SE

� �
*Gene ið Þ

In the aforementioned formula, gene (i) was the relative

expression of OS-related immune escape genes, and n is the total

number of OS-related immune escape genes based on the meta-

analysis. In our analyses, the normalized Z-score was used to

calculate the score.
Evaluation of tumor immune score

We utilized ESTIMATE (16) to evaluate tumor immune

score based on immune gene expression signatures. The

immune score, which represents the tumor immune

infiltration level, is the fraction of immune cells in bulk tumor.
Estimation of immune cell infiltration

The single-sample gene set enrichment analysis (ssGSEA)

(17) was introduced to quantify the relative infiltration of 28

immune cell types in the tumor microenvironment. Unique

feature gene panels for each immune cell subset were obtained

from the latest literature (18). An enrichment score in ssGSEA

analysis represented the relative abundance of each immune cell

type. The ssGSEA score was normalized to unity distribution, for

which zero is the minimal and one is the maximal score for each

immune cell type. The bio-similarity of the immune cell

filtration was estimated by multidimensional scaling (MDS)

and a Gaussian fitting model.
Evaluation of TMB

For each tumor sample, we determined its TMB as the total

count of somatic mutations detected in the tumor. TMB was
Frontiers in Oncology 03
calculated by dividing the nonsynonymous mutations with 38

Mb as previously reported. In addition, we calculated Oncoplot,

mutation landscape, and OncogenicPathways based on

TCGAmutation and maftools R packages.
Functional and pathway
enrichment analyses

By using the “clusterProfiler” R package (version 4.2.2) (19),

the Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis and Gene Ontology (GO) analysis were

performed in our study. Gene Set Enrichment Analysis (GSEA)

was used to explore the potential function and signaling pathway

enrichment associated with the patients with high and low

IEGPI Pancreatic ductal adenocarcinoma cancer.
RT-qPCR for gene expression study

To gain the insight of the characteristics of IEGIP score, we

investigated PTPN2, CEP55 and JAK2 as the represented gene of

IEGIP score in the cell lines. The sequences of Primer were set as

f o l l o w i n g r u l e s : P TPN2 F o rw a r d P r im e r w a s

“GAAGAGTTGGATACTCAGCGTC”, and Reverse Primer was

set as “TGCAGTTTAACACGACTGTGAT”. CEP55 Forward

Primer was “CTTGAGGTTGAACGACAAACCA” and Reverse

Primer was “AGCTCTTCGGATCTCTTCTTCTC”. JAK2

Forward Primer was “ATCCACCCAACCATGTCTTCC”, and

Reverse Primer was “ATTCCATGCCGATAGGCTCTG”. For cell

lines, normal pancreatic ductal epithelial cell (HPDE6-C7 cell,

BNCC338285) were purchased from Beijing Beina Chuanglian

Institute of Biotechnology (Beijing, China), and PANC-1(GIBCO:

10566016) and BxPC-2(GIBCO: 11875093) were purchased from

National Collection of Authenticated Cell Cultures. The condition

of RT-qPCR was performed as the following: initial cDNA

denaturation was at 95°C for 5 min, and 40 cycles at 95°C for

30s, and annealing temperatures were diversely set at 55°C, and

extension at 72°C for 1 min.
Statistical analysis

Continuous variables were analyzed using the student’s t-test

or the Wilcoxon rank sum test, while the categorical variables

were compared using the c2 or Fisher exact test. The Benjamini–

Hochberg (FDR) was also used to adjust the P-values for the

multiple comparisons. Immune escape genes with significant

prognosis were selected according to the following criteria: meta-

analysis, P<0.001, and FDR<0.001. Spearman correlation

analysis was used to assess the potential relevance. Univariate

and multivariate Cox regression analyses were performed to
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explore the independent risk factors of OS and recurrence-free

