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Abstract: The global market for plant-derived bioactive compounds is growing significantly. The use
of plant secondary metabolites has been reported to be used for the prevention of chronic diseases.
Silver nanoparticles were used to analyze the content of enhancement phenolic compounds in carrots.
Carrot samples were immersed in different concentrations (0, 5, 10, 20, or 40 mg/L) of each of five
types of silver nanoparticles (AgNPs) for 3 min. Spectrophotometric methods measured the total
phenolic compounds and the antioxidant capacity. The individual phenolic compounds were quanti-
fied by High Performance Liquid Chromatography (HPLC) and identified by –mass spectrometry
(HPLC-MS). The five types of AgNPs could significantly increase the antioxidant capacity of carrots’
tissue in a dose-dependent manner. An amount of 20 mg/L of type 2 and 5 silver nanoparticle
formulations increased the antioxidant capacity 3.3-fold and 4.1-fold, respectively. The phenolic
compounds that significantly increased their content after the AgNP treatment were chlorogenic acid,
3-O-caffeoylquinic acid, and 5′-caffeoylquinic acid. The increment of each compound depended on
the dose and the type of the used AgNPs. The exogenous application of Argovit® AgNPs works like
controlled abiotic stress and produces high-value secondary bioactive compounds in carrot.

Keywords: silver nanoparticles; postharvest abiotic stress; phenolic compounds; Daucus carota

1. Introduction

Health agencies worldwide have encouraged the population to consume vegetables
and fruits as part of a healthy diet. Many reports have described that the sufficient daily
consumption of vegetables and fruits could help prevent chronic diseases: heart disease,
cancer, diabetes, obesity, several micronutrient deficiencies, etc. [1]. In addition, the reports
suggest that the prevention of chronic diseases by consuming vegetables and fruits is
related to their content of secondary metabolites, to which a beneficial bioactivity for health
is attributed [2–4]. For example, phenolic compounds have been widely reported for their
antioxidant, antiproliferative, and hepatoprotective activity, among others [5–7]. Due to
their properties, these secondary metabolites represent an important impact on the global
economy. According to a British Broadcasting Corporation (BBC) report, the global market
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for plant-derived bioactive compounds will grow with an annual growth rate of 6.1%
between 2017 and 2022 [8].

The use of controlled abiotic stress to activate the secondary plant metabolism and
enhance the nutraceutical content have been previously reported [9]. Abiotic stress pro-
duces reactive oxygen species (ROS) in plant cells, whereby the adaptative response of
plant cells maintains homeostasis in plants. Increasing the ROS levels in the plant cell
(>10 nM) due to postharvest abiotic stress breaks the homeostasis and generates hormesis,
thereby enhancing the phytochemical content in the crop. At the same time, product quality
could be maintained, enhanced, or decreased [9–12]. The most common technologies to
increase the phytochemical content of crops are modified atmospheres, phytohormones,
and ultraviolet (UV) radiation [13,14]. However, these technologies do not necessarily offer
differential effects in the production of nutraceutical compounds.

Carrot is a horticultural crop characterized by increasing the content of phenolic com-
pounds when subjected to postharvest abiotic stress [13]. Moreover, the health benefits of
phenolic compounds found in horticultural crops, particularly in carrots, have encouraged
the food industry to incorporate them into processed foods to enhance their nutraceutical
quality. Finding innovative methods that allow the differentiated production of bioac-
tive compounds at reasonable costs would permit the food industry to focus functional
products on specific niche markets with particular health needs, and thus contribute to
personalized nutrition.

Nanoparticles (NPs) (size between 1 and 100 nm), at very low doses, have the poten-
tial to boost the plant metabolism [15]. It has been reported that NPs positively impact
plant metabolism, leading to the increase in total biomass, yield, and hence the rate of
harvested high-value bioactive compounds in vivo and in vitro [16]. Silver nanoparticles
(AgNPs) have been reported to play an essential role in enhancing seed germination and
plant growth [12,17,18]. Moreover, it has been reported that the exogenous application
of silver nanoparticles increased the content of antioxidant compounds and fatty acids
on sunflower [19]. Other nanomaterials have also been used to improve the content of
secondary metabolites. For example, metal oxide nanoparticles (NiO, CuO, and ZnO)
have been reported to increase the anthocyanin, the total phenolic, and the total flavonoid
contents on Brassica rapa ssp. [20].

Until now, only some nanoelicitors have been subjected to studies in various in vitro
and in vivo systems to determine the possible risks in humans and the environment. Our
research group has been working with AgNP formulations stabilized with polyvinylpyrroli-
done (PVP) as coating agent. These AgNPs possess a defined (Ag)/(coating agent ratio)
that contributes to their low toxicity on reference systems like Allium cepa [21], human
peripheral blood erythrocytes [22] and lymphocytes [23], and mice [24,25]. The oral lethal
dose study shows that the five AgNP formulations investigated in the present study are
included in Category 4 (>300 to ≤ 2000 mg/Kg bodyweight) or Category 5 (>2000 to
≤ 5000 mg/Kg bodyweight) of the Globally Harmonized System of Classification and
Labelling of Chemicals [24].

It has not been previously reported how the differences in the size of nanoparticles
with the same composition are capable of differently influencing the production of specific
phenolic compounds with pharmaceutical value. Therefore, one objective of this study was
to analyze the Daucus carota L. differentiated response in phenolic compound production
and the antioxidant activity elicited by the exposure to four doses of five types of fully
characterized PVP-AgNP formulations that possess a defined (Ag)/(coating agent ratio).

