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Abstract
We present a probabilistic registration algorithm that robustly solves the problem of rigid-

body alignment between two shapes with high accuracy, by aptly modeling measurement

noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabi-

listic framework additionally enables modeling locally-linear surface regions in the vicinity of

each point to further improve registration accuracy. The proposed Iterative Most-Likely

Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) al-

gorithm, which iterates between point-correspondence and point-registration steps. IMLP’s

probabilistic framework is used to incorporate a generalized noise model into both the corre-

spondence and the registration phases of the algorithm, hence its name as a most-likely

point method rather than a closest-point method. To efficiently compute the most-likely cor-

respondences, we devise a novel search strategy based on a principal direction (PD)-tree

search. We also propose a new approach to solve the generalized total-least-squares

(GTLS) sub-problem of the registration phase, wherein the point correspondences are reg-

istered under a generalized noise model. Our GTLS approach has improved accuracy, effi-

ciency, and stability compared to prior methods presented for this problem and offers a

straightforward implementation using standard least squares. We evaluate the performance

of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP,

Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close compari-

son with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The perfor-

mance of IMLP is shown to be superior with respect to these algorithms over a wide range

of noise conditions, outliers, and misalignments using both mesh and point-cloud represen-

tations of various shapes.
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Introduction
The need to co-align multiple representations of a shape or environment is a problem com-
monly encountered in numerous fields such as robotics, computer vision, and computer-inte-
grated medical procedures. An early method devised to address this problem is the widely
popular Iterative Closest Point (ICP) algorithm [1]. ICP operates by decomposing one of the
shapes to be registered (the source shape) into a set of points (if not already in point form) and
then computing a spatial transformation to align these points to the second shape (the target
shape). The registration is performed through a two-step iterative procedure that first com-
putes matching points on the target shape that lie closest to each point of the source shape (the
correspondence phase) and then computes the rigid-body spatial transformation, composed of
a rotation and translation, that minimizes the sum of square distances between the matched
points (the registration phase). This process iterates until the two shapes converge upon a sta-
ble alignment. An important implementation concern regards efficient techniques to compute
matches in the correspondence phase; the standard approach for closest-point matching is to
use a KD tree [2].

Following the introduction of ICP by Besl and McKay [1], many variants of the standard
procedure have been proposed. Chen and Medioni [3] minimize point-to-plane square dis-
tances between the source points and planes tangent to the target surface at the corresponding
target points. They demonstrate the usefulness of this method for registration of range images.
Zhang [4] presents a robust ICP variant that incorporates robust statistics and adaptive thresh-
olding to handle outliers and occlusions in the correspondence phase. Maurer et al. [5] intro-
duce weighting terms in the registration phase for each point-pair, which they use for outlier
rejection and for normalization of non-uniform point densities when registering head segmen-
tations from medical images. Others have sought to improve correspondence selection by aug-
menting the match metric with additional information besides distance. Sharp et al. [6], for
example, use feature invariants such as curvature to refine match selection. In [7] Armesto
et al. present an alternate metric-based distance function for the scan-matching problem in
mobile robotics, which takes into account both translation and rotation error of the sensor.
Their work is based on extending the 2D metric-based ICP (MbICP) method of Minguez et al.
[8] to the 3D case. An interesting approach by Fitzgibbon [9] directly minimizes a model-data
error function using the nonlinear Levenberg-Marquardt algorithm while providing robust es-
timation via a Huber kernel. This approach is made efficient by pre-computing a distance
transform on the target shape.

More recently, researchers have investigated probabilistic methods to improve upon the ac-
curacy and flexibility of the standard ICP algorithm through incorporation of generalized
noise models. In contrast, the standard ICP method and most variants implicitly assume an
isotropic noise model. Estépar et al. [10] introduce the robust Generalized Total-Least-Squares
ICP (GTLS-ICP) algorithm for registration problems in medical imaging, which incorporates a
generalized total-least-squares framework within the registration phase of the algorithm to ac-
count for anisotropic noise in the measured data points. Segal et al. [11] later employ a similar
framework for their Generalized ICP (GICP) algorithm; instead of using the probabilistic
framework to model measurement noise, however, they structure the noise model to approxi-
mately minimize a plane-to-plane square distance metric, which they demonstrate by range
image registration to have an accuracy advantage compared to the point-to-plane method of
Chen and Medioni [3]. The methods of Estépar et al. and Segal et al. both follow standard ICP
procedure in the correspondence phase by using closest points as the match criteria. Maier-
Hein et al. [12] later introduce Anisotropic ICP (A-ICP), which primarily extends the works of
Estépar et al. and Segal et al. by modifying the match criteria of the correspondence phase to
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minimize a Mahalanobis-distance metric defined by the covariances of the noise model. In lieu
of an efficient method to compute such matches, A-ICP follows a procedure of first computing
an initial registration using standard ICP and then continuing the registration with A-ICP
while enforcing a user-defined bound on the search distance in the correspondence phase to re-
duce runtime. Moghari and Abolmaesumi [13] propose an ICP-like method based on the Un-
scented Kalman Filter algorithm, which is also able to account for anisotropic measurement
error. Their method, which was further evaluated in [14], is an improvement over the Extended
Kalman Filter algorithm of Pennec and Thirion [15].

Other authors incorporate probabilistic methods in a different manner by using soft match-
ing, where each point in the source shape is matched to every point in the target shape (rather
than just one point) with a varying weight or probability associated to each pairing. Early
works pioneering this approach were presented by Gold et al. [16] using the softassign tech-
nique for matching and by Chui and Rangarajan [17] (TPS-RMP) and Granger and Pennec
[18] (EM-ICP) using Gaussian mixture models (GMMs) optimized within an expectation max-
imization (EM) framework. In addition to rigid registration, Chui and Rangarajan present a
non-rigid method based on thin-plate splines. An alternate consistent and symmetric approach
for non-rigid registration based on EM-ICP is given by Combès and Prima [19]. A modern var-
iant of the EM-based methods called Coherent Point Drift (CPD) was presented by Myro-
nenko and Song [20], in which they present a closed-formM-step solution for the rigid-body
alignment problem and use Gaussian radial basis functions for the non-rigid alignment prob-
lem. The CPD algorithm treats one point cloud as the centroids of a GMM, which is aligned by
maximum likelihood to a data set represented by the second point cloud. Robustness to outliers
is enabled by additionally matching each point to the background using an outlier weighting
parameter. An alternate approach presented by Tsin and Kanade [21] treats each set of points
as separate kernel densities formed from Gaussian kernel functions centered at each point; the
registration is computed by maximizing a kernel correlation (KC) metric between the two den-
sities. Jian and Vemuri [22] present a similar idea for rigid and non-rigid registration by form-
ing GMMs from each point set and minimizing the L2 distance between the Gaussian
mixtures. While soft-match variants of ICP tend to achieve higher accuracy and to have wider
basins of convergence towards the global optimum, these algorithms also tend to be less effi-
cient than the single-match variants due to the exhaustive point pairings.

In this paper, we propose a new variant of ICP, called the Iterative Most-Likely Point
(IMLP) algorithm, which incorporates a probabilistic framework similar to the algorithms of
[10–12]. Overall, our method is most similar to A-ICP [12] and likewise incorporates a gener-
alized noise model within both the registration and correspondence phases of the algorithm. A
notable difference of our method is that point correspondences are computed to maximize the
match likelihood function under the assumed multivariate Gaussian noise model (thus its
name), whereas A-ICP computes correspondences to minimize a square Mahalanobis-distance
metric. As we will show, these approaches are not equivalent and this difference in match crite-
ria can dramatically impact the accuracy of the computed registration. IMLP also includes dis-
tinct approaches for registering shapes of partial overlap and for handling outliers, which is
based in part on a dynamic updating of the noise model to account for uncertainty in the
matches. As an important implementation concern, we present a novel scheme to efficiently
compute the most-likely matches, which enables IMLP to run efficiently. In contrast, the im-
plementation presented for A-ICP relies on pre-registration by an alternate algorithm. Finally,
we present a new solution to the generalized total-least-squares (GTLS) optimization problem
of the registration phase that is based on a Gauss-Newton approach and that has both speed
and accuracy advantages compared to prior published solutions for this problem, while being
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straightforward to implement. The following paragraphs involve summary discussions of these
contributions in further detail.

In this paper, we devise a new search strategy for computing point correspondences under
an anisotropic distance criterion, which is based on a modified principal direction (PD)-tree
search. A description of the standard PD-tree search technique is found in [23]. While our ap-
proach was devised for the most-likely match criterion of IMLP, it is equally applicable to the
Mahalanobis-distance match criterion of A-ICP. Our method is efficient and guarantees that
the best match, as defined by the match criterion, is always selected from the target shape. The
PD tree, also known as the PCA or covariance tree, is similar in concept to the KD tree except
that the local coordinate systems assigned to each node of the tree do not have constrained ori-
entations with respect to a global coordinate frame. Williams et al. [24] previously investigated
using a PD tree for the problem of closest-point matching.

The efficient correspondence search introduced in this paper is an essential element of the
IMLP algorithm, as the primary computational bottleneck for ICP-based methods occurs at
the correspondence search. Having an efficient search strategy is therefore critical for the per-
formance and usefulness of these algorithms in practice. As was already mentioned, among the
closely related prior works GTLS-ICP and GICP address the issue by simply using closest-
point matching, which has an efficient implementation based on the KD-tree data structure
[2]. The prior work of A-ICP [12], which does not directly look up matches from a KD tree
due to its anisotropic match criteria, addresses the problem of efficiency by first registering the
shapes with an alternative ICP-based algorithm and then performing a follow-up registration
using A-ICP. In addition, A-ICP imposes a distance bound on the search radius to limit the
pool of match candidates for each sample point, with the pool of match candidates being
formed using a KD tree. One drawback of this approach is that locating the best match, as de-
fined by the match criteria, cannot be guaranteed. Further, the search within the pool of match
candidates is performed exhaustively.

Besides the need for efficient matching in the correspondence phase, a second implementa-
tion concern for IMLP regards solving the optimization problem of the registration phase,
which computes the rigid-body transformation that optimally aligns the corresponding point
sets obtained from the correspondence phase, while taking into account the generalized noise
model. Various closed-form solutions for minimizing the isotropic square-distance metric of
the standard ICP algorithm have been presented by Horn [25], Arun et al. [26], and Walker
et al. [27], which have standard least-squares solutions. The probability framework incorporat-
ed by IMLP and by related anisotropic methods leads to a nonlinear generalized total-least-
squares (GTLS) optimization over the transformation parameters in the registration phase, for
which no closed-form solution is known. Solving the GTLS problem thus requires more com-
plex iterative methods of nonlinear optimization.

As alluded to above, the prior algorithms of Estépar et al. (GTLS-ICP) [10], Segal et al.
(GICP) [11], and Maier-Hein et al. (A-ICP) [12] share in common with IMLP the same GTLS
problem for computing optimal alignment between corresponding point sets. Estépar et al.
present an ad-hoc solution that incorporates, as a component, the iterative GTLS rotation esti-
mation method of Ohta and Kanatani [28], which is based on Kanataniâs renormalization
technique [29]. Kanataniâs method solves the problem of computing rotation when translation
is known using a quaternion parameterization of the rotation matrix. Estépar et al. extend this
solution to solve the parallel problem of computing translation when rotation is known. Their
approach for solving the full GTLS rigid-body alignment problem is then a dual-iterative one
that first computes rotation assuming known translation and then computes translation as-
suming known rotation. This process iterates until both estimates converge. Another solution,
which to our knowledge has not been applied in an ICP-based context, is presented in a paper
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by Matei and Meer [30] regarding their heteroscedastic errors-in-variables (HEIV) estimator.
The HEIV estimator is a general-purpose method for solving a wide range of problems in com-
puter vision through iterative solutions of a generalized eigenvector problem. The GTLS rigid-
body point-set alignment problem is presented as an example application of this technique in
[30]. Their solution is similar to the renormalization approach followed in [28] in that both ap-
proaches involve solving eigenvalue problems and both use a quaternion parameterization for
rotation. Rather than follow an ad-hoc approach, Segal et al. apply a generic conjugate-gradient
solver to optimize the GTLS cost function of GICP, in which rotation is parameterized as three
Euler angles (as referenced in distributed source code). Maier-Hein et al. employ an ad-hoc ap-
proach presented by Balachandran and Fitzpatrick in [31] and further analyzed in [32], which
simultaneously solves for rotation and translation by successive linearization of the rotation
matrix using a skew-matrix approximation for small rotation. One limitation of this method is
that anisotropic noise is assumed for only one of the point sets, which may lead to inaccurate
results when both point sets have anisotropic error distributions.

In this paper, we introduce an alternative approach for solving the GTLS problem of align-
ing corresponding point sets that supports anisotropic noise in both sets of points. Our ap-
proach is based on a modified Gauss-Newton framework that is efficient, stable, and simple to
implement using a standard least-squares solver. As demonstrated in the Results and Discus-
sion section of this paper, the proposed Gauss-Newton-based approach has advantages com-
pared to the prior ad-hoc methods of Estépar et al. and Balachandran and Fitzpatrick in terms
of accuracy, speed, and stability. A benefit of our method, and of the prior ad-hoc methods, is
that only a standard least-squares solver is required for its implementation; thus, the software
dependency of a nonlinear optimization library is avoided.

The remainder of this paper is structured as follows. A Background subsection completes
the Introduction section by providing an algorithmic summary of the standard ICP algorithm
as added background for the reader. The Methods section presents the new algorithms pro-
posed in this paper. It begins by introducing the proposed IMLP algorithm at a high level and
follows with subsections that detail our approach for each sub-phase of the algorithm, i.e. our
approach to efficiently compute the most-likely matches in the correspondence phase and our
approach to solve the GTLS problem of registering corresponding point sets in the registration
phase. The Results and Discussion section presents an evaluation of our proposed algorithms
with respect to a large body of prior works. Finally, in the Conclusions section we summarize
our contributions and present our concluding remarks.

Background

Iterative Closest Point (ICP) Algorithm. Let X = {x~i} be a set of points representing the
source shape. Suppose the target shape is represented byC, and let Y = {y~i} be a set of points
chosen from this target shape that are in correspondence with (i.e. matched to) the points in X.
As previously described, ICP proceeds by iterating between two key steps:

1. Compute a set of correspondences Y from the target shape using the closest-point operator
CCP (1).

CCPð~x;CÞ ¼ argmin
~y 2 C

k~y �~x k2 ð1Þ
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2. Compute the rigid-body spatial transformation, comprised of rotation R and translation t~
and applied to the source shape X, that minimizes the sum of square distances between cor-
responding points (2).

ELSðX;YÞ ¼min
½R;~t �

Xn

i¼1
k~yi � R~xi �~t k22 ð2Þ

The first step may be computed efficiently using a KD-tree search. The second step has a
closed-form solution computable via Arun’s method [26]. Algorithm 1 provides a summary of
the ICP algorithm.

Algorithm 1. Iterative Closest Point (ICP)

input: Source shape as point cloud: X = {x~i}
Target shape: Ψ

Initial transformation estimate: [R0, t~0]
output: Final transformation [R, t~] that aligns the shapes X and Ψ

1 Initialize transformation: [R, t~] [R0, t~0]
2 while not converged do
3 Compute closest-point correspondences Y = {y~i}:

y~i CCP(Rx~i + t~, Ψ)
4 Update the transformation to minimize ELS(X, Y):

½R;~t �  argmin
½R;~t �

Xn

i¼1
k~yi � R~xi �~t k22

5 end

Methods
In this section, we present the proposed Iterative Most-Likely Point (IMLP) algorithm. We
first provide an overview of the method, followed by subsections detailing our approach to
each sub-phase of the algorithm, i.e. detailing our efficient search strategy for computing most-
likely matches in the correspondence phase and detailing our method for solving the alignment
of corresponding point sets in the registration phase.

Source code for the IMLP algorithm and the experimental data used in this paper are pro-
vided for download at: https://github.com/sbillin/IMLP.