survival (RFS) in PDAC patients. Kaplan–Meier (KM) method

and log-rank test were performed to compare the OS rates in

each group. Time-dependent ROC curve was done to detect the

prognostic value of IEGPI for PDAC patients. The area under

the receiver operating characteristic curve (AUROC) was used to

estimate the diagnostic value of IEGPI for chemosensitivity. All

statistical analysis of all the clinical data was performed in R

(version 3.6.2; https://www.r-project.org/). A two-sided P-

value< 0.05 was considered statistically significant in all tests.
Results

Immune escape genes associated with
prognosis of PDAC

First, in 7 datasets, we used the Cox regression analyses to

uncover the 182 immune escape genes which were significantly

associated with OS in PDAC patients. The detail information

was list in Supplementary Table S1. Second, a meta-analysis

(random effects model) was implemented among 7 datasets to

harvest pooled HRs and the coefficients of significant genes

associated with OS. Finally, we identified 27 immune escape

genes which were significantly related to prognosis of OS in

PDAC patients (Figures 1A). Of them, 13 were poor prognosis-

related genes, and 14 were good prognosis-related genes. The

forest plots in Figures 1B, C showed the pooled HRs and 95%CI

of the above 27 immune escape genes after a meta-analysis

(Supplementary Table S2).

According to the aforementioned formula, we used the 27

immune escape genes to establish an integrated score, namely

IEGPI, for every patient in the seven datasets. Their KEGG

pathway enrichment results showed in the Supplementary

Table S3. Using the single-cell sequencing dataset of

CRA001160, we found that IEGPI score was elevated in

macrophages and tumor cells compared with other groups in

a single-cell analysis (Figures 1D–F and Supplementary Table

S4). Additionally, 27 immune escape genes were implemented

into GO and KEGG analyses, and the results were illustrated in

Figures 1G, H. We found some important items were enriched

after GO analysis, such as response to endoplasmic reticulum

stress, integral component of endoplasmic reticulum

membrane, and cysteine-type peptidase activity. Moreover,

some significant pathways such as antigen processing and

presentation, JAK-STAT signaling pathway were enriched.
Prognosis estimation of IEGPI score

A correlation plot in Figure 2A demonstrated that there existed

a strong correlation between the IEGPI score and most of the 27

immune escape-related genes in PDAC patients. Figures 2B, C
Frontiers in Oncology 04
showed relationship between HR value (Cox regression analysis of

OS) and IEGPI score in the training cohort and validation cohort,

respectively, which reflected a near-linear correlation overall.

More importantly, we merged six datasets of PDAC patients

and then used the ROC curve finding the best cut-off value to

divide patients into two groups (the high-IEGPI vs. low-IEGPI

group). We make a KM curve to show the different OS rates

between the high-IEGPI and low-IEGPI group (Figure 2D).

Patients from the low-IEGPI group had a significantly better

survival OS than those from the high-IEGPI group (P<0.001).

Supplementary Figure 1 showed the survival differences between

the high-and low-IEGPI groups in six different datasets, which

also illustrated the same results with the Figure 2D. In addition, a

validation cohort of PACA-CA was stratified into two groups

used the above cut-off value. The KM curves in PACA-CA

cohort also illustrated significantly different OS rates between

the two groups (P=0.007) (Figure 2E). In addition, we analyzed

the relationship between the IEGPI score and cell signaling

pathways in five datasets through KEGG analysis (Figure 2F).

Furtherly, a forest figure in Figure 3A showed the

multivariate Cox regression analysis results in seven PDAC

datasets (Supplementary Tables S5, S6). We found that IEGPI

score was an independent risk factor of OS in all datasets (all P<

0.05). Then we explored the impact of IEGPI score on tumor

relapse of PDAC patients in four datasets (E-MTAB-6134,

TCGA−PAAD, PACA_AU, and PACA_CA). the results in

Figures 3B–E demonstrated that patients in the low-IEGPI

group had significantly better relapse-free survival rates

compared with those in the high-IEGPI groups (P<0.05).