2. Materials and Methods
2.1. Materials

The five Argovit® AgNPs used in this study are polyvinylpyrrolidone (PVP)-AgNPs for-
mulations in stable aqueous suspensions with an overall stock concentration of 200 mg/mL
(metallic silver + PVP) in distilled water. For this study, the formulations were labeled
as AG1, AG2, AG3, AG4, and AG5. According to the manufacturer, differences between
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each AgNP formulation consist of the molecular mass of PVP used as coating agent or the
synthesis conditions as follows. AG1: PVP K-15; AG2: PVP K-17; AG3: PVP K-17 with
higher radiation potency used for the synthesis; AG4: PVP K-30; AG5: PVP 12.6 ± 2.7 KDa.
Molecular masses of PVP K-15, K-17, and K-30 PVP (Boai NKY Pharmaceuticals Ltd.,
Jiaozuo, China) are 8000–12,000 kDa, 10,000–16,000 kDa, and 45,000–58,000 kDa, respec-
tively. The morphology, zeta potential, average diameter, and thermogravimetric analysis
of used silver nanoparticles have been previously reported [24].

Briefly, AgNPs composition determined by TGA analysis shows silver content of
1.14–1.32%, PVP: 19.6–24.5%, and H2O 74.2–79.2% w/w. All formulations present a spher-
ical morphology with a distribution size of nanoparticles within the range of 5–80 nm.
The average size of each formulation determined by Transmission Electron Microscopy
(TEM) (JEM-2010,JEOL©, CDMX, Mexico) was AG1 = 16.4 ± 8.0, AG2 = 25.4 ± 13.2,
AG3 = 19.0 ± 9.3, AG4 = 16.4 ± 8.1, and AG5 = 30.6 ± 23.2. Zeta potential of the fAg1-Ag5
formulations was within the range −0.46 to −5.13 mV [24].

2.2. Plant Material and Processing

Carrots (D. carota) were obtained from a local market (CALIMAX, Tijuana, Mexico),
sorted, washed, and disinfected with chlorinated water (250 ppm, pH 6.5).

The whole carrot samples were immersed in different concentrations (0, 5, 10, 20, or
40 mg/L) of each of five types of silver nanoparticle for 3 min, then the samples were left
to rest for 24 h out of the solution at room temperature, and finally, the preparation for
the phytochemical analysis was carried out. The negative control treatment consisted of
carrot samples immersed in water (0 mg/L of silver nanoparticles). These experiments
were performed with at least 10 replicates. From here on, the concentration units for
AgNP formulations consider the metallic silver content on each formulation, unless it is
mentioned the contrary.

2.3. Sample Preparation for Phytochemical Analyses

Five grams of carrot tissue was homogenized with 20 mL methanol using a homoge-
nizer (VWR® 200 Homogenizer, CDMX, Mexico) and centrifuged at 29,000× g for 15 min
at 4 ◦C. The obtained methanolic extract was used to analyze total soluble phenolics and
antioxidant activity (ORAC value). To identify and quantify the individual phenolic com-
pounds, the methanolic extracts were filtrated through nylon membranes (0.2 µm) prior to
injection to the chromatographic systems.

2.4. Total Phenolic Content and Determination of Antioxidant Capacity

Total phenolic content was determined as reported previously [26]. Briefly, methanolic
extracts were diluted with distilled water in a 96-well microplate, followed by the addition
of 0.25 N Folin–Ciocalteu reagent (Sigma-Aldrich, Saint Louis, MO, USA). The mixture
was left for 3 min, and then 1 N Na2CO3 was added. The final mixture was incubated for
2 h at room temperature under dark conditions. Spectrophotometric readings at 725 nm
were collected using a plate reader (SPECTROstar Omega, BMG Labtec, Cary, NC, USA).
Total phenolics were expressed as µg chlorogenic acid equivalents/g of fresh tissue. The
antioxidant activity was determined with the oxygen radical absorbance capacity (ORAC)
assay (Sigma-Aldrich, Saint Louis, MO, USA). The ORAC value was obtained by using
the procedure reported before [13]. All data were expressed as micromoles of Trolox
equivalents per gram of fresh tissue (µmol of TE/g).

2.5. Quantification of Individual Phenolic Compounds by HPLC

Chromatographic analyses of samples were performed in an Agilent HPLC system
(Agilent Technologies, Santa Clara, CA, USA) with a reverse phase C18 column (Zorbax
Eclipse XDB-C18, 150 mm × 4.6 mm i.d., 5 µm) maintained at 25 ◦C. Elution solvent
phases consisted of A: 0.1% formic acid (v/v) in water and B: methanol. Separation was
achieved using an initial solvent composition of 35% (B) during 5 min, increased to 60% (B)
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within 15 min, and subsequently ramped to 90% (B) within 30 min, decreased to 35% (B) in
5 min to re-equilibration. The flow rate was established at 0.8 mL/min and the injection
volume was 20 µL. The UV-vis photodiode array detector was set at 280 nm, 320 nm, and
365 nm. Standard solutions of gallic acid (y = 112.2x − 4325.2 R2 = 0.9993), chlorogenic acid
(y = 31.643x − 149.3 R2 = 0.9999), and quercetin (y = 65.5x + 68.738 R2 = 0.9979) were used
for the quantification of phenolic compounds detected at 280 nm, 320 nm, and 365 nm,
respectively. Since the most abundant phenolic compounds were detected at 320 nm, quan-
tification was expressed as equivalents of chlorogenic acid (CA). The selectivity of phenolic
compounds production was calculated by the contribution (percentage) of the concentra-
tion of each compound to the sum of concentrations of all identified phenolic compounds.

2.6. Analysis of Individual Phenolic Compounds by HPLC-MS

Individual phenolic compounds were