Iterative Most-Likely Point (IMLP) Algorithm
The probabilistic framework of IMLP incorporates a generalized noise model that accounts for
anisotropic errors in both the source- and target-point positions. The errors on the measure-
ments of these points are assumed to be independent, zero-mean, multivariate, Gaussian dis-
tributed. Thus, treating correspondence as a parameter to be estimated, the likelihood that a
transformed source point (Rx~+ t~) corresponds to a specific target point y~is defined as

Lmatchð~x;~y;Mx;My;R;~t Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ3 j RMxRT þMy j
q e�

1
2ð~y�R~x�~t ÞT ðRMxR

TþMyÞ�1ð~y�R~x�~t Þ ð3Þ

whereMx andMy are known covariance matrices describing the noise-model distributions of the
source point x~and target point y~, respectively. We refer to (3) as the “match-likelihood function”.

The match-likelihood function establishes the probabilistic foundation for IMLP. In the cor-
respondence phase of the algorithm, a match for each source point is selected from the target
shape to maximize the match-likelihood function while considering the transformation
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parameters R and t~as known. In the registration phase of the algorithm, the transformation pa-
rameters R and t~are then updated to maximize the total likelihood over all matched points
while considering the matches as known. It is interesting to note that for the case of uniform,
isotropic covariances then maximizing the match-likelihood function reduces to minimizing
the square match distances, which is the criteria used by standard ICP. Algorithm 2 provides a
summary of the IMLP algorithm, to which we refer back repeatedly in the discussion
that follows.

Algorithm 2. Iterative Most-Likely Point (IMLP)

input :Source shape as point cloud: X = {x~i}
Target shape: Ψ

Measurement-error covariances: MX = {MXi}, MΨ
Surface-model covariances: MSX = {MSxi}, MSΨ
Initial transformation estimate: [R0, t~0]
Upper bound on match uncertainty: s2

max (default:1)
Chi-square threshold value for outliers: w2thresh (default: 7.81)

output: Final transformation [R, t~] that aligns the shapes X and Ψ

1 Initialize transformation: [R, t~] [R0, t~0]
2 Initialize noise model: σ2 0
3 Compute initial correspondences (Equ. 8):

[y~i, Myi, MSyi] CMLP(x~i, Ψ, I, I, R, t~)
4 Skip to Step 6
5 Compute most-likely correspondences (Equ. 8):

[y~i, Myi, MSyi] CMLP(x~i, Ψ, Mxi + MSxi + σ2 I, MΨ + MSΨ, R, t~)
6 Update the match-uncertainty noise-model term (Equ. 4):

s2  min 1
Ninlier

P
i 2 inliersk~yi � R~xi �~t k22;s2

max

� �
7 Identify outliers using a chi-square test (Equ. 6):

ð~xi; ~yiÞ is outlier if ESqrMahalDistð~xi; ~yi;Mxi;Myi þ s2I;R;~tÞ > w2thresh
and update the outlier noise-model terms (Equ. 7):

φi ¼
9 k ~yi � R~xi �~t k22 if ð~xi; ~yiÞ is an outlier

0 otherwise

8<
:

8 Set the noise-model covariances for the registration phase:
M �xi  Mxi þ MSxi þ φi

2
I, M �yi  Myi þ MSyi þ φi

2
I þ s2I

9 Update the transformation to align the corresponding point sets by GTLS
(Equ. 20):

½R;~t�  argmin
½R;~t �

Xn

i¼1
ð~yi � R~xi �~tÞTðRM �xiRT þ M �yiÞ�1ð~yi � R~xi �~tÞ

10 if not converged then goto Step 5

The measurement-error noise models for the source point set and for a corresponding target
point set are defined using two sets of covariance matricesMX = {Mxi} andMY = {Myi}, where
MY is drawn from a larger set of covariances,MC, that represents the entire target shape.MC

may be either a superset of covariances or a rule for computing a covariance given any point on
the target shape.

In addition to the covariances used to model measurement error, IMLP includes explicit
support for a second set of noise-model covariancesMSX = {MSxi} andMSY = {MSyi}, which are
useful for modeling the locally-linear surface patches surrounding each point of a point-cloud
shape model. These “surface-model” covariances are added to the measurement-error covari-
ances to obtain the complete noise model for each point. The idea behind the surface-model
covariances is to increase the noise-model variance in the surface-parallel directions in order to
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encourage match errors to be directed along the surface rather than perpendicular to the sur-
face, thereby achieving closer alignment of the underlying surfaces being represented by the
point-cloud shape models. This idea forms the basis of the GICP algorithm [11] and was also
investigated in [12]. The IMLP algorithm treats the surface-model covariances separately from
the measurement-error covariances in order to exclude the surface model from the outlier de-
tection stage, which was found to improve the algorithm’s ability to reject outliers.

As indicated in the algorithm summary, IMLP’s noise model includes additional dynamical-
ly computed terms besides the input covariances. The “match-uncertainty” term (σ2) attempts
to account for uncertainty in the match process by adding an isotropic variance to the noise
model with a magnitude equal to the estimated amount of misalignment between the source
and target shapes. In the initial iterations of the algorithm, the residual error between corre-
sponding points is largely due to shape misalignment; thus, the input covariances may not ac-
curately represent the underlying distribution of match errors at first. As the algorithm iterates
and the misalignment is reduced, the input covariances are expected to more accurately repre-
sent the distribution of match errors. To account for this effect, we follow a similar approach to
Estépar et al. [10] and model the match uncertainty as an isotropic noise term having variance
equal to the average square residual distance between the corresponding points. However, un-
like [10], which includes all match errors in the estimate, we only include match errors from
the current set of inliers when computing the match-uncertainty term

s2 ¼ 1

Ninlier

X
i 2 inlier

k~yi � R~xi �~t k22 ð4Þ

which has an intuitive appeal and which we found to improve IMLP’s performance with re-
spect to outlier rejection. Note that Ninlier represents the number of matches forming the cur-
rent set of inliers. A detailed justification of this model for estimating match uncertainty is
addressed in [6].

Because the match-uncertainty term is isotropic, it may be added to the noise-model covari-
ances of either the source or target points with the same effect. Since the match uncertainty in-
tuitively affects the choice of correspondences, for the registration phase we choose to add this
term to the covariances of the target points in Step 8 of Algorithm 2. However, for the corre-
spondence search phase in Step 5, the match-uncertainty term is added to the covariances of
the source points, rather than the target points, because this reduces computation in the corre-
spondence phase. Note that because computing σ2 requires having a set of correspondences in-
hand, a fully isotropic noise model is used for the initialization of correspondences in Step 3.

The match-uncertainty term described above has importance for the chi-square outlier de-
tection test in Step 7 of Algorithm 2. The match-uncertainty term enables the algorithm to con-
verge robustly and quickly in the case of large initial misalignment by accounting for this
misalignment in the noise model and preventing an overabundance of matches from being
flagged as outliers based on the measurement-error covariances alone. In the case of registering
a source and target shape having only partial overlap, it could happen that the average square
match distance remains large even at the properly registered alignment. In this case, it may be
desirable to prevent the match-uncertainty term from growing too large. To address this issue,
we define a maximum threshold (s2

max) on the match uncertainty as an optional input to the
IMLP algorithm. If no value is specified by the user, then the maximum threshold is disabled
by setting it to a very large value.

Robustness to outliers is enabled via a chi-square test, which is used to identify outlier
matches in Step 7 of Algorithm 2. Under an assumption of correspondence and of generalized
Gaussian noise, the square Mahalanobis distance between matched points in 3D space is
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distributed as the sum of squares of three independent normalized Gaussian distributions, each
representing a distribution along a different eigenvector of the noise-model covariance matrix.
Thus, under the stated assumptions, the square Mahalanobis match distance has a chi-square
distribution with three degrees of freedom [33]. Outliers are therefore detected by comparing
each square Mahalanobis match distance

ESqrMahalDistð~x;~y;Mx;My;R;~t Þ ¼ ð~y � R~x �~t ÞTðRMxR
T þMyÞ�1ð~y � R~x �~t Þ ð5Þ

to the value of the inverse cumulative density function (CDF) of a chi-square distribution with
three degrees of freedom evaluated at some probability p. If a square Mahalanobis match dis-
tance exceeds this chi-square inverse CDF value (w2thresh) then that match is considered an outli-
er. Thus, a matched point-pair, (x~, y~), with corresponding noise covariances,Mx andMy, is an
outlier if

ESqrMahalDistð~x;~y;Mx;My;R;~t Þ > chi2inv ðp; 3Þ ¼ w2thresh ð6Þ

where chi2inv(p, 3) is the chi-square inverse CDF function with three degrees of freedom eval-
uated at probability p. The chi-square inverse CDF threshold (w2

thresh) is specified as an optional
input parameter to the IMLP algorithm, which enables the user to adapt the algorithm to dif-
ferent percentages of outliers present in the shape data. Setting this threshold to a very large
value effectively disables outlier detection. Disabling outlier detection in this manner may be
useful in cases where the data is known to be free from outliers or possibly cases where a large
initial misalignment is present, although the match-uncertainty term (σ2) already functions as
an automatic mechanism to account for large initial misalignment. When no chi-square in-
verse CDF threshold is specified by the user, the default threshold of 7.81 is used, which corre-
sponds to a chi-square inverse CDF probability of p = 0.95.

To reduce the influence of outliers on the computed registration, a set of outlier noise-
model terms ({φi}) are used to bring additional isotropic variance into the noise models of the
matches identified to be outliers. The effect of this added variance is to reduce the influence of
the outliers in the registration phase [10], which occurs at Step 9 in Algorithm 2. If a match is
determined to be an outlier then the outlier noise term, φi, corresponding to that match is set
equal to the square Euclidean distance between the matched points times some factor; other-
wise, the outlier term is set to zero (7).

φi ¼
9 k~yi � R~xi �~t k22 if ð~xi;~yiÞ is an outlier

0 otherwise
ð7Þ

8<
:

While we have used the factor 9 in our implementation (which brings the outlier match er-
rors within approximately 1/3 standard deviation relative to their noise models), this factor
could be reduced or increased to give respectively more or less weight to the outliers if desired.

Alternatively, to completely remove all outlier influence from the registration phase, any
matches identified as outliers could be simply removed from the set of matches used to com-
pute the registration in Step 9 of Algorithm 2. This strategy is preferred for cases such as regis-
tering shapes having only partial overlap, since the systematic tug from the large body of non-
overlapping points could then be significant enough to affect the final accuracy of the registra-
tion. For small to moderate percentages of random outliers, our experience has been that inflat-
ing the variance works just as well as disregarding the matches entirely.

In our implementation of IMLP, we terminate the algorithm when the magnitudes of
change in the transformation parameters R and t~remain below some termination threshold
values for two consecutive iterations or when a maximum number of iterations has been
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reached. For translation (t~), the magnitude of change is simply computed as the norm of the
change in the translation vector. For rotation (R), the Rodrigues form for the change in rotation
is computed [34] and the angular component (the norm of the Rodrigues vector) is extracted
as the magnitude of angular change. The threshold values used in the studies reported for this
paper were 0.001 degrees rotation and 0.001 millimeters translation. We note that alternative
termination criteria could also be used as substitute for our own.

Due to modifying the underlying noise models during each iteration, the IMLP algorithm
cannot be guaranteed to converge. A similar scenario is encountered for many related ICP-
based methods, with an in-depth discussion being found in [4]. Because of the possibility for
non-convergence, we have added cycling detection as a further termination condition for
IMLP. Cycling is detected by monitoring the value of the cost function being minimized within
the registration phase. If the minimal cost computed by the registration phase increases twice
within a period of four iterations and if the cost following the second increase is within a small
tolerance of the cost following the first increase, then a cycle has been detected. In such cases,
the algorithm terminates and returns the registration corresponding to the last iteration in
which the cost function decreased. This termination condition is primarily a precaution to en-
sure computational efficiency, as a cycling condition would terminate at the maximum itera-
tion count in any case.

Concerning IMLP’s ability to converge to the correct global solution, we note that, like
other ICP-based methods, it is important to begin the registration close enough to the optimal
solution in order to prevent converging to an incorrect solution created by local minima.

IMLP Correspondence Phase: An Efficient PD-Tree Search Strategy for
Computing Most-Likely Correspondences
In this subsection we describe our approach to efficiently compute the most-likely matches
from the target shape, being those matches that maximize the match-likelihood function previ-
ously defined in (3) as indicated by the most-likely-point operator

CMLPð~x;C;Mx;MC;R;~t Þ ¼ argmax
½~y ; My � 2 ½C; MC�

Lmatchð~x;~y;Mx;My;R;~t Þ: ð8Þ

Maximizing the match-likelihood function of (3) simplifies to minimizing the “match-error
function”

Ematchð~x;~y;Mx;My;R;~t Þ ¼
log j RMxR

T þMy j þð~y � R~x �~t ÞTðRMxR
T þMyÞ�1ð~y � R~x �~t Þ :

ð9Þ

It is important to not disregard the log term within the match-error function when comput-
ing the most-likely match, since the noise-model covariances may vary substantially over the
target shape in general. Note that both the magnitude of the target covariances (i.e. the eigen-
values) and the orientation of the target covariances (i.e. the directions of the eigenvectors)
may significantly alter the value of the log term. Thus, even if the covariance magnitude is fixed
for all target noise models, the log term still has an impact for anisotropic distributions that
have different orientations at different points on the target surface. If both the magnitudes and
orientations of the noise-model covariances are constant across the entire target shape, then
minimizing the match-error function reduces to that of minimizing the square Mahalanobis
distance term in (9).

Algorithms 3 and 4 provide a summary of our efficient strategy for computing the most-
likely correspondences. Note that in order to simplify the expressions in the summary we rep-
resent the noise-model of a target point by the single covarianceMy. However, as previously
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noted, for the IMLP algorithm a target-point noise model is actually represented by two covari-
ances,My andMSy, in order to distinguish between components for the measurement error
and for the local surface model. For the purposes of this subsection, no distinction between
the noise-model components is required, and we will considerMy to represent the total
noise-model of a target point, i.e. (My +MSy) as defined in the algorithm summary for IMLP.
In an actual implementation having both types of noise-model components defined over the
target shape, each type of covariance would be stored and returned separately along with the
most-likely match.

Algorithm 3. PD-Tree Search for Most-Likely Correspondence

input :Source point: x~
Source-point noise model: Mx
PD tree containing target shape (Ψ) and target noise model (MΨ): T
Current transformation: [R, t~]
Prior most-likely match for this source point: (y~prev, My_prev)

output: Most-likely match and its corresponding noise model: (y~, My)
1 Initialize most-likely match to the prior match:

[y~, My, Ebest] [y~prev, My_prev, Ematch(x~, y~prev, Mx, My_prev, R, t~)]
2 Search for more-likely match in the left child of the PD-tree root node:

[y~LChild, My_LChild, ELChild] NodeSearch(T.Root.LChild, Ebest, x~, Mx, R, t~)
3 if ELChild < Ebest then update most-likely match:

[y~, My, Ebest] [y~LChild, My_LChild, ELChild]
4 Search for more-likely match in the right child of the PD-tree root node:

[y~RChild, My_RChild, ERChild] NodeSearch(T.Root.RChild, Ebest, x~, Mx, R, t~)
5 if ERChild < Ebest then update most-likely match:

[y~, My, Ebest] [y~RChild, My_RChild, ERChild]

Our search strategy for computing the most-likely correspondences is based on a modified
PD tree formed around the target shape. The distinguishing element of a PD-tree data struc-
ture, in comparison to the standard KD-tree data structure, is that each node of the tree has its
own unconstrained local coordinate system rather than requiring the local coordinate frame of
each node to be axis-aligned with a common global coordinate system.

A node of the PD-tree is constructed by first computing the covariance of the positions of
all datums assigned to the node. A datum is defined to be one of the smallest principle elements
comprising the target shape, such as a point from a point cloud or a triangle from a mesh. After
the covariance of datum positions is computed, the local coordinate system of the node is de-
fined by aligning the coordinate axes of the node with the eigenvectors of the covariance matrix
and positioning the node origin at the mean datum position. It is customary to align the x-axis
along the direction of greatest variance (i.e. along the eigenvector associated with the largest ei-
genvalue). Finally, a bounding box of minimal size is constructed that is axis-aligned with the
local coordinate system of the node and that fully contains all datums within the node. The
node is then split along the local x-axis (along the direction of greatest variance) in order to
form the left and right child nodes, and the process continues down the tree until either the
number of datums within the node or the size of the node’s bounding box falls below a thresh-
old value. To begin this process, the root node of the PD tree is formed by assigning to it all da-
tums comprising the entire target shape.