At last, the TCGA pan-cancer analysis found that 5 types of

32 cancers could be significantly distinguished in survival

through the low- and high-IEGPI groups (Figure 3F),

suggesting the application potential of IEGPI score for

prognostic prediction in other malignant diseases.
Relationship between the mutation
genes and IEGPI

We explored the relationship between the IEGPI score and

the TMB (tumor mutation burden) value. Figures 4A–C showed

that in the PACA-AU cohort, PACA-CA cohort, and TCGA-

PAAD cohort, the correlation between the IEGPI score TMB

was not vary strong.

We then used the Oncoplot to illustrated the top 15

mutation genes in the High-and low-IEGPI score groups of

PDAC, and the results included KRAS, TP53, SMAD4 and

CDKN2A, etc. (Figure 4D). Notably, we observed that TP53

had a significantly higher mutation frequency in High-IEGPI

group than in low-IEGPI group (Figure 4D). It could explain

why High-IEGPI group had the worst prognosis among the two

groups since TP53 mutations have been associated with

unfavorable outcomes in various cancers.
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Relationship between the immune
infiltration and IEGPI

In order to explore the distribution of immune components

in different IEGPI score patients, we used the Spearman

correlative analysis to explore the relationship between the

IEGPI score and the immune score. Figure 5A showed that in

the PACA-AU cohort, TCGA-PADC cohort, E-MTAB cohort,
Frontiers in Oncology 05
and GSE62452 cohort, the correlation between the IEGPI score

was negative linearly correlated with immune score.

In addition, we selected immune genes based on previous

studies to study the relationship of the IEGPI score and immune

functions (immune co-stimulation and check-point genes).

Bubble plot of Figure 5B showed that in seven cohorts,

immune genes had a huge-difference relationship with the

IEGPI score. Moreover, a total of 28 infiltration immune cell
A B

C

D

G H

E F

FIGURE 1

Construction of the IEGPI score. (A–C) 27 prognostic immune escape genes; (D–F) IEGPI score distribution in single-cell sequencing dataset of
CRA001160; (G) 27 immune escape genes were implemented into GO analyses; (H) 27 immune escape genes were implemented into KEGG analyses.
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were explored to show their negative relationship with the IEGPI

score in in seven cohorts (Figure 5C).
IEGPI score for immunotherapy
response prediction

First, using the TIDE dataset, we want to evaluate the IEGPI

score’s potential as a tool for immunotherapy response

prediction in other tumors, such as melanoma, bladder cancer,

and lung cancer (Figures 6A–E). We found that in the melanoma

cohort treated with both PD1 and CTLA4, the likelihood of

predicting a positive immunotherapy response is strong with

AUC=0.800. Moreover, we also explored the distribution of

IEGPI score in CR/PR and PD/SD, and the results showed

that the patients with CR/PR had a higher IEGPI score

(P<0.05) in melanoma patients receiving the both PD1 and

CTLA4 treatment (Figure 6F). Additionally, the same trend was

found in other tumors, although there were no significant

differences between the high and low IEGPI score patients

(Supplementary Figure S2). Noteworthy, Figures 6G, H
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showed that high-IEGPI score was associated with better RFS

and OS in the melanoma patients treated with both PD-1 and

CTLA4 (P<0.05).
Validation of IEGPI in vitro and vivo

To validate the reality of IEGPI score, we accessed the gene

expression of PTPN2, CEP55 and JAK2 as the represented gene

of IEGPI score by using RT-qPCR (Figures 7A–C). PTPN2,

CEP55 and JAK2 were all higher in the PDAC related cell lines

than normal cell lines in vitro. In vivo, we calculated the IEGPI in

12 samples of KPC mouse model and found that IEGPI score

was higher in the s KPC mouse with PDL1 than that without

PDL1 (Figure 7D, E).
Discussion

PDAC, as the most common type of pancreatic cancer, has

an extremely poor survival (20). A mount of efforts has been
A B

C

D E

F

FIGURE 2

Prognostic estimation of IEGPI score. (A) Association of the IEGPI score with the 27 prognostic immune escape genes; (B, C) the HR value
distribution with different IEGPI score in the training and validation cohorts; (D, E) Kaplan-Meier curves of IEGPI score in the training cohort and
validation cohorts; (F) Relationship between the IEGPI score and cell signaling pathways via KEGG analyses.
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underway to find an effective solution to improve the long-term

prognosis. Blocking the immune checkpoints, such as targets

programmed death 1 or programmed death 1 ligand 1 (PD-1/

PD-L1) have been considered as a potential therapeutic target

against PDAC. However, the treatment effect of pancreatic

cancer is not promising with a single PD-1/PD-L1 blockade

(21). Immune escape might be one of the reasons that impaired

the PD-1/PD-L1 treatment effect of PDAC.

Recently, immune escape has been considered as an

important factor which gives rise to immunotherapy failure in

cancer therapy. A variety of factors, such as antigenic variation,
Frontiers in Oncology 07
lacking infiltration of T cells, and changes in tumor

microenvironment, are all associated with immune escape

(22). Although more and more mechanisms of immune escape

have been found in studies for kinds of cancers recently, no

study focus on the relationship of immune escape with the

prognosis of cancers. In our study, we identified 27 immune

escape-related genes which were significantly correlated with the

OS in PDAC using the public datasets. More importantly, we

selected the training cohort to establish a scoring system, namely

IEGPI, which was used to stratify PDAC patients into two

groups with significantly different survival outcomes. Then a
A B

C

D

E

F

FIGURE 3

IEGPI score was an independent risk factor of OS in PDAC. (A) Multivariate Cox regression analysis results in seven PDAC datasets; (B–E)
Kaplan-Meier curves of relapse-free survival in PDAC patients with different IEGPI score level in four public datasets; (F) the prognostic values of
the IEGPI score in the Pan-cancer datasets.
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validation cohort was used to validated and evaluate the

prognosis prediction of IEGPI score in PDAC, with a good

survival prediction ability in PDAC. Interestingly, the elevated

activities of antigen processing and presentation, JAK-STAT

signaling pathways have potential contributions to the increased

anti-tumor immunity in high-IEGPI score. In addition, we

explored the relationship between the TMB, immune

infiltration modules and the IEGPI score. Last but not least,

we evaluated the ability of IEGPI score for the prediction of

immunotherapy response in several cancers, and found that

more patients harvested CR/PR have a high IEGPI score,

suggest ing they achieved a good survival outcome

after immunotherapy.

The highlight of this study was that IEGPI score could

predict the survival of PDAC patients after surgery, and also

could be used as an indicator to reflect the sensibility and

response of immunotherapy after receiving the PD-1 and

CTLA4 treatments in tumors.

P r ev iou s r epo r t s have f ound tha t inhe r en t l y

immunosuppressive exists in PDAC which leading to a

evasion from immune surveillance (23–27). Recently, Wang

et al. concluded that the cancer Forkhead box protein 3 (C-

FOXP3) can directly activates PD-L1 and mediate the immune

escape of PDAC (28). In 2020, Yamamoto et al. identified NBR1-
Frontiers in Oncology 08
mediated selective macroautophagy/autophagy of MHC-I as a

novel mechanism that facilitates immune evasion by PDAC cells

(29). In our study, we found 27 immune escape-related genes

which were significantly associated with OS in PDAC patients.

Immune evasion leads to a poor response to immune checkpoint

inhibitors and a poor survival in PDAC. Those genes might be

the key genes on which the immunotherapy agents target in

the future.

Identified the key immune escape-related genes which are

significantly associated with PDAC patient’s prognosis is an

important method to assess and improve the effect of

immunotherapy. In addition, molecular biomarkers based on

immune escape-related genes has improved prognosis

estimation for PDAC in daily clinical practice (30, 31).