Algorithm 4.NodeSearch Function for the PD-Tree Search
input :Node of PD tree being search:N

Source point: x~
Source-point noise model: Mx
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PLOS ONE | DOI:10.1371/journal.pone.0117688 March 6, 2015 11 / 45



Current transformation: [R, t~]
Current best match error: Ebest

output: Best match within node: y~node
Noise model of best match within node: My_node
Updated best match error: Enode

1 Initialize the best match within this node:
[Enode, y~node, My_node] [Ebest, 0, 0]

2 Compute an ellipsoid bound (E) centered at the transformed source point (Rx~

+ t~) within which candidates for a better match may be found:
E = {z~j(z~− Rx~− t~)T(Msub)

− 1(z~− Rx~− t~)� Ebest − logmin}
See Equations (13) and (14, 15, or 17)

3 if E intersectsN.OBB then
4 ifN is a leaf node then
5 foreach datumi 2N do
6 Compute the most-likely match on datumi to get:

[y~datum, My_datum, Edatum] (S1 Appendix)
7 if Edatum < Enode then update best match in node:

[y~node, My_node, Enode] [y~datum, My_datum, Edatum]
8 end
9 else
10 Search left child node:

[y~LChild, My_LChild, ELChild] NodeSearch(N.LChild, Enode, x~, Mx, R,
t~)
11 if ELChild < Enode then update the most-likely match for this node:

[y~node, My_node, Enode] [y~LChild, My_LChild, ELChild]
12 Search right child node:

[y~RChild, My_RChild, ERChild] NodeSearch(N.RChild, Enode, x~, Mx, R,
t~)
13 if ERChild < Enode then update most-likely match for this node:

[y~node, My_node, Enode] [y~RChild, My_RChild, ERChild]
14 end
15 end

Node Object Parameters:
Datums and corresponding noise-model covariances in this node: {datumi, Myi}
Oriented bounding box bounding all datums in this node: OBB
Node noise model used to form a lower bound on match errors within this node:

{λnode_min, i} and either Mnode or λnode_max
(depends on the bounding method chosen in Step 2 of NodeSearch)

To illustrate the process of computing a most-likely match, suppose that we are given a
source point x~having noise covarianceMx and that we are given a current candidate for the
most-likely match on the target shape having match error Ebest. The search for the most-likely
correspondence begins at the root node of the PD tree and progressively makes it way down
the tree until reaching the leaf nodes. Whenever a leaf node is encountered then match errors
are computed for every datum within the leaf node and the current candidate for most-likely
match is updated whenever a match error smaller than Ebest is found. When the search that
began at the root node is complete then the final candidate for most-likely match will be the
most-likely match.

In order to perform the PD-tree search efficiently, the problem to consider before searching
deeper within a given node is whether or not it is possible for a target point located anywhere
within the node boundary to produce a match error that is lower than the current best match
error, Ebest. If a lower match error is not possible within the bounds of the node, then that node
and all nodes below it may be safely skipped. Consider testing a match for which all inputs of
the match-error equation (9) are known, except the position of the target point y~. Our goal
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then is to determine whether any point located within the node bounds can produce a match
error less than Ebest. Introducing this inequality into (9) and shifting the log term to the oppo-
site side defines the equation of an ellipsoid centered at the position of the transformed source
point (Rx~+ t~) as given by

ð~y � R~x �~t ÞTðRMxR
T þMyÞ�1ð~y � R~x �~t Þ < Ebest � log j RMxR

T þMy j : ð10Þ

Any target point y~that produces a match error lower than Ebest will be located within this el-
lipsoid boundary. The task now is to determine whether the ellipsoid so defined intersects the
oriented bounding box (OBB) of the node. If intersection exists, then it is possible that the
node may contain a better match. If intersection does not exist, then the given node and all
nodes below it cannot contain a better match and may be skipped in the continuing search. To
compute the ellipsoid-OBB intersection test, we employ the efficient method described in [35].

The problem of bounding the match error of a node is actually more complicated than indi-
cated above, because different points on the target shape may have different noise-model co-
variances. Thus, the covarianceMy is not static within a node. To address this issue, a
substitute (Msub) for the match covariance (RMx R

T +My) is required that produces a lower
bound on the match error for any target point within the node relative to the match error ob-
tained when using the target point’s true noise-model covariance. In other words, the ellipsoid
bound that results from applying the substitute covarianceMsub in (10) must fully contain all
ellipsoid bounds that result from using any covariance in the set {(RMx R

T +Myi)} for all {Myi}
represented within the node. Note that the covariance expression (RMx R

T +My) appears twice
in (10), within both a log and a square Mahalanobis-distance term. In the discussion that fol-
lows, we will consider independent replacements for the covariance expressions within
each term.

Log-Component Bound. For the log term in (10) we seek a lower bound from the set of
covariances represented within the node, since smaller log values increase the size of the ellip-
soid boundary. Consider the two covariances RMx R

T andMy each having known eigenvalues
{λx,1, λx,2, λx,3} and {λy,1, λy,2, λy,3}, respectively, being arranged in order of increasing magni-
tude. A lower bound on the determinant of the sum of the two covariances is then given by

j RMxR
T þMyi j�

Y3
i¼1
ðlx;i þ ly;iÞ ð11Þ

as proven in [36]. It is clear from the eigen decompositions of the sum of covariances

RMxR
T þMy ¼ RVx diag ðlx;1; lx;2; lx;3ÞVT

x R
T þ Vy diag ðly;1; ly;2; ly;3ÞVT

y ð12Þ

where diag(d1, . . ., dn) represents a diagonal matrix with the listed diagonal elements beginning
from the upper left-hand corner, that this lower bound is achieved when the eigenvectors of
RMx R

T are in alignment with the eigenvectors ofMy associated by eigenvalue rank, i.e. when
RVx = Vy. A lower bound on the log term for an entire node is therefore made possible by com-
puting the smallest eigenvalue within each rank order (i.e. each magnitude ordering) among
all covariance matrices {Myi} represented in the node. The log term of (10) may then be
replaced by

logmin ¼ log
Y3
i¼1
ðlx;i þ lnodemin;iÞ ð13Þ

where λx, i are the eigenvalues ofMx by rank order and λnode_min, i are the smallest eigenvalues
within each rank order among all covariances {Myi} represented within the node. For example,
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λnode_min,2, corresponding to the second rank order, is computed by selecting the smallest value
from the set of all second-rank eigenvalues represented within the node.

Note that in order to implement the log bound, eigen decompositions for the source and
target noise-model covariances need be computed (or provided) only once, since other noise-
model components added by the IMLP algorithm are isotropic and uniformly increase each ei-
genvalue, which does not require a new eigen decomposition. As an optimization, nodes may
use the same λnode_min, i values as used by their parent node whenever these values remain
within some factor of the parent’s values. This enables the bound on the log term to be recom-
puted only when doing so significantly affects the ellipsoid boundary size rather than recom-
puting the log bound at every node visited.

Mahalanobis-Component Bound Method 1: Spherical Bound. In this and the two fol-
lowing sub-subsections we address the problem of determining a substitute covariance for
bounding the square Mahalanobis-distance term in (10) for a given node. For the square
Mahalanobis-distance term, we seek a replacement for the match covariance (RMx R

T +My)
that has a variance at least as large in any direction as that of any covariance from the set
{(RMx R

T +Myi)} for all {Myi} represented within the node, since increasing the variance in
some direction increases the size of the ellipsoid bound in that direction.

The first method that we describe for bounding the square Mahalanobis-distance term pro-
vides the simplest and least compact bound. The idea is to replace the entire match covariance
(RMx R

T +My) by the expression (λx_max + λnode_max)I where λx_max is the largest eigenvalue of
the source-point covarianceMx and λnode_max is the largest eigenvalue among all target-point
covariances {Myi} represented within the node. Performing this substitution along with the
substitution of the log bound simplifies (10) to

ð~y � R~x �~t ÞTðlx max þ lnode maxÞ�1Ið~y � R~x �~t Þ < Ebest � logmin : ð14Þ

The advantage of this method is that the bounding ellipsoid simplifies to a bounding sphere,
which results in a sphere-OBB intersection test with the node, which is simpler and more effi-
cient to compute. The simplicity of this method is offset, however, by the cost associated with
forming a less compact bound, since a higher number of node searches are performed as
a result.

Mahalanobis-Component Bound Method 2: Simple Ellipsoidal Bound. An improve-
ment over the first method for bounding the square Mahalanobis-distance term in (10) may be
achieved by finding a replacement for onlyMy within the match covariance expression (RMx

RT+My). In this case,My is replaced by λnode_max I where λnode_max is as defined for the first
bounding method. Performing this substitution and substituting for the log bound simplifies
(10) to

ð~y � R~x �~t ÞTðRMxR
T þ lnode maxIÞ�1ð~y � R~x �~t Þ < Ebest � logmin : ð15Þ

This method produces a bounding ellipsoid that is more compact than the bounding sphere
of the prior method, yet remains simple to compute. As done for the log bound, a node may re-
use the λnode_max value of a parent node whenever its value remains within some factor of the
parent’s value. This enables the ellipsoid bound to be recomputed only when doing so results
in a significant reduction of the ellipsoid boundary rather than recomputing the covariance ex-
pression at every node visited.

Mahalanobis-Component Bound Method 3: Compact Ellipsoidal Bound. This final
method for bounding the square Mahalanobis-distance term in (10) is the most compact but
also the most complex bound. As previously mentioned, consider that a substitute for the
match covariance must produce a bounding ellipsoid that fully contains all ellipsoid bounds
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that result when using any covariance from the set {(RMx R
T+Myi)} for all {Myi} represented

within the node. Further, consider that increasing the variance ofMy in any direction strictly
increases the ellipsoid boundary defined by (10). The strategy then is to compute a new covari-
ance that has a variance at least as large in all directions as any covariance {Myi} represented
within the node while producing a bounding ellipsoid that is as compact as possible. This may
be accomplished by computing a new covariance,Mnode, that defines the ellipsoid of minimal
volume that fully contains the union of all ellipsoids produced by each covariance {Myi} repre-
sented within the node.

Mnode ¼ argmin
M

j M�1 j such that the ellipsoid defined by f~y 2 R
3 j ~y TM�1~y

� 1g fully contains the union of ellipsoids
[

i 2 node

f~y 2 R
3 j ~y TM�1

yi ~y � 1gð16Þ

Note that the covariance,M, computed in (16) is constrained to be a symmetric, positive-
definite matrix. A method for approximating the minimal volume bounding ellipsoid of ellip-
soids is addressed in [37]. Also note thatMnode is computed only once for each node when con-
structing the PD tree and is thereafter stored as a property of the node. Performing the
substitutions forMnode and for the log bound modifies (10) to be

ð~y � R~x �~t ÞTðRMxR
T þMnodeÞ�1ð~y � R~x �~t Þ < Ebest � logmin: ð17Þ

As before, the covariance expression should be recomputed only when doing so substantial-
ly reduces the size of the ellipsoid boundary. Significant reduction of the ellipsoid bound may
be determined by comparing the determinant of the node’sMnode to the determinant of its pa-
rent’sMnode. If the node’s determinant is within some factor of the parent’s determinant, then
the node may continue to use the same match covariance as its parent.

IMLP Registration Phase: Aligning Corresponding Point Sets by
Generalized Total Least Squares
In this section, we present our approach for computing the rigid-body alignment of two corre-
sponding point sets such that the total match likelihood is maximized as defined by

LtotalðX;Y ;MX;MYÞ ¼max
½R;~t �

Yn
i¼1

Lmatchð~xi;~yi;Mxi;MyiÞ ð18Þ

where the match-likelihood function for a single match (Lmatch) was previously defined in (3).
Maximizing the total match likelihood is equivalent to minimizing the total match error de-
fined as

Xn

i¼1
log j RMxiR

T þMyi j þ
Xn

i¼1
ð~yi � R~xi �~t ÞTðRMxiR

T þMyiÞ�1ð~yi � R~xi �~t Þ : ð19Þ

Unlike in the correspondence phase, the covariance matrices of the target points {Myi} are
now fixed. Although the value of the log term may still be affected by a change in rotation, the
impact of rotation on the square Mahalanobis-distance term is far more pronounced. Thus, we
may disregard the log term in this phase, which simplifies the optimization considerably to
that of minimizing a sum of square Mahalanobis distances

EGTLSðX;Y ;MX;MYÞ ¼min
½R;~t �

Xn

i¼1
ð~yi � R~xi �~t ÞTðRMxiR

T þMyiÞ�1ð~yi � R~xi �~t Þ ð20Þ
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which has the form of a nonlinear generalized total-least-squares problem. This optimization is
the same GTLS problem for registering corresponding point sets as found in prior ICP-based
algorithms involving anisotropic noise models [10–12]. As mentioned in the introduction,
methods of solution for this type of problem follow an iterative approach.

To derive our approach, we first express the problem in alternate form. It can be shown (S2
Appendix) that the unconstrained optimization of (20) is equivalent to the following con-
strained optimization

EGTLSðX;Y ;MX;MYÞ ¼ min
½R;~t �

Xn

i¼1
ð~xi �~x �i ÞTM�1

xi ð~xi �~x �i Þ þ
Xn

i¼1
ð~yi �~y �i ÞTM�1

yi ð~yi �~y �i Þ

subject to : ~y �i ¼ R~x �i þ~t ð21Þ

where f~x �i g and f~y �i g represent the optimizer’s estimates of the unknown, noise-free positions of the

source and target point-pairs, which, due to the correspondence assumption, are constrained to have per-

fect alignment. Thus, our goal is to solve the transformation parameters, R and t~, that minimize (21) sub-

ject to a perfect alignment constraint on the unknown, noise-free point positions. The derivation of our

strategy was particularly aided by the works of [38, 39] regarding the topic of total-least-

squares estimation.

The first step in the derivation is to re-express the constraints of (21) as

Fið~x �i ;~y �i ;R;~t Þ ¼~y �i � R~x �i �~t ¼ 0 ð22Þ

and then to linearize these constraints using a first-order Taylor-series expansion centered at
the known values y~i, x~i, R0, and t~0, where R0 and t~0 are initial estimates of the transformation.
Note that we define Rk and t~k to be the estimates of the transformation parameters that are
computed at each iteration k. Performing a linearization of the rotation matrix leads to the
skew approximation form for an incremental rotation as defined by

DR � I þskew ðD~aÞ ð23Þ

skew ðD~aÞ ¼
0 �Daz Day
Daz 0 �Dax
�Day Dax 0

2
64

3
75: ð24Þ

This parameterization enables representing small-angle rotations as a 3D vector, Δα~= [Δαx,
Δαy, Δαz]

T. We also note that using Lie algebra and exponential maps to parameterization the
rotation, rather than the skew-approximation form described here, may also be a very effective
approach for solving this problem. Note that skew(x~)y~is simply matrix notation for the cross
product (x~× y~); thus, the positions of x~and y~may be interchanged by negation, which is im-
plicitly used in forming the Taylor-series expansion of the constraint equations below. Using
Δα~to represent change in rotation and defining Δt~to be change in translation, with some alge-
braic manipulation the constraints of (22) may be linearized to the approximate form

Fk
Lið~xi;~yi;D~a;D~t Þ ¼ F0

i ð~xi;~yi;Rk;~t kÞ � ryi þ Rkrxi þskew ðRk~xiÞD~a � D~t ¼ 0 ð25Þ

which is linear with respect to change in rotation Δα~and change in translation Δt~. Here we de-

fine F0
i ð~xi;~yi;Rk;~t kÞ ¼~yi � Rk~xi �~t k, ryi ¼~yi �~y �i , rxi ¼~xi �~x �i , Rk+1 = (ΔR)Rk� (I + skew

(Δα~))Rk, and t~k+1 = t~k + Δt~, where k denotes an iteration of the optimization procedure.
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The next step in the derivation is to apply the method of Lagrange multipliers to enforce the
linearized constraints while minimizing the cost function. The Lagrange function becomes

LðD~a;D~t ; lÞ ¼
Xn

i¼1
rTxiM

�1
xi rxi þ

Xn

i¼1
rTyiM

�1
yi ryi þ

Xn

i¼1
lTi F

k
Lið~xi;~yi;D~a;D~t Þ ð26Þ

where λ = {λi} represents the set of Lagrange multipliers with each λi being a 3-vector. Next is
solving for the zero derivatives of the Lagrange function with respect to the residuals {rxi} and
{ryi}, the change in transformation parameters Δα~and Δt~, and the Lagrange multipliers. After
making substitutions between these differential equations, we finally obtain (27) for computing
an incremental update of the transformation parameters Δp = [Δα~, Δt~]T.

JTM�1JDp ¼ �JTM�1F0

Dp ¼
D~a

D~t

" #
F0 ¼

F0
1

.
..

F0
n

2
66664

3
77775 J ¼
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ð27Þ

Here F0 is defined as a stacked vector of match residuals, J is the Jacobian matrix of the con-
straints relative to the transformation parameters, andM is the complete covariance matrix for
all matches. Since the match errors are assumed to be independent between matches,M has a 3
x 3 symmetric, positive-definite, block-diagonal structure for points in 3D. Simplifying this so-
lution for registrations in 2D is trivial.

The resulting expression in (27) is a linear system of six equations having the recognizable
form Ax = b, where A is 6 x 6 symmetric. This expression is further recognized to have the
form of an update equation from the nonlinear Gauss-Newton method of nonlinear optimiza-
tion. The solution to (21) is computed by iteratively solving (27) using standard least squares,
with each solution providing an incremental update (Δp) for the current transformation pa-
rameter estimates Rk and t~k, which are updated as

Rkþ1 ¼ RðD~aÞRk ; ~t kþ1 ¼~t k þ D~t ð28Þ

where R(Δα~) is as defined in the following paragraph. The linear system of (27) is re-solved fol-
lowing each update until the transformation estimates converge. This approach is nearly equiv-
alent to the standard Gauss-Newton method, with a modification being that the covariance
matrices are updated at each iteration.

In (28) we define R(Δα~) to be a rotation matrix computed using the Rodrigues rotation for-
mula [34] about an axis oriented along Δα~and having a rotation angle of kΔα~k radians. Using
the Rodrigues form R(Δα~) rather than the skew approximation form (I + skew(Δα~)) ensures
that Rk+1 always satisfies the conditions for being a valid rotation matrix.

Since the linear system of (27) is symmetric, an efficient and stable approach for solving the
least-squares iterates is to use Cholesky or LDLT decomposition. In our implementation we
employ the more general SVD decomposition, since the symmetric decompositions were not
supported by the numerical libraries used in our implementation. Because the linear system is

Iterative Most-Likely Point Registration (IMLP)

PLOS ONE | DOI:10.1371/journal.pone.0117688 March 6, 2015 17 / 45



small, SVD also provides reasonable efficiency. Note that, in the interest of efficiency, it is im-
portant to take advantage of the sparse structure ofM when computing the matrix operations
required to form this linear system.

We define the termination condition to be when the magnitude of incremental change in
the transformation parameters fall below threshold values. In our implementation, we use con-
vergence thresholds of 0.001 mm translation and 0.001 degrees rotation, but this may be de-
fined by the user.

A summary of the approach described above for solving the GTLS problem of aligning two
corresponding point sets is provided below as Algorithm 5.

Algorithm 5. GTLS Registration of Corresponding Point Sets

input: Corresponding source and target point sets: X = {x~i}, Y = {y~i}
Noise-model covariances for the source and target points:

Mx = {Mxi, MY = {Myi}
Initial transformation estimate: [R0, t~0]

output: Final transformation that aligns the corresponding point sets:
[R, t~]

1 Initialize the transformation: [Rk, t~k] [R0, t~0]
2 Compute F0 using X, Y, Rk, and t~k
3 Compute J using Rk and X
4 Solve incremental transformation Δp = [Δα~, Δt~]T by standard least squares
(27)
5 Update the transformation parameters: [Rk, t~k] [R(Δα~)Rk, t~k + Δt~]
6 if kΔα~k � Δαthreshold and kΔt~k � Δtthreshold then
7 Goto Step 2
8 end
9 Return the final transformation: [R, t~] [Rk, t~k]

Results and Discussion
In this section, we present our experimental results. We compare the IMLP algorithm to several
competing methods under a wide range of test conditions including various isotropic and an-
isotropic noise levels, with and without outliers, and using different (i.e. mesh and point cloud)
representations of various target shapes. Other methods evaluated for comparison with IMLP
include standard ICP [1], a robust variant of ICP [4] (which we refer to as “Robust ICP”),
GICP [11], and CPD [20]. For the non-outlier cases, near comparison is also made with GTLS-
ICP [10] and A-ICP [12] using variants of our own method, IMLP-CP and IMLP-MD,
respectively.

The two variants on IMLP directly compare the most-likely match criterion of IMLP with
the closest-point (CP) match criterion used by GTLS-ICP and the Mahalanobis-distance (MD)
match criterion used by A-ICP. Since only the matching phase of IMLP-CP and IMLP-MD has
been modified with respect to IMLP, this comparison directly evaluates the merit of the three
criterion for computing matches: closest-point matching (GTLS-ICP, IMLP-CP), Mahalano-
bis-distance matching (A-ICP, IMLP-MD), and most-likely-point matching (IMLP).

GICP and CPD appear in the experiments involving a point-cloud target shape and not in
the experiments involving a mesh target shape. This is because CPD is limited by design to
point-cloud-to-point-cloud registration, and GICP as well is most suited to the context of regis-
tering non-continuous representations of two surfaces (i.e. point clouds).

For the GICP and CPD algorithms, we have used the implementations made publicly avail-
able by their respective authors. For the remaining algorithms (standard ICP, Robust ICP,
IMLP, IMLP-CP, IMLP-MD) our own implementations have been used. Minor changes were
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made to the source code of GICP and CPD in order to use the same termination criterion
across all compared methods and, in the case of GICP, to orient the surface-model covariances
directly along the known surface normal at each point rather than estimating the surface nor-
mals from neighboring points in the point-cloud. These various implementations are based on
single-threaded programming in C++. Thus, all methods were evaluated on level ground in
terms of the efficiency of the runtime environment, with an exception being that the CPD algo-
rithm ran multi-threaded under certain settings (discussed later in the results). As a further
minor caveat, the CPD implementation uses Matlab as a front-end while incorporating a
C-compiled mex library for the heavy-lifting.

All registration methods were configured to terminate when the magnitude of change in the
transformation parameters remain below threshold levels for two consecutive iterations or
when a maximum iteration count is reached. The transformation thresholds were set to 0.001
mm translation and 0.001 degrees rotation with a maximum iteration count of 100 iterations
(except where noted in the results). An advantage of using transformation thresholds as the
basis for termination is that the need to normalize across the various cost functions employed
by each algorithm is completely averted.

The algorithms that we have programmed (standard ICP, Robust ICP, IMLP, IMLP-CP,
IMLP-MD) use the CISST [40] andWildMagic5 [41] C++ libraries for numerical linear algebra
and standard least-squares computations. WildMagic5 is used for its efficient, non-iterative
method of computing the eigen decomposition of a 3 x 3, symmetric, positive-definite matrix.

Before presenting a comparison of the algorithms described above, we begin the results sec-
tion by evaluating our approach to solving the GTLS problem of registering two corresponding
point sets. The proposed Gauss-Newton-based approach is compared to the prior methods of
Estepar et al. [10] and Balachandran and Fitzpatrick [31], which have also been proposed to
solve this specific problem. However, one limitation of the method as described by Balachan-
dran and Fitzpatrick is that anisotropic noise is limited to the local coordinates of only one
point set. All three methods share a commonality of being easy to program using a basic linear
algebra library supporting a standard least-squares solver.

Experiment 1: Generalized Total-Least-Squares Methods for
Registering Corresponding Point Sets
In this study, we evaluate the proposed Gauss-Newton-based approach for computing the opti-
mal rigid-body alignment that registers two corresponding point sets under anisotropic mea-
surement error, which was described in the IMLP Registration Phase subsection of the
Methods section. As previously stated, this problem forms a GTLS optimization problem that
must be solved in the registration phases of the IMLP algorithm and of closely related prior
works. We evaluate the proposed GTLS method on the basis of efficiency, accuracy, and stabili-
ty relative to the prior methods proposed for solving this problem by Estepar et al. [10] and
Balachandran and Fitzpatrick [31]. These results are also compared to the closed-form, least-
squares solution for the isotropic noise case [26], which constitutes the registration phase of
the standard ICP algorithm.

Each method was evaluated using a Matlab-based implementation. For the method of Bala-
chandran and Fitzpatrick, we use the Matlab source code included in their paper [31]. For the
other methods we have created our own Matlab implementations, including an implementa-
tion of the rotation estimation method of Ohta and Kanatani [28], which is a sub-component
of the method by Estepar et al.

A high degree of instability was initially encountered when using the method of Estepar
et al. with large translational offsets. We found that a small modification sufficed to fix the
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issue, which involved applying their translation estimate prior to the first estimate for rotation.
This modification was used throughout our study.

As previously noted, one limitation of the method by Balachandran and Fitzpatrick is that
this method employs a single noise covariance that remains fixed as the algorithm iterates, due
to the assumption of anisotropic noise in only one point set. Although noise in both point sets
may be initially considered by combining the noise models to form a single covariance prior to
calling their method (as in the covariance expressions of (9) for example), in this case the accu-
racy of the method still diminishes relative to the magnitude of rotational misalignment be-
cause the effective noise covariance is not updated as the method iterates.

Because of this limitation, we conduct a two-part study. The first study (Experiment 1A) in-
vestigates anisotropic noise present in both the source and target point sets. The second study
(Experiment 1B) investigates anisotropic noise present in only the target point set with isotro-
pic noise present in the source point set. For the second study, the assumption of a fixed effec-
tive covariance becomes correct, since a change in the orientation of the source points has no
impact. We have included the method of Balachandran and Fitzpatrick in the evaluation of
both studies, while computing an effective noise covariance as described in the
foregoing paragraph.

The method of Balachandran and Fitzpatrick specifies initializing the anisotropic registra-
tion with the isotropic-noise solution before optimizing with respect to the GTLS cost function.
We have performed a portion of the experiments both with and without isotropic initialization
applied prior to each GTLS method. In order to better investigate the merit of the numerical
machinery behind each GTLS approach, isotropic initialization was not used in Experiment
1A. In order to investigate the impact of initialization on each GTLS method, experiments
were conducted both with and without isotropic initialization in Experiment 1B.

In order to compare all methods on level ground, several concerns had to be addressed. The
first concern regards the termination criteria used by each method, which was defined (or
modified) to be when the magnitude of change in the estimated transformation parameters
falls below 0.0001 mm and 0.0001 degrees or when the number of iterations exceeds 60. For
the method of Estepar et al., a maximum iteration threshold of 20 was applied to the inner loop
(i.e. to the rotation estimation component employing the method of Ohta and Kanatani) while
the full outer loop was assigned the same maximum iteration threshold as the other GTLS
methods. In practice, we found that these maximum iteration thresholds were only reached
under the condition of instability; thus, the iteration threshold was also used to automatically
detect and count the occurrence of instability for each method.

The next concern regards the form of input afforded to each method. Every GTLS method
compared requires some form of decomposition to be performed on the covariance matrices
that define the anisotropic noise model, and these decompositions differ between the methods.
To provide equal treatment, we use the noise covariances as base-line input for each GTLS
method. Since the implementation by Balachandran and Fitzpatrick was programmed to use
pre-computed decompositions (i.e. the inverse square root) of the covariance matrices as
input, we have added the required calculation to their method and changed the input to use the
covariance matrices directly.

Another concern affecting runtime performance regards the style of Matlab coding. To ob-
tain the best possible runtime performance from each method, all matrix operations were fully
vectorized in Matlab code, with the only exception being that a loop over the number of
points-pairs was required in order to compute the inverse square root of the covariance matri-
ces for the method of Balachandran and Fitzpatrick, as no solution was identified to fully vec-
torize this operation across all point-pairs. We have normalized for the runtime impact of this
loop in Experiment 1B, which compares the method of Balachandran and Fitzpatrick on its
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own turf (i.e. with anisotropic noise in only one point set), by using a loop to compute the co-
variance decompositions required by the other GTLS methods as well. This loop-normalization
was not performed for Experiment 1A, however, as the runtime comparison with Balachan-
dran and Fitzpatrick is already largely incongruent for that study due to their assumption of a
fixed covariance (i.e. anisotropic noise in only one point set), whereas the other GTLS methods
re-compute the covariance decompositions in every iteration. Another reason that fully vector-
ized implementations are used in Experiment 1A is in order to assess the full potential of the
other methods.

As a final leveling of the playing field, a runtime normalization was applied in Experiment
1B for the assumption of a fixed covariance (i.e. anisotropic noise in only one point set). This
was accomplished by creating variants of the implementations of the proposed Gauss-Newton-
based method and of the method by Estepar et al. that assume, like the method of Balachan-
dran and Fitzpatrick, that the effective noise covariance remains fixed for any orientation of
the source point set. This test therefore provides a reasonable relative comparison of the run-
times that can be expected from each of the various GTLS optimization schemes.

Experiments for the various studies comprising Experiment 1 were conducted by first gen-
erating two noisy point sets with known correspondence and known ground-truth alignment,
second applying a random misalignment between the point sets, and third registering the point
sets using each registration method. To form a pair of corresponding point sets, a set of 50
points was randomly generated being uniformly distributed within the interval [-100, 100] mm
along each dimension in 3D space. These points served as the ground-truth points and also
provided the ground-truth alignment of the two point sets. From this single set of ground-
truth points, two different noisy point sets were generated by addition of zero-mean, multivari-
ate, Gaussian noise, while using a different covariance for each point set. The two points gener-
ated from each ground-truth point were assigned as correspondences between the two point
sets. The covariances were generated at random by forming a diagonal matrix of eigenvalues
and multiplying on either side by a random rotation and its transpose

Random Covariance ¼ R diag ðl1; l2; l3ÞRT : ð29Þ
In Experiment 1A, involving anisotropic noise in both point sets, the eigenvalues of the

noise covariances were set equal to [0.5, 0.5, 2] mm2, with different random rotations being
used for each set of points. In Experiment 1B, involving anisotropic noise in only one (the tar-
get) point set, these same eigenvalues were used for noising the target points, whereas isotropic
noise was generated for the source points by setting all eigenvalues equal to 0.25 mm2.

For each study, the randomized trials were divided into several bins according to the magni-
tude of initial misalignment in translation and rotation. For each bin, 1000 randomized trials
were performed and the results were averaged. For every trial, different sets of points, noise
models, and misalignment were randomly generated and identically applied to each registra-
tion method. Registration accuracy was evaluated by computing the average distance between
the un-noised point correspondences following each registration. We report this value as the
registration error (RE).

The results of Experiment 1A, which incorporates anisotropic noise in both point sets, are
presented in Table 1. In this study, two levels of translational misalignment were investigated
on the intervals [10, 20] mm and [90, 100] mm, along with five cases of rotational misalign-
ment, which as a group covered the entire interval of [0, 180] degrees.

As seen in the results, the proposed Gauss-Newton-based method achieves lower registra-
tion error than all compared methods across all test cases. The proposed method also main-
tains consistent registration error across all misalignments studied, achieving significant
improvement with respect to the isotropic solution in every case. In contrast, the prior
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anisotropic methods of Estepar et al. and of Balachandran and Fitzpatrick worsen in accuracy
as rotational misalignment increases and tend to provide larger registration errors than even
the isotropic solution for rotational misalignments on the interval [45, 90] degrees and beyond.

The proposed method’s runtime is also several times more efficient than the other aniso-
tropic solutions; computing a solution requires much fewer iterations (4–9) compared to the
methods of Estepar et al. (15–28) and Balachandran and Fitzpatrick (28–45). Note that the iter-
ation count for the method of Estepar et al. is reported as the total number of evaluations of its
inner loop, which is where the vast majority of computation takes place for that method.

Another significant observation regarding the results of Experimant 1A is that the proposed
method and that of Balachandran and Fitzpatrick are stable under all conditions tested, where-
as the method of Estepar et al. encounters frequent instability for large rotational misalign-
ment, with the portion of unstable trials reaching 60% for the largest rotation interval of [150,
180] degrees.

For the method of Balachandrian and Fitzpatrick, the increase in registration error with re-
spect to rotation is understood to result from the assumption of a constant noise covariance as
described earlier. However, it is not clear why the method of Estepar et al. exhibits a similar
issue. To shed more light on this and on the issue of instability we include a third study (Exper-
iment 1C) in this section.