In recent years, researchers have developed a series of

evaluation systems used to assess or identify the progression

or prognosis risk of pancreatic cancer using the gene expression

datasets. For example, Using WGCNA, Giulietti et al. identified

several genes (CEACAM1, MCU, VDAC1, CYCS, C15ORF52,

TMEM51, LARP1 and ERLIN2) that appear to be critical to

PDAC development, which might be potential therapeutic

targets with clinical utility (32). In addition, a study built a

prognostic score with 20 genes (PPS20) from high-throughput

transcriptomic data in pancreatic cancer and found PPS20 was a
A B C

D

FIGURE 4

Relationship between the mutation genes and IEGPI score. (A–C) Relationship between the IEGPI score and TMB score in three public datasets;
(D) the landscape of top 15-gene mutations in different IEGPI groups.
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more robust transcriptomic signature in prognostic prediction

(33). Moreover, a robust 25-gene classifier associated with post-

operative OS in pancreatic cancer was identified. It was proved

to have a good prognostic value after multivariate analysis (34).

However, aforesaid scores or systems don not pay attention to

any genes related to immune escape in pancreatic cancer. In our

study, we selected immune escape-related genes and developed

an IEGPI score to predict the prognosis and distinguish the

survival risk of patients.

Collectively, our study firstly integrated 27 prognostic

immune escape genes to establish an IEGPI score and

validated the expression of PTPN2, CEP55 and JAK2 in cell

lines, which shows a good prediction in the prognosis of PDAC

and immunotherapy response. The IEGPI might represent a

potential prognostic biomarker as well as therapeutic targets of

immunotherapy in the future. The higher the IEGPI score is, the

higher the level of immune escape is, the worse the killing effect
Frontiers in Oncology 09
of the body’s immune system on tumor cells is, and the worse the

prognosis is. However, when patients received immunotherapy,

patients with higher IEGPI score were more sensitive to

immunotherapy. Because immunotherapy alters the tumor

microenvironment, these individuals have a higher CR/PR

ratio and better prognosis. Therefore, our IEGPI score also can

be used to screen clinical PADC patients for immunotherapy,

allowing them to achieve a better prognosis.

In conclusion, basing the public datasets, our study established

and validated an IEGPI score which was an independent risk factor

of OS in PDAC, and patients in the high-IEGPI group had a worse

survival rate after surgery. Using the TIDE datasets, we also found

that in melanoma patients who received the PD-L1 and CTLA4

treatments, high IEGPI-score patients had a better OS and RFS.

Above results suggested that our IEGPI score has the potential to

serve as a prognostic marker and as a tool for selecting tumor

patients suitable for immunotherapy in clinical practice.
A

B

C

FIGURE 5

Relationship between the immune infiltration and IEGPI score. (A) Relationship between the IEGPI score and immune score in four public
datasets; (B) correlation of the IEGPI score with immune co-stimulation and check-point genes in seven datasets; (C) Relationship between the
expressions of 28 immune cells and IEGPI score in seven datasets.
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D E

FIGURE 7

Validation of IEGPI score in cell lines and KPC mouse model. RT-PCR for represented IEGPI genes in HPDE6-C7, BxPC-3 and PANC-1. (A)
PTPN2, (B) CEP55, (C) JAK2. (D) IEGPI score expression of each sample in the KPC mice model with and without PDL1.(E) differences of IEGPI
score between the KPC mice model with and without PDL1. **P <0.01, ***P <0.001, ****P <0.0001.
A B C D

G HE F

FIGURE 6

IEGPI score for immunotherapy response prediction. (A–E) IEGPI score’s potential as a tool for immunotherapy response prediction in
melanoma, bladder cancer, and lung cancer; (F) the distribution of IEGPI score in different immunotherapy response groups with both PD-1 and
CTLA4 treatment; (G, H) Kaplan-Meier curves of patients with different IEGPI score.
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