Table 1. Rigid-body registration results for corresponding point sets with anisotropic noise present in both sets of points. (Experiment 1A).

Trans. (mm) [10, 20] [90, 100]

Rot. (deg.) Alg. Iter. Runtime RE Inst. Alg. Iter. Runtime RE Inst.

[0, 15] Isotropic 1.0 0.0001 0.439 0 Isotropic 1.0 0.0001 0.442 0

Estepar 15.1 0.0106 0.423 0 Estepar 15.1 0.0106 0.424 0

Balach. 28.1 0.0060 0.423 0 Balach. 32.9 0.0068 0.424 0

Proposed 3.8 0.0014 0.422 0 Proposed 3.8 0.0013 0.423 0

[15, 45] Isotropic 1.0 0.0001 0.443 0 Isotropic 1.0 0.0001 0.442 0

Estepar 17.2 0.0120 0.432 0 Estepar 17.2 0.0120 0.431 0

Balach. 34.1 0.0070 0.428 0 Balach. 37.5 0.0076 0.427 0

Proposed 4.4 0.0015 0.424 0 Proposed 4.4 0.0015 0.423 0

[45, 90] Isotropic 1.0 0.0001 0.442 0 Isotropic 1.0 0.0001 0.435 0

Estepar 18.8 0.0131 0.456 0 Estepar 18.8 0.0130 0.450 0

Balach. 38.1 0.0078 0.442 0 Balach. 40.3 0.0081 0.436 0

Proposed 5.1 0.0017 0.424 0 Proposed 5.1 0.0017 0.416 0

[90, 150] Isotropic 1.0 0.0001 0.446 0 Isotropic 1.0 0.0001 0.439 0

Estepar 22.9 0.0154 0.469 2 Estepar 23.3 0.0157 0.466 2

Balach. 39.4 0.0080 0.448 0 Balach. 41.9 0.0084 0.444 0

Proposed 6.3 0.0021 0.430 0 Proposed 6.3 0.0021 0.421 0

[150, 180] Isotropic 1.0 0.0001 0.444 0 Isotropic 1.0 0.0001 0.442 0

Estepar 28.0 0.0184 0.475 60 Estepar 27.6 0.0181 0.477 59

Balach. 42.0 0.0085 0.439 0 Balach. 44.5 0.0088 0.441 0

Proposed 8.8 0.0028 0.424 0 Proposed 8.7 0.0028 0.426 0

Results report the efficiency (number of iterations and runtime (seconds)), registration error (RE) (mm), and instability (% of trials) of the GTLS registration

method proposed in this paper compared to the closed-form isotropic solution [26] and the prior GTLS methods of Estepar et al. [10] and Balachandran

and Fitzpatrick [31]. The tests are binned according to the magnitude of initial misalignment in translation (mm) and rotation (degrees); each bin

represents average values measured over 1000 randomized trials.

doi:10.1371/journal.pone.0117688.t001
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Table 2 presents the results of Experiment 1B, which incorporates anisotropic noise in only
one point set and isotropic noise in the other. In this study, translational misalignment is limit-
ed to a large interval of [90, 100] mm, while the test cases for rotational misalignment remain
unchanged. The trials for this experiment are conducted twice: once with and once without ini-
tializing the anisotropic methods to the isotropic noise solution; other test conditions (the
exact point sets, noise, etc.) remain identical between the two types of trials.

As seen in Table 2, the outcome is similar to the earlier study, with the most notable differ-
ence being that the method of Balachandran and Fitzpatrick computes an equally accurate reg-
istration as the proposed method, which confirms that the high registration errors encountered
for this method in the prior study resulted from its assumption of anisotropic noise in only one
point set. Concerning the method of Estepar et al., the increase in registration error with re-
spect to rotational misalignment remains, which indicates a different source of error for
this method.

It is also interesting to note, concerning the method of Estepar et al., that although the oc-
currence of unstable trials is reduced by initialization to the isotropic solution, the problem of
instability does not go away at the largest range of rotational misalignment.

The proposed method remains largely more efficient than the other anisotropic methods,
both with and without initialization to the isotropic solution. It is interesting to note that

Table 2. Rigid-body registration results for corresponding point sets with anisotropic noise present in one set of points and isotropic noise
present in the other. (Experiment 1B).

Without Isotropic Initialization With Isotropic Initialization

Rot. (deg.) Alg. Iter. Runtime RE Inst. Alg. Iter. Runtime RE Inst.

[0, 15] Isotropic 1.0 0.0001 0.349 0 Isotropic - - - -

Estepar 14.6 0.0100 0.332 0 Estepar 10.4 0.0080 0.332 0

Balach. 32.9 0.0068 0.333 0 Balach. 14.8 0.0039 0.332 0

Proposed 3.7 0.0011 0.332 0 Proposed 2.9 0.0012 0.332 0

[15, 45] Isotropic 1.0 0.0001 0.347 0 Isotropic 1 0.0001 0.347 0

Estepar 17.1 0.0115 0.338 0 Estepar 10.8 0.0076 0.338 0

Balach. 37.5 0.0076 0.330 0 Balach. 14.6 0.0036 0.329 0

Proposed 4.2 0.0012 0.330 0 Proposed 2.9 0.0011 0.330 0

[45, 90] Isotropic 1.0 0.0001 0.341 0 Isotropic 1 0.0001 0.341 0

Estepar 18.7 0.0125 0.352 0 Estepar 10.8 0.0077 0.352 0

Balach. 40.2 0.0081 0.325 0 Balach. 14.4 0.0037 0.325 0

Proposed 5.0 0.0013 0.325 0 Proposed 2.9 0.0011 0.325 0

[90, 150] Isotropic 1.0 0.0001 0.345 0 Isotropic 1 0.0001 0.345 0

Estepar 22.6 0.0149 0.366 2 Estepar 11.8 0.0082 0.365 0

Balach. 41.9 0.0084 0.330 0 Balach. 14.6 0.0037 0.330 0

Proposed 6.1 0.0015 0.330 0 Proposed 2.9 0.0011 0.330 0

[150, 180] Isotropic 1.0 0.0001 0.350 0 Isotropic 1 0.0001 0.350 0

Estepar 26.7 0.0173 0.373 60 Estepar 16.2 0.0109 0.385 10

Balach. 44.5 0.0089 0.333 0 Balach. 14.5 0.0037 0.333 0

Proposed 8.5 0.0018 0.333 0 Proposed 2.9 0.0011 0.333 0

Results report the efficiency (number of iterations and runtime (seconds)), registration error (RE) (mm), and instability (% of trials) of the GTLS method

proposed in this paper compared to the closed-form isotropic solution [26] and the prior GTLS methods of Estepar et al. [10] and Balachandran and

Fitzpatrick [31]. The tests are binned according to the magnitude of initial misalignment in rotation (degrees), with all bins having a translational

misalignment in the range [90, 100] mm; each bin represents average values measured over 1000 randomized trials.

doi:10.1371/journal.pone.0117688.t002
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initialization to the isotropic solution approximately halves the runtime of the method by Bala-
chandran and Fitzpatrick whereas the runtime for the proposed method is reduced by much
less, even though the relative decrease in the number of iterations for each method is more sim-
ilar. This observation indicates that the proposed method has low computational complexity
beyond that of computing the initial covariance decompositions (recall for this study that the
effective covariances are assumed to be constant), whereas the method of Balachandran and
Fitzpatrick retains significantly more overhead per iteration following the initial covariance de-
compositions. Isotropic initialization also significantly reduces the runtime of the method by
Estepar et al. to a little more than half its value otherwise.

Table 3 presents the results of the final study in this series, Experiment 1C, which is in-
tended to further investigate the registration error and instability issues encountered by the
method of Estepar et al. relative to increases in rotational offset. This study evaluates only the
rotational component of their method. That is, comparison is made concerning the GTLS rota-
tional estimation method of Ohta and Kanatani [28] relative to the proposed Gauss-Newton-
based GTLS method and relative to the rotation computed under an isotropic noise assump-
tion. For this comparison, the proposed method and the isotropic solution were modified to es-
timate only parameters of rotation, assuming translation to be zero. This study was conducted
in similar fashion as Experiment 1A, except that only rotational misalignment was applied be-
tween the two point sets.

As seen in Table 3, the method of Ohta and Kanatani exhibits the same increase in registra-
tion error relative to rotational misalignment as encountered by the method of Estepar et al.
Further, the rotation estimation exhibits similar instability under large rotational misalign-
ment. This indicates that a source of error and instability for the method of Estepar et al. lies in
the rotation estimation component.

Table 3. Rotation-only registration results for corresponding point sets with anisotropic noise present in both sets of points. (Experiment 1C).

Rot. (deg.) Alg. Iter. Runtime RE Inst.

[0, 15] Isotropic 1.0 0.0000 0.304 0

Kanatani 4.0 0.0025 0.279 0

Proposed 3.8 0.0013 0.278 0

[15, 45] Isotropic 1.0 0.0000 0.292 0

Kanatani 4.0 0.0025 0.283 0

Proposed 4.4 0.0015 0.269 0

[45, 90] Isotropic 1.0 0.0000 0.295 0

Kanatani 4.0 0.0025 0.313 0

Proposed 5.1 0.0017 0.271 0

[90, 150] Isotropic 1.0 0.0000 0.292 0

Kanatani 4.5 0.0028 0.323 0

Proposed 6.3 0.0020 0.265 0

[150, 180] Isotropic 1.0 0.0000 0.286 0

Kanatani 6.1 0.0038 0.360 10

Proposed 8.7 0.0028 0.263 0

Results report the efficiency (number of iterations and runtime (seconds)), registration error (RE) (mm), and instability (% of trials) of the GTLS method

proposed in this paper (modified to computer only rotation) compared to the closed-form isotropic solution [26] and the prior GTLS rotation estimation

method of Ohta and Kanatani [28]. The tests are binned according to the magnitude of initial misalignment in rotation (degrees) with translational

misalignment being zero; each bin represents average values measured over 1000 randomized trials.

doi:10.1371/journal.pone.0117688.t003
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The rotation estimation method in this case uses a quaternion parameterization for rotation
that is optimized by applying the renormalization method of Kanatani [29]. Matei and Meer
[30] have presented a technique called heteroscedastic errors-in-variables (HEIV) estimator,
which is closely related to the renormalization method of Kanatani, in which they present a
similarly parameterized method for computing the full rigid-body alignment of two point sets
under anisotropic noise. In their work, they point out a discontinuity in the quaternion repre-
sentation for rotation that produces instability for rotational misalignments close to +/- 180 de-
grees. It is possible that the rotation estimation method of Kanatani suffers from a similar
issue, though we have not verified this further.

Experiment 2: Registering a Mesh Target
In this study, we evaluate the performance of the IMLP algorithm for registering a target shape
represented by a triangular mesh. The experiment is divided into two sub-experiments (Experi-
ments 2A and 2B) in order to evaluate the algorithm’s performance under different magnitudes
of shape misalignment. The shape being registered in both cases is a human hip model seg-
mented from CT imaging to form a surface mesh (Fig. 1A).

The experiments are conducted by randomly generating a set of 100 noisy points from the
mesh surface to form a source shape and applying a random misalignment between the source
shape and the mesh. The source points are then registered back to the mesh, which forms the
target shape. This approach enables accurate assessment of the registration error under varying
noise conditions, since both the ground-truth alignment and the generative noise models
are known.

Nine different test cases were conducted to evaluate each of the nine different noise models
defined in Table 4, which specifies the variance of multivariate Gaussian noise generated in the
surface-normal vs. surface-parallel directions at each source point. Thus, the noise applied to
each source point was conditioned relative to the orientation of the surface at that point. The

Fig 1. Human hip- and femur-bone meshes used in the registration studies. The red points represent a
typical randomly generated source shape as sampled from the mesh surface. (A): The hip mesh is used in
registration Experiments 2–5. (B): The femur mesh is used for the sub-shape registration study of Experiment
6, where points for the source shape are sampled from the shaded region of the mesh.

doi:10.1371/journal.pone.0117688.g001
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first three test cases apply isotropic noise, the next three tests cases apply anisotropic noise of
high surface-normal variance, and the final three test cases apply anisotropic noise of high sur-
face-parallel variance, each in order of increasing magnitude of variance and increasing anisot-
ropy. Within each of the nine test cases, 300 randomized registration trials were conducted,
each involving new randomly generated points, noise, and misalignment. All compared algo-
rithms were executed once per trial under identical test conditions (i.e. identical shape, noise,
and misalignment) as generated for that trial.

Registration errors were measured by randomly sampling a set of 100 non-noisy points
from the mesh surface to be used in validation. Following registration, the average distance be-
tween the registered and known ground-truth positions of the validation points is measured
and recorded as the target registration error (TRE). The average TRE is then reported within
each test case for each algorithm. To prevent TRE outliers from skewing the averages, only suc-
cessful registrations are included in the reported TRE averages. A registration trial is consid-
ered successful if the TRE is within 10 mm. The number of registration failures for each
algorithm is also counted and reported within each test case. This procedure is followed for all
the registration studies that follow in this paper.

The entire experiment was conducted twice for two different intervals of random initial mis-
alignment: once for the misalignment interval of [15, 30] mm translation and [15, 30] degrees
rotation (Experiment 2A) and again for the misalignment interval of [30, 60] mm translation
and [30, 60] degrees rotation (Experiment 2B). These random misalignments were generated
along random translational directions and random rotational axes.

This experiment compares the algorithms of standard ICP [1], IMLP, and the two variants
IMLP-CP and IMLP-MD, which, as described in the introduction to the Results and Discus-
sion section, provide near comparison to the GTLS-ICP [10] and A-ICP [12] algorithms, re-
spectively. For IMLP (and variants), the measurement-noise covariances of the source points
were set to correspond with the generative noise models defined in Table 4, while the
measurement covariances for the target shape were set to zero, since no noise was added
to the mesh. Because the mesh fully represents the continuous surface of the target, IMLP’s
(and variants’) surface-model covariances were set to zero, as these are intended for
registering non-continuous (i.e. point-cloud) surface representations. Outlier detection was
disabled by setting IMLP’s (and variants’) chi-square inverse CDF threshold (w2thresh) to a large
value.

Results for Experiments 2A and 2B are presented in Figs. 2A and 2B for each range of mis-
alignment. Similar results are obtained in both cases. As expected, the average TREs for the
first three test cases are identical among all algorithms since, in this case, the noise model of
IMLP reduces to the Euclidean-distance computations of standard ICP. For the anisotropic-
noise test cases, the IMLP algorithm consistently achieves slightly improved or approximately
equivalent registration accuracy compared to ICP. For this study, the Mahalanobis distance
matching variant (IMLP-MD) computes approximately the same registration errors as IMLP,
whereas the closest-point matching variant (IMLP-CP) generally performs worse, even

Table 4. Generative noise models (test cases) used in the randomized registration trials of Experiments 2–5.

Test Case 1 2 3 4 5 6 7 8 9

Surface-Normal Std. Dev. (mm) 0.5 1.0 2.0 1.0 2.0 2.0 0.5 1.0 0.5

Surface-Parallel Std. Dev. (mm) 0.5 1.0 2.0 0.5 1.0 0.5 1.0 2.0 2.0

This table defines the standard deviation of noise generated in the surface-normal and surface-parallel directions for each point of the source shapes in

Experiments 2–5.

doi:10.1371/journal.pone.0117688.t004

Iterative Most-Likely Point Registration (IMLP)

PLOS ONE | DOI:10.1371/journal.pone.0117688 March 6, 2015 26 / 45



performing worse than standard ICP for the test cases involving high variance of noise in the
surface-normal direction.

The error bars displayed in Fig. 2 (and in other figures throughout this section) are approxi-
mations for the standard deviations of each displayed TRE average. They are calculated by
computing the standard deviation of the TREs for a given average and dividing by the square
root of the number of trials used to compute that average. This is the procedure for calculating
the standard deviation of a sample mean for independent identically distributed (iid) Gaussian
data [33]. We have verified that the histograms of TREs for successful trials reasonably resem-
ble those of Gaussian distributions, in general; thus, the displayed standard deviations may be
considered as close approximations.

Table 5 lists the percentage of registration failures for each algorithm and test case in Experi-
ment 2B. For Experiment 2A, the failure rates were 0% in all cases. As seen in the table, the al-
gorithms performed near equally with a maximum overall failure rate of 2%.

Table 6 presents a runtime analysis for the successful registrations within each experiment.
Due to its greater complexity, IMLP has a runtime of approximately 3.5x that of ICP
on average.

Experiment 3: Registering a Mesh Target with Outliers
Experiment 3 follows the same procedure as Experiment 2, using the same target shape and
equivalent test cases (noise models) and numbers of trials. However, in this study the source
shape is corrupted with additional points added as outliers. This experiment is again divided
into two studies (Experiments 3A and 3B), one for each range of misalignment. Each study is
further divided into sub-studies with varying percentages of outliers including 5%, 10%, 20%,
and 30% outliers, which we refer to as sub-experiments i-iv, respectively. Since the purpose of
this study is to evaluate the merit of IMLP’s outlier mechanism, the IMLP variants (which have
the same outlier mechanism) are not evaluated. Robust ICP [4] is also added to the set of
compared algorithms.

The additional outlier samples were generated for each trial by randomly selecting points on
the mesh surface and projecting each point outward from the mesh by a random distance on
the interval [10, 20] mm.

Fig 2. Registration errors for registering amesh target shape. (Experiment 2). Source shapes were randomly generated from a mesh model of a human
hip (Fig. 1A), misaligned by (A): [15, 30] mm / degrees and (B): [30, 60] mm / degrees, and registered back to the mesh. The test cases represent the different
noise models used to generate noise on the source shape (Table 4). For each test case, 300 randomized trials were conducted, with successful registrations
being used to compute an average target registration error (TRE). The error bars provide approximate standard deviations of the reported average TRE
values. The proposed IMLP algorithm was evaluated relative to standard ICP [1] and relative to near-comparisons of GTLS-ICP [10] and A-ICP [12] using
IMLP-CP and IMLP-MD, which modify IMLP’s most-likely match criteria to that of closest-point and Mahalanobis-distance matching, respectively.

doi:10.1371/journal.pone.0117688.g002
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IMLP’s outlier detection was enabled by setting its chi-square inverse CDF threshold
(w2

thresh) to the values of {7.81, 6.25, 4.64, 3.66} for sub-experiments i-iv, respectively. These val-
ues correspond to chi-square inverse CDF probabilities of {0.95, 0.9, 0.8, 0.7}, which were cho-
sen to directly correspond to the percentage of outliers in each test case.

For Robust ICP we follow the suggestion of its author and relate the user parameter D,
which is used to determine when a registration is good, to the resolution of the shape data. This
was accomplished by computing the average distance between a triangle center point and that
of its neighbors in the mesh (in this case approximately 1.8 mm). We also set the user parame-
ter D0

max, which controls the maximum tolerable match distance of the first iteration, to a large
value in order to take all matches into consideration in the first iteration, which afforded the al-
gorithm the best chance at computing a successful registration.

The registration accuracy for this study is presented in Figs. 3 and 4 for Experiments 3A and
3B, respectively. Figs. 3 and 4 are each divided into four sub-figures (A-D) corresponding to
sub-experiments (i-iv) of Experiments 3A and 3B, respectively, for each level of outliers. The

Table 5. Registration failure rates for registering a mesh target shape. (Experiment 2B).

Alg. Failure Rate (%) by Test Case

1 2 3 4 5 6 7 8 9

ICP 0.3 0.7 0.3 1.0 0.3 2.0 1.0 0.7 0.3

IMLP-CP 0.3 0.7 0.3 1.0 0.3 2.0 1.0 0.7 0.7

IMLP-MD 0.3 0.7 0.3 1.0 0.3 2.0 1.0 0.7 0.7

IMLP 0.3 0.7 0.3 1.0 0.3 2.0 1.0 0.7 0.7

Source shapes were randomly generated from a mesh model of a human hip (Fig. 1A), misaligned by [15, 30] mm / degrees in (Experiment 2A) and [30,

60] mm / degrees in (Experiment 2B), and registered directly back to the mesh. The test cases represent the different noise models used to generate

noise on the source shape (Table 4). For each test case, 300 randomized trials were conducted, with the percent of unsuccessful registrations (TRE > 10

mm) being shown in this table. The proposed IMLP algorithm was evaluated relative to standard ICP [1] and relative to near-comparisons of GTLS-ICP

[10] and A-ICP [12] using IMLP-CP and IMLP-MD, which modify IMLPâs most-likely match criteria to that of closest-point and Mahalanobis-distance

matching, respectively. Failure rates for Experiment 2A (which are not shown in this table) were 0% for all algorithms and test cases.

doi:10.1371/journal.pone.0117688.t005

Table 6. Runtimes for registering a mesh target shape. (Experiment 2).

Exp. Alg. Average Runtimes (sec.) by Test Case

1 2 3 4 5 6 7 8 9

2A ICP 0.086 0.094 0.109 0.107 0.119 0.115 0.087 0.097 0.095

IMLP-CP 0.194 0.204 0.228 0.252 0.287 0.263 0.138 0.157 0.118

IMLP-MD 0.270 0.299 0.323 0.389 0.437 0.401 0.226 0.249 0.219

IMLP 0.352 0.377 0.407 0.499 0.543 0.569 0.258 0.239 0.202

2B ICP 0.142 0.147 0.165 0.145 0.16 0.168 0.135 0.142 0.166

IMLP-CP 0.285 0.286 0.322 0.346 0.351 0.343 0.221 0.222 0.196

IMLP-MD 0.339 0.372 0.381 0.462 0.496 0.467 0.298 0.311 0.275

IMLP 0.444 0.454 0.495 0.588 0.638 0.686 0.425 0.480 0.379

Average runtimes of successful registrations from Experiment 2 are reported, where 300 randomized trials were conducted for each test case. Each test

case represents a different generative noise model (Table 4) applied to points of the source shape. Results are reported for initial shape misalignments of

[15, 30] mm / degrees (Experiment 2A) and [30, 60] mm / degrees (Experiment 2B). The algorithms compared include single-threaded implementations of

ICP [1], IMLP, and the two IMLP variants IMLP-CP and IMLP-MD.

doi:10.1371/journal.pone.0117688.t006
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analysis to produce these results was conducted in the same manner as described for Experi-
ment 2. As seen in the figures, IMLP widely outperforms ICP in terms of TRE for all test cases
and performs marginally better overall than Robust ICP for 5% and 10% outliers and much
better than Robust ICP at higher levels of outliers, where the TRE for Robust ICP approaches
and even surpasses that of standard ICP. In contrast, IMLP’s TRE remains fairly stable up to
20% outliers and begins to increase at the 30% level.

The registration failure rates shown in Table 7 for this study indicate that although standard
ICP is the worst algorithm in terms of TRE, it has the highest registration success rate. At the
lesser misalignment range, the failure rates of all algorithms are below 1% for up to 10% outli-
ers, with IMLP having marginally higher failure rates at the 20% outlier level. At 30% outliers,
the failure rate of IMLP increases significantly, accompanied by a marginal increase in the fail-
ure rate of Robust ICP. For the large misalignment range a different pattern emerges with Ro-
bust ICP exhibiting high failure rates across all outlier levels, whereas IMLP maintains low
failure rates for up to 10% outliers. The failure rate of standard ICP increases marginally at this
offset range yet still remains quite low.

Experiment 4: Registering a Point-Cloud Target
In this study, we investigate the performance of the IMLP algorithm for registering a target
shape represented by a point cloud. Because the registration only involves point-cloud shapes,

Fig 3. Registration errors for registering a source shape containing outliers to a mesh target under moderate misalignment. (Experiment 3A).
Source shapes were randomly generated from the hip mesh (Fig. 1A), misaligned by [15, 30] mm / degrees, and registered back to the mesh. The test cases
represent the different noise models used to generate noise on the source shape (Table 4). Outliers were added to the source shape constituting (A): 5%, (B):
10%, (C): 20%, and (D): 30% of the source points. For each test case, 300 randomized trials were conducted, with successful registrations being used to
compute an average target registration error (TRE). The error bars provide approximate standard deviations of the reported average TRE values. The
proposed IMLP algorithm was evaluated relative to standard ICP [1] and relative to a robust variant of ICP [4].

doi:10.1371/journal.pone.0117688.g003
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several additional algorithms can be compared. In this experiment, we evaluate standard ICP
[1], GICP [11], CPD [20], IMLP, and the two variants IMLP-CP and IMLP-MD.

A dense point cloud formed from the center points of every triangle in the human hip mesh
(Fig. 1A) is used as the target shape. Besides this change, the test conditions remain as de-
scribed for Experiment 2. This study is likewise divided into two parts representing different
random misalignment intervals: [15, 30] mm / degrees (Experiment 4A) and [30, 60] mm / de-
grees (Experiment 4B).

In contrast to Experiment 2, the surface-model covariances of IMLP (and variants) are en-
abled in this study and defined to have standard deviations of 0.5 mm in the surface-normal di-
rection and 5 mm in the surface-parallel directions. Recall that these covariances provide a
linear local approximation of the unmeasured surface surrounding each sampled point in
order to improve registration accuracy. The measurement-error covariances remain as defined
in Experiment 2.

The GICP algorithm also employs a local surface model surrounding each sampled point
and uses its covariance matrices for this sole purpose. The covariance scaling parameter (ε) of
GICP is set to 0.01, which is equal to the ratio of surface-normal vs. surface-parallel variances
defined for IMLP. The surface-model used to evaluate GICP is therefore equivalent to the sur-
face-model used by IMLP, because the optimizations performed by GICP do not change with
respect to a global scaling of its covariances. We also tested GICP’s default ε value of 0.001, but
found 0.01 to provide higher accuracy in this study.

Fig 4. Registration errors for registering a source shape containing outliers to a mesh target under large misalignment. (Experiment 3B). Source
shapes were randomly generated from the hip mesh (Fig. 1A), misaligned by [30, 60] mm / degrees, and registered back to the mesh. The test cases
represent the different noise models used to generate noise on the source shape (Table 4). Outliers were added to the source shape constituting (A): 5%, (B):
10%, (C): 20%, and (D): 30% of the source points. For each test case, 300 randomized trials were conducted, with successful registrations being used to
compute an average target registration error (TRE). The error bars provide approximate standard deviations of the reported average TRE values. The
proposed IMLP algorithm was evaluated relative to standard ICP [1] and relative to a robust variant of ICP [4].

doi:10.1371/journal.pone.0117688.g004
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Outlier detection is disabled by setting the chi-square inverse CDF threshold of IMLP to a
large value and setting the outlier weight of CPD to zero. The maximum match search distance
of GICP is also set to a large value in order to not exclude any matches from consideration.
Rigid-body transformation without scaling was selected as the CPD registration method, with
the target point cloud being used as the GMM centroids and the source point cloud being used
as the data points. This choice of roles was found to be important, as reversing the roles of the
source and target points produced substantially higher registration errors.

The registration accuracies achieved by each algorithm for this experiment are presented in
Fig. 5. Similar results were obtained for both ranges of initial misalignment. As seen in the fig-
ure, IMLP achieves significantly better registration accuracy than any other algorithm across
all test cases for both ranges of misalignment, with exception of CPD for which IMLP achieves
comparatively better accuracy in more than half of the test cases considered. Note that unlike
Experiment 2A, in this experiment IMLP strongly outperforms ICP even for the initial test

Table 7. Registration failure rates for registering a mesh target shape with outliers. (Experiment 3).

Exp. Outliers Alg. Failure Rates (%) by Test Case

1 2 3 4 5 6 7 8 9

3A-i 5% ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Robust ICP 0.0 0.3 0.3 0.0 0.0 0.0 0.3 0.0 0.7

IMLP 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0

3A-ii 10% ICP 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0

Robust ICP 0.0 0.7 0.0 0.0 0.3 0.3 0.0 0.0 0.3

IMLP 0.0 0.7 0.0 0.3 0.7 0.3 0.3 0.0 0.0

3A-iii 20% ICP 0.3 0.3 0.7 0.0 0.0 0.3 0.3 0.3 1.0

Robust ICP 1.0 0.7 1.0 0.7 0.0 1.3 1.3 0.7 1.0

IMLP 4.0 2.7 4.0 4.3 2.0 1.7 3.7 2.0 3.7

3A-iv 30% ICP 0.3 0.3 1.7 1.3 1.3 1.0 0.7 0.7 1.0

Robust ICP 1.0 2.0 3.0 2.7 5.0 3.7 2.7 2.0 1.7

IMLP 28.0 15.0 11.0 25.0 13.3 9.3 22.3 13.0 13.3

3B-i 5% ICP 0.3 0.7 0.3 0.3 0.3 1.0 0.0 2.7 0.3

Robust ICP 12.3 12.3 6.3 5.0 14.0 10.0 9.7 10.0 9.7

IMLP 1.3 2.0 1.3 1.0 0.7 0.3 0.3 2.3 1.7

3B-ii 10% ICP 0.7 1.3 0.3 0.3 0.7 1.0 1.0 1.3 1.0

Robust ICP 11.7 7.7 9.3 11.7 10.0 12.7 8.7 7.0 8.3

IMLP 3.0 2.0 3.0 5.7 1.3 3.3 2.3 2.3 2.3

3B-iii 20% ICP 1.7 1.0 0.0 0.7 0.7 1.7 1.0 2.0 0.3

Robust ICP 9.0 11.3 6.7 8.0 13.0 11.0 9.0 13.0 10.3

IMLP 26.0 17.0 9.7 18.3 16.3 14.3 26.7 16.3 16.0

3B-iv 30% ICP 2.7 2.0 2.3 2.0 2.7 1.7 1.3 1.7 2.3

Robust ICP 12.7 17.3 12.7 12.3 13.7 14.3 10.3 11.3 12.7

IMLP 75.0 65.3 47.0 62.7 52.3 53.0 75.3 55.3 57.7

Source shapes were randomly generated from a mesh model of a human hip (Fig. 1A), misaligned by [15, 30] mm / degrees in (Experiment 3A) and [30,

60] mm / degrees in (Experiment 3B), and registered back to the mesh. The test cases represent the different noise models used to generate noise on the

source shape (Table 4). Outliers were added to the source shape constituting 5% (-i), 10% (-ii), 20% (-iii), and 30% (-iv) of the source points. For each test

case, 300 randomized trials were conducted, with the percent of unsuccessful registrations (TRE > 10 mm) being shown in this table. The proposed IMLP

algorithm was evaluated relative to standard ICP [1] and relative to a robust variant of ICP [4].

doi:10.1371/journal.pone.0117688.t007
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cases involving isotropic measurement noise. The reason for this stems from the surface-model
covariances used to model unmeasured surface regions surrounding each sample point.

The advantage of IMLP’s most-likely-point matching criteria is particularly highlighted in
comparison to the two variants of IMLP that evaluate modifications of its match criteria, i.e.
closest-point matching (IMLP-CP) and Mahalanobis-distance matching (IMLP-MD). IMLP
achieves significantly, and in some cases substantially, higher accuracy than either of these vari-
ants for all test cases considered. Compared to GICP, IMLP also attains a notable accuracy im-
provement in all test cases, which further underscores the advantage of IMLP’s most-likely-
point matching criteria and of its modeling of measurement error.

It is remarkable that the Mahalanobis-distance matching criteria (IMLP-MD) has worse ac-
curacy in this experiment than closest-point matching (IMLP-CP) and, for some test cases,
shows no improvement over standard ICP. This result is surprising, especially given that the re-
verse was true in Experiment 2A, which involved registering to a mesh rather than a point-
cloud target.

Table 8 lists the registration failure rates of each algorithm for the large misalignment range
of Experiment 4B. For Experiment 4A, no registration failures were indicated except for stan-
dard ICP, which had one failure in the second test case. As shown in the table, all algorithms
achieve very low failure rates, with GICP being marginally higher than the others and CPD
having the best performance with no registration failures.

Table 9 presents a runtime comparison of each algorithm. Standard ICP is the most efficient
algorithm, with IMLP-CP coming second at approximately twice the runtime on average.
While not shown in the table, the runtime of GICP is also on-par with that of IMLP-CP. The
runtime of GICP is excluded from the table because it was executed within a Live Linux distri-
bution running on a USB flash drive with persistent storage, which occasionally stuttered dur-
ing execution causing inflated runtime averages. Although IMLP’s runtime is approximately 9
times that of standard ICP in this study, IMLP is up to 60 times more efficient than CPD and
45 times more efficient on average. Using the input settings applied to CPD in this study, it was
observed that CPD utilized 100% of both cores on the dual-core test platform, unlike the other
algorithms which ran single-threaded. Thus, after normalizing for multithreading, IMLP is ap-
proximately two orders of magnitude more efficient than CPD.

Fig 5. Registration errors for registering a point-cloud target shape. (Experiment 4). Source shapes were randomly generated from a mesh model of a
human hip (Fig. 1A), misaligned by (A): [15, 30] mm / degrees and (B): [30, 60] mm / degrees, and registered back to a point-cloud representation of the
mesh. The test cases represent different noise models used to generate noise on the source shape (Table 4). For each test case, 300 randomized trials were
conducted, with successful registrations being used to compute an average target registration error (TRE). The error bars provide approximate standard
deviations of the reported average TRE values. The proposed IMLP algorithm was evaluated relative to standard ICP [1], GICP [11], and CPD [20], as well as
relative to near-comparisons of GTLS-ICP [10] and A-ICP [12] using the two variants IMLP-CP and IMLP-MD, which modify IMLP’s most-likely match criteria
to that of closest-point and Mahalanobis-distance matching, respectively.

doi:10.1371/journal.pone.0117688.g005
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In this study, the runtime difference between ICP and IMLP is greater than observed in Ex-
periment 2A regarding a mesh target. This happens because the node search of the correspon-
dence phase is simplified in this study by not having to compute the closest point on a triangle
when computing the distance to a single datum in the PD tree. Although this provides a perfor-
mance boost to both algorithms, the effect on ICP is much more pronounced since this compu-
tation occupies a greater percentage of ICP’s overall runtime.

Table 8. Registration failure rates for registering a point-cloud target shape. (Experiment 4B).

Alg. Failure Rate (%) by Test Case

1 2 3 4 5 6 7 8 9

ICP 0.3 0.7 0.3 0.7 0.3 2.0 0.7 0.3 0.3

IMLP-CP 0.3 0.7 0.3 0.7 0.3 2.0 0.7 0.3 0.3

IMLP-MD 0.3 0.7 0.3 0.7 0.3 2.0 1.0 0.3 0.3

GICP 1.3 1.3 0.7 2.7 3.7 2.0 2.0 1.3 1.7

CPD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IMLP 0.3 0.7 0.3 0.7 0.3 2.0 1.0 0.3 0.3

Source shapes were randomly generated from a mesh model of a human hip (Fig. 1A), misaligned by [15, 30] mm / degrees in (Experiment 4A) and [30,

60] mm / degrees in (Experiment 4B), and registered back to a point-cloud representation of the mesh. The test cases represent different noise models

used to generate noise on the source shape (Table 4). For each test case, 300 randomized trials were conducted, with the percent of unsuccessful

registrations (TRE > 10 mm) being shown in this table. The proposed IMLP algorithm was evaluated relative to standard ICP [1], GICP [11], and CPD

[20], as well as relative to near-comparisons of GTLS-ICP [10] and A-ICP [12] using IMLP-CP and IMLP-MD, which modify IMLP’s most-likely match

criteria to that of closest-point and Mahalanobis-distance matching, respectively. Failure rates for Experiment 4A (which are not shown in the table) were

0% for all algorithms and test cases, except for test case 2, where standard ICP incurred one registration failure.

doi:10.1371/journal.pone.0117688.t008

Table 9. Runtimes for registering a point-cloud target shape. (Experiment 4).

Exp. Alg. Average Runtimes (sec.) by Test Case

1 2 3 4 5 6 7 8 9

4A ICP 0.009 0.009 0.010 0.009 0.010 0.009 0.009 0.009 0.009

IMLP-CP 0.015 0.016 0.019 0.016 0.020 0.019 0.015 0.017 0.015

IMLP-MD 0.068 0.078 0.093 0.079 0.097 0.093 0.067 0.079 0.069

GICP - - - - - - - - -

CPD (2 cores) 3.465 4.346 4.336 3.864 4.340 4.374 4.238 4.650 4.484

IMLP 0.068 0.082 0.102 0.078 0.103 0.099 0.067 0.084 0.073

4B ICP 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.013

IMLP-CP 0.023 0.025 0.028 0.025 0.028 0.028 0.024 0.025 0.024

IMLP-MD 0.100 0.109 0.126 0.112 0.127 0.129 0.100 0.109 0.099

GICP - - - - - - - - -

CPD (2 cores) 3.584 4.408 4.490 4.279 4.327 4.545 4.378 4.731 4.874

IMLP 0.101 0.111 0.134 0.115 0.136 0.133 0.103 0.118 0.106

Average runtimes of successful registrations from Experiment 4 are reported, where 300 randomized trials were conducted for each test case. Each test

case represents a different generative noise model (Table 4) applied to points of the source shape. Results are also reported for initial shape

misalignments of [15, 30] mm / degrees (Experiment 4A) and [30, 60] mm / degrees (Experiment 4B). The algorithms compared include single-threaded

implementations of ICP [1], GICP [11], IMLP, and the two IMLP variants IMLP-CP and IMLP-MD. A multi-threaded implementation of CPD [20] is also

reported, which made full utilization of 2 cores.

doi:10.1371/journal.pone.0117688.t009
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Experiment 5: Registering a Point-Cloud Target with Outliers
Experiment 5 follows a similar test scenario as Experiment 4, except that the source point set is
corrupted with additional points added as outliers. These outliers are generated in the same
manner as Experiment 3. Likewise, this experiment is divided into two studies (Experiments
5A and 5B) corresponding to each range of misalignment and further sub-divided for different
percentages of outliers including 5%, 10%, 20%, and 30%, which are referred to as sub-experi-
ments i-iv, respectively. As in Experiment 3, the two variants on IMLP are not included in this
outlier study, whereas Robust ICP is added.

For IMLP the chi-square inverse CDF threshold is set according to the percentage of outliers
as previously described in Experiment 3. Both the surface-model and measurement-error co-
variances are used in this study in the same manner as was described in Experiment 4. The
user-defined parameters for Robust ICP are also configured as in Experiment 3. Following the
lead of CPDâs authors, we set the outlier weight to 0.5. In this case, the target point cloud is as-
signed as the data points and the source point cloud as the GMM centroids, which is the re-
verse of Experiment 3, as it was observed that this setting produced substantially lower
registration error for the case of non-zero outlier weighting. Concerning the GICP algorithm,
although a user-defined parameter is provided for limiting the match-search distance, this
mechanism is intended for partial-shape registration rather than outlier handling. Although
limiting the match-search distance to 10 mm (to eliminate the outliers positioned between 10
and 20 mm from the surface) improves the registration accuracy for some trials, this also
causes registration failure in most cases. Thus, GICP is compared in this study by setting its
maximum search distance to a large value and considering it to be a non-robust algorithm.

The TRE achieved by each algorithm in this study is presented in Fig. 6 for the range of
small misalignments (Experiment 5A) and in Fig. 7 for the range of large misalignments (Ex-
periment 5B). Figs. 6 and 7 are each divided into four sub-figures (A-D) corresponding to sub-
experiments (i-iv) of Experiments 5A and 5B, respectively, for each level of outliers. As in the
prior studies, the TRE outcomes for each misalignment range are very similar. As seen in the
figures, IMLP achieves large improvement in registration accuracy relative to the other algo-
rithms for up to 20% outliers, even in comparison to CPD, which has a very effective outlier re-
jection capability. For the 30% outlier case, IMLP continues to provide accurate results and
compares approximately equal to CPD. Compared to Robust ICP, IMLP is substantially more
accurate in all test cases and frequently achieves less than half the registration error and below.
As expected, standard ICP and GICP perform poorly, since they are non-robust techniques
and do not include mechanisms to account for outliers. Robust ICP fairs much better than the
non-robust methods for outlier compositions of 10% and below, but produces higher registra-
tion error than standard ICP for the outlier percentages above 10%.

Table 10 shows the rate of registration failure for both ranges of misalignment. For small
misalignment (Experiment 5A) all algorithms achieve very low failure rates for outlier compo-
sitions up to 20%, with exception of GICP which has high failure rate at 20% outliers and be-
yond. At 30% outliers, the failure rates of Robust ICP and IMLP moderately increase whereas
the failure rates of ICP and CPD remain low with CPD achieving no registration failure. For
large misalignment, the failure rates of all algorithms are increased, with CPD again providing
the best performance. IMLP is approximately on-par with CPD for outliers up to 10%. At 20%
outliers, the failure rate of IMLP increases to a moderate 2–6.7%; at 30% outliers, the failure
rate increases significantly to 12% and beyond. In contrast, the Robust ICP algorithm
performs poorly across the board with an average failure rate above 10% for all percentages
of outliers.

Iterative Most-Likely Point Registration (IMLP)
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Experiment 6: Sub-Shape Registration
This study investigates the more challenging problem of registering sub-shape data to a com-
plete-shape model, which arises when measurements are taken from a sub-region of a shape to
be registered. This scenario is investigated by simulating random measurements from a sub-re-
gion of a proximal human femur that has been segmented from CT imaging to form a mesh of
the bone surface (Fig. 1B).

The experimental procedure for this study parallels that of Experiment 4, except that the
area sampled for the source shape is confined to a sub-region of the target, which is represented
by the darkly shaded region of the mesh in Fig. 1B. Randommisalignments for this study are
generated on the interval [10, 20] mm translation and [10, 20] degrees rotation. The same algo-
rithms as in Experiment 4 are evaluated using identical settings except that the maximum itera-
tion count for CPD was increased to 200, as 100 iterations was insufficient (other algorithms
did not require this increase).

In order to diversify the range of noise conditions considered overall, a different set of noise
conditions was investigated for this study. Table 11 defines the seven noise models investigated,
which includes the zero-noise case, two magnitudes of isotropic noise, two cases of surface-ori-
ented noise to test high variance in both surface-normal and surface-parallel directions, and
two test cases involving randomly oriented noise models applied at a global and at a per-point

Fig 6. Registration errors for registering a source shape containing outliers to a point-cloud target under moderate misalignment. (Experiment
5A). Source shapes were randomly generated from a mesh model of a human hip (Fig. 1A), misaligned by [15, 30] mm / degrees, and registered back to a
point-cloud representation of the mesh. The test cases represent different noise models used to generate noise on the source shape (Table 4). Outliers were
added to the source shape constituting (A): 5%, (B): 10%, (C): 20%, and (D): 30% of the source points. For each test case, 300 randomized trials were
conducted, with successful registrations being used to compute an average target registration error (TRE). The error bars provide approximate standard
deviations of the reported average TRE values. The proposed IMLP algorithm was evaluated relative to standard ICP [1], GICP [11], a robust variant of ICP
[4], and CPD [20].

doi:10.1371/journal.pone.0117688.g006
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scale. For the test cases involving randomly oriented noise models, different covariances were
randomly generated for each trial. As in the prior experiments, 300 randomized trials were
conducted for each test case.

Fig. 8 shows the registration errors and Table 12 presents the registration failure rates
achieved by each algorithm in this study. The standard ICP algorithm turns out poor perfor-
mance across the board in terms of both registration error (above 3.5 mm) and failure rate (ap-
proximately 11–19%). CPD has the best success rate with almost no failures overall. The failure
rates of other anisotropic methods are approximately on-par with the IMLP failure rate of
3–7%, with the IMLP-CP variant being marginally lower than the others. As seen in the figure,
IMLP achieves the lowest registration error in every test case. Compared to CPD the improve-
ment in registration error by IMLP is often substantial, especially for the zero-noise case where
IMLP achieves nearly zero registration error and CPD has an average TRE near 1 mm. Again,
we find that the Mahalanobis-distance match criterion, as assessed by IMLP-MD, computes
substantially worse registration error than the closest-point match criterion, as assessed by
IMLP-CP and as also used by GICP; on the other hand, the most-likely match criterion of
IMLP achieves the lowest registration error in every case.

Fig 7. Registration errors for registering a source shape containing outliers to a point-cloud target under largemisalignment. (Experiment 5B).
Source shapes were randomly generated from a mesh model of a human hip (Fig. 1A), misaligned by [30, 60] mm / degrees, and registered back to a point-
cloud representation of the mesh. The test cases represent different noise models used to generate noise on the source shape (Table 4). Outliers were
added to the source shape constituting (A): 5%, (B): 10%, (C): 20%, and (D): 30% of the source points. For each test case, 300 randomized trials were
conducted, with successful registrations being used to compute an average target registration error (TRE). The error bars provide approximate standard
deviations of the reported average TRE values. The proposed IMLP algorithm was evaluated relative to standard ICP [1], GICP [11], a robust variant of ICP
[4], and CPD [20].

doi:10.1371/journal.pone.0117688.g007
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Table 10. Registration failure rates for registering a point-cloud target shape with outliers. (Experiment 5).

Exp. Outliers Alg. Failure Rate (%) by Test Case

1 2 3 4 5 6 7 8 9

5A-i 5% ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GICP 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3

Robust ICP 0.0 0.3 0.0 0.0 0.0 0.0 0.3 0.3 0.3

CPD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IMLP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5A-ii 10% ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GICP 0.0 1.3 1.3 0.7 1.0 0.3 0.7 1.0 1.7

Robust ICP 0.3 0.0 0.0 0.0 0.3 0.3 1.0 0.3 0.3

CPD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IMLP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5A-iii 20% ICP 0.3 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.3

GICP 5.7 7.0 6.3 5.7 8.0 9.3 5.3 4.3 8.3

Robust ICP 0.3 0.3 0.3 0.3 1.0 0.3 0.0 0.0 0.0

CPD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IMLP 0.0 0.3 0.0 1.0 0.3 1.0 1.7 0.7 0.0

5A-iv 30% ICP 1.3 0.3 1.0 0.7 0.3 1.0 0.3 1.0 0.3

GICP 17.0 13.3 18.7 15.7 21.3 15.3 14.3 18.0 15.7

Robust ICP 4.7 2.0 3.3 2.3 3.0 4.7 1.0 1.3 1.7

CPD 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0

IMLP 4.7 3.0 5.3 3.3 6.0 3.3 3.3 3.0 4.0

5B-i 5% ICP 0.3 1.3 0.7 0.3 0.3 0.3 1.7 0.0 0.7

GICP 1.3 3.0 1.0 1.7 1.0 2.0 1.7 1.0 1.0

Robust ICP 14.3 9.7 8.3 12.7 15.0 11.3 11.0 12.7 8.0

CPD 1.0 0.3 0.7 1.7 1.7 1.0 0.7 1.3 1.7

IMLP 1.0 0.3 0.3 0.3 0.0 0.7 2.0 0.7 1.3

5B-ii 10% ICP 1.0 0.3 0.3 1.7 1.0 0.7 0.3 0.7 0.7

GICP 1.7 2.7 2.3 3.0 3.3 3.3 2.0 2.7 2.3

Robust ICP 12.7 12.3 11.3 11.0 12.0 10.7 10.7 11.3 9.3

CPD 1.0 1.7 1.7 0.7 1.0 1.7 1.3 0.7 0.7

IMLP 1.0 0.3 1.3 2.0 0.7 1.0 1.3 0.7 1.0

5B-iii 20% ICP 0.7 0.7 1.0 1.3 0.7 0.0 0.3 0.7 0.7

GICP 5.0 5.0 8.0 9.0 9.7 8.3 8.7 5.3 7.3

Robust ICP 10.0 7.0 9.7 13.7 11.0 14.7 12.7 10.0 11.3

CPD 1.0 2.3 1.3 1.3 1.3 2.3 0.7 1.7 1.0

IMLP 2.7 4.3 2.0 4.7 6.7 4.7 5.7 3.7 3.3

5B-iv 30% ICP 2.7 1.0 1.7 1.3 1.3 1.3 2.0 2.0 0.7

GICP 15.0 17.7 12.3 17.7 19.3 20.7 18.3 21.7 20.7

Robust ICP 16.3 10.0 15.3 15.3 16.0 15.3 12.7 17.0 16.0

CPD 2.0 3.3 3.3 3.7 1.7 2.0 2.0 1.7 2.3

IMLP 18.7 12.0 16.0 16.7 19.0 20.7 15.3 16.7 15.7

Source shapes were randomly generated from a mesh model of a human hip (Fig. 1A), misaligned by [15, 30] mm / degrees in (Experiment 5A) and [30,

60] mm / degrees in (Experiment 5B), and registered back to a point-cloud representation of the mesh. The test cases represent the different noise

models used to generate noise on the source shape (Table 4). Outliers were added to the source shape constituting 5% (-i), 10% (-ii), 20% (-iii), and 30%

(-iv) of the source points. For each test case, 300 randomized trials were conducted with the percent of unsuccessful registrations (TRE > 10 mm) being

shown in the table. The proposed IMLP algorithm was evaluated relative to standard ICP [1], GICP [11], a robust variant of ICP [4], and CPD [20].

doi:10.1371/journal.pone.0117688.t010

Iterative Most-Likely Point Registration (IMLP)

PLOS ONE | DOI:10.1371/journal.pone.0117688 March 6, 2015 37 / 45



Experiment 7: Registering Shapes with Partial Overlap
This study investigates a yet more challenging problem of registering two shapes that have only
partial overlap, meaning there are regions of both the source and target shape that do not have
any true correspondence with the other shape. To investigate this scenario, we use a model of
the statue Laurana (Fig. 9A) provided by the Institute of Science and Technologies (ISTI-

Table 11. Generative noise models (test cases) used in the randomized registration trials of Experiment 6.

Noise Covariance Test Case

1 2 3 4 5 6 7

Orientation - - - Surface Surface Random-Global Random-Per-Point

Magnitude: l1=2
1 (mm) 0.0 0.5 1.0 1.0 0.5 0.5 0.5

Magnitude: l1=2
2;3 (mm) 0.0 0.5 1.0 0.5 1.0 1.0 1.0

This table defines the covariances used to generate the zero-mean, multi-variate, Gaussian noise applied to the source shape in each test case of

Experiment 6. The table defines both the eigenvalues (λ1, λ2, λ3) (magnitude) and the eigenvectors (orientation) of the covariance matrices for each test

case. Orientation “Surface” defines the eigenvectors relative to the orientation of the surface at each source point, where λ1 is the variance in the surface-

normal direction and (λ2, λ3) are the variances in the surface-parallel directions. Orientation “Random-Global” defines the matrix of eigenvectors to be a

randomly generated rotation matrix, which is applied globally over the source shape (i.e. every point in the source shape has the same noise model).

Orientation “Random-Per-Point” is similar to the “Random-Global” case except that every point in the source shape is associated with a different randomly

generated rotation (i.e. every point in the source shape has a different noise model). Orientation “-” means that the noise model is isotropic and thus

unaffected by the choice of eigenvectors.

doi:10.1371/journal.pone.0117688.t011

Fig 8. Registration errors for registering a sub-shape. (Experiment 6). Source shapes were randomly
generated from a sub-region of a mesh model of a human proximal femur (Fig. 1B), misaligned by [10, 20]
mm / degrees, and registered back to a point-cloud representation of the mesh. The test cases represent the
different noise models used to generate noise on the source shape (Table 11). For each test case, 300
randomized trials were conducted, with successful registrations being used to compute an average target
registration error (TRE). The error bars provide approximate standard deviations of the reported average TRE
values. The proposed IMLP algorithm was evaluated relative to standard ICP [1], GICP [11], and CPD [20], as
well as relative to near-comparisons of GTLS-ICP [10] and A-ICP [12] using the two variants IMLP-CP and
IMLP-MD, which modify IMLP’s most-likely match criteria to that of closest-point and Mahalanobis-distance
matching, respectively.

doi:10.1371/journal.pone.0117688.g008
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Table 12. Registration failure rates for sub-shape registration. (Experiment 6).

Alg. Failure Rate (%) by Test Case

1 2 3 4 5 6 7

ICP 15.0 10.7 17.3 13.7 14.7 18.7 16.3

IMLP-CP 4.7 2 5.3 4.3 4.3 4.3 4.0

IMLP-MD 6.0 3.3 7.3 5.3 7.0 6.7 5.3

GICP 6.0 4.3 8.3 6.3 6.0 5.3 4.7

CPD 0.0 0.0 0.0 0.0 0.0 0.3 0.3

IMLP 6.0 3.0 7.0 5.0 6.0 6.3 5.0

Source shapes were randomly generated from from a mesh model of a human femur (Fig. 1B), misaligned by [10, 20] mm / degrees, and registered back

to a point-cloud representation of the mesh. The test cases represent different noise models used to generate noise on the source shape (Table 11). For

each test case, 300 randomized trials were conducted with the percent of unsuccessful registrations (TRE > 10 mm) being shown in the table. The

proposed IMLP algorithm was evaluated relative to standard ICP [1], GICP [11], and CPD [20], as well as relative to near-comparisons of GTLS-ICP [10]

and A-ICP [12] using the two IMLP variants IMLP-CP and IMLP-MD, which modify IMLP’s most-likely match criteria to that of closest-point and

Mahalanobis-distance matching, respectively.

doi:10.1371/journal.pone.0117688.t012

Fig 9. Registration of shapes having partial overlap. (Experiment 7). (A): The statue Laurana sub-divided into (B): front and (C): right half-sections, such
that (D): a 50% overlap exists between the two sub-shapes. The sub-shapes were (E): misaligned by 10 mm and 10 degrees in a random direction and then
registered using (F): CPD [20], (G): GICP [11], and (H): the proposed IMLP algorithm. Sub-figures (E-H) show the initial misalignment and the final registered
alignments of the two shapes for the 6th randomized trial of Experiment 7, which involved 10 randomized trials in total.

doi:10.1371/journal.pone.0117688.g009
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CNR), Pisa, Italy, which was downloaded under a Creative Commons License from http://vcg.
isti.cnr.it/downloads/3dgallery/form_laurana.htm. A decimation was applied to the original
mesh using the Quadric Edge Collapse Decimation in MeshLab [42] to reduce the model to
50,000 triangles, and the coordinate system was adjusted to position the origin at the mesh cen-
troid. Two divisions of the mesh were then performed to extract the front (Fig. 9B) and right
(Fig. 9C) half-sections of the model. A dense point cloud for the source shape was formed from
the vertices of the right half-section, and a dense point cloud for the target shape was defined
from the center points of the triangles of the front half-section. Thus, the region of overlap be-
tween the source and target shapes comprised 50% of each shape (Fig. 9D).

Ten randomized registration trials were performed by applying 0.5 mm standard deviation
of isotropic Gaussian noise to the source points and applying misalignments of 10 mm and
10 degrees in random directions. Validation points for computing the TRE were selected ran-
domly from the target shape, not being confined to the region of overlap.

The algorithms evaluated in this study were GICP [11], CPD [20], and IMLP. Various val-
ues were experimentally tested for the match threshold distance of GICP, with 3 mm finally se-
lected as having the lowest TRE. For CPD, various outlier weights were tested with poor results
obtained in every case; we therefore applied the standard outlier weight of 0.5. For IMLP, we
used the default chi-square inverse CDF threshold (w2

thresh) value of 7.81. To minimize bias
from the non-overlapping region, matches identified as outliers were configured to be
completely disregarded in the registration phase of the IMLP algorithm (rather than inflating
their variances), as suggested in the Methods section for this type of application. The measure-
ment-error covariances of IMLP were set to zero in this study in order to, as much as possible,
enable the noise model to adapt to the region of overlap based on the match uncertainty term.
To restrict “good”matches to the region of overlap, the max threshold for the match uncertain-
ty parameter (s2

max) was set to 0.1 mm2. The surface-model covariances for both GICP and
IMLP were set to the same values as used in Experiment 4.

Table 13 shows the TREs computed by each algorithm for each of the 10 randomized trials.
As indicated in the table, CPD is unable to properly register any of the trials in this scenario,
whereas both IMLP and GICP register all of them nearly perfectly, with GICP having a moder-
ate to slight accuracy advantage. The bottom row of Fig. 9 provides a visualization of the initial
shape misalignment (Fig. 9E) and of the registered alignments computed by each algorithm, in-
cluding CPD (Fig. 9F), GICP (Fig. 9G), and IMLP (Fig. 9H). The visualizations of Figs. 9E-H
represent the 6th randomized registration trial of this experiment.

Table 13. Registration errors for registering shapes having partial overlap. (Experiment 7).

Alg. TRE (mm) per Registration Trial

1 2 3 4 5 6 7 8 9 10

CPD 63.533 69.988 82.186 83.449 72.612 71.378 69.431 79.822 78.071 68.675

GICP 0.138 0.150 0.187 0.060 0.124 0.165 0.272 0.252 0.158 0.242

IMLP 0.264 0.306 0.283 0.224 0.352 0.294 0.295 0.277 0.250 0.365

Target registration error (TRE) is reported for each of 10 registration trials conducted for Experiment 7, which involve registering two half-sections of the

statue Laurana that have 50% true overlap (Fig. 9D). The half-sections were randomly misaligned by 10 mm and 10 degrees and then registered using

CPD [20], GICP [11], and the proposed IMLP algorithm.

doi:10.1371/journal.pone.0117688.t013
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Experiment 8: Runtime Comparison of Methods for Computing the Most-
Likely Matches
As a final study, an investigation is made concerning the speedup afforded by the PD-tree
search technique used to compute the most-likely matches for IMLP. We compare the
runtime of a naive exhaustive search to that of the proposed PD-tree method using both the
spherical (14) and simple ellipsoidal (15) bounding techniques, as described in the Methods
section.

Table 14 shows the average runtimes obtained from running IMLP over all 300 trials of Test
Case 1 from Experiment 4B for each method of computing the most-likely matches. As seen in
the table, the proposed PD-tree strategy achieves more than 140x speedup over the naive search
when using the simple ellipsoidal bounding technique. Comparing the two alternative PD-tree
bounding methods indicates that the more compact simple ellipsoidal bound achieves approxi-
mately 10% greater runtime efficiency than the spherical bound, even though its computations
are significantly more complex.

We note that the most compact ellipsoidal bound (17), which is not evaluated here, may en-
able even further speedup over the simple ellipsoidal bound evaluated above. This is a likely
outcome, since the runtime computations performed for each ellipsoidal bounding technique
are very similar; thus, the most compact bound should provide the best performance.

Conclusions
We have presented a novel variant of the Iterative Closest Point (ICP) algorithm, called the It-
erative Most-Likely Point (IMLP) algorithm, which has the ability to compute optimal shape
alignment under anisotropic noise conditions by incorporating a probabilistic framework with-
in both the correspondence and registration phases of the algorithm. Another advantage of this
framework is the ability to model locally-linear regions of a continuous surface, as also done by
prior methods, which greatly improves the registration accuracy attainable from discrete repre-
sentations of a surface. Dynamic estimation of the match uncertainty enables IMLP to adap-
tively adjust its noise model to different levels of misalignment, which provides robustness
under large initial misalignments and high accuracy and sensitivity to outliers when in the
vicinity of the correct solution. In addition, the probabilistic underpinning provides a cohesive
and flexible framework for detection and mitigation of outliers, as well as enabling registration
of shapes having only partial overlap via a user-defined maximum threshold on the match
uncertainty term.

Through an extensive set of experiments, involving more than 50,000 randomized
executions of the IMLP algorithm alone, IMLP has been shown to possess significant
registration accuracy and robustness advantages compared to long-established and recently
introduced algorithms over a broad range of test conditions including various noise

Table 14. IMLP runtime comparison using different PD-tree bounding methods for computing the most-likely matches.

Search Method Naive Search PD-Tree: Spherical Bound PD-Tree: Simple Ellipsoidal Bound

Runtime (sec.) 18.523 0.141 0.128

Average runtimes are reported for the proposed IMLP algorithm over the 300 registration trials of Experiment 4B, Test Case 1, which involves registering

100 random samples to a point-cloud representation of a hip model (Fig. 1A). Runtimes were recorded for the naive exhaustive search and for the

proposed PD-tree search strategy comparing two of the proposed PD-tree bounding methods: the spherical (14) and simple ellipsoidal (15) bounds. The

compact ellipsoidal bound (17) was not evaluated.

doi:10.1371/journal.pone.0117688.t014
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conditions, percentages of outliers, ranges of misalignment, and test shapes. Other algorithms
evaluated include the long-established algorithm of standard ICP [1] and a robust ICP
variant [4], as well as the more recent, leading algorithms of GICP [11] and CPD [20]. In
addition, close comparison is made to the prior anisotropic registration methods of GTLS-ICP
[10] and A-ICP [12] using modifications on our own method, IMLP-CP and IMLP-MD, re-
spectively. Relative to all tested algorithms, IMLP demonstrated a clear accuracy
advantage overall.

Compared to CPD, which has a very effective outlier mitigation capability, IMLP was dem-
onstrated to achieve equivalent registration success rates for outlier percentages of 10% and
below, with marginal to moderate relative increase in failure rate at 20% outliers and large rela-
tive increase at 30% outliers. On the other hand, in terms of the registration accuracy of suc-
cessful trials, IMLP achieves significantly better or on-par accuracy compared to CPD for all
levels of outliers studied (up to 30%). Based on our results, we conclude that IMLP is a very ef-
fective method for registering shapes with up to 10% outliers and retains excellent performance
at 20% outliers for moderate levels of misalignment.

Only for the experiment involving registration of partially-overlapping shapes did another
algorithm (GICP) clearly come ahead of IMLP in terms of registration accuracy. However,
IMLP nonetheless demonstrated a strong performance in this scenario and achieved higher ac-
curacy than GICP in all other experiments performed. Further, the CPD algorithm failed
completely in this scenario.

A surprising outcome of our experiments reveal that the Mahalanobis-distance match crite-
rion consistently performs worse than the closest-point match criterion for registrations in-
volving point-cloud targets, whereas for the case of a mesh target the opposite is true. In
contrast, the most-likely match criterion of IMLP provides the best performance in both
scenarios. These observations were evaluated using two variants of IMLP—IMLP-CP and
IMLP-MD— which incorporate the modified match criteria of closest-point and Mahalnobis-
distance matching, respectively, all else being equal.

Although IMLP is several times slower than standard ICP, it nonetheless provides a very
competitive runtime, considering the substantial reduction in registration error that it achieves.
Compared to CPD (the next-best performing algorithm overall), IMLP achieves better registra-
tion accuracy in the majority of test cases considered, while being approximately two orders of
magnitude more efficient. While IMLP is efficient enough to run on its own, further substantial
speed-up could be easily obtained by initializing the registration with a faster algorithm such as
standard ICP, as demonstrated in prior work [12]. Furthermore, the computations
performed by IMLP are highly parallelizable and may be efficiently implemented on a GPU as
also demonstrated in prior work regarding ICP-based algorithms [43]. Finally, since we have
used the simple ellipsoidal bounding method (15) for the PD-tree search in our implementa-
tion, further speedup may be possible by implementing the more compact ellipsoidal bound
of (17).

As alluded to in the foregoing paragraph, we have also presented in this paper an effective
and novel search strategy for computing the most-likely matches on a target shape with respect
to IMLP’s most-likely match criterion. As demonstrated in our results, the proposed search
strategy provides a massive speedup (>140x) over a naive search. This speedup is a key enabler
of the efficient runtime performance achieved by IMLP. While this search strategy was devised
to compute point correspondences based on the most-likely match criterion of IMLP, our
method is equally applicable to the anisotropic Mahalanobis-distance match criterion of
A-ICP.

In this paper, we have also presented an alternative approach for solving the generalized
total-least-squares (GTLS) problem of aligning two corresponding point sets under a
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generalized noise model. The proposed approach turns out to be that of a Gauss-Newton-
based method, which we have demonstrated to be more accurate, efficient, and stable com-
pared to prior solutions proposed for this problem. The proposed approach supports aniso-
tropic error in both sets of points being registered and is easily implemented using a standard
least-squares solver, which avoids the software dependency of a nonlinear optimization library.
In addition to its incorporation within the IMLP algorithm, our GTLS registration approach
may also be used to implement related algorithms that incorporate generalized noise models,
such as GICP.

In future work, we will investigate use of the compact ellipsoidal bounding method (17) for
the PD-tree search to determine what added speedup may be gained by incorporating this im-
proved bound. It will also be interesting to further investigate the problem of registering par-
tially-overlapping shapes to determine how the performance of IMLP may be improved to that
of GICP for this particular scenario.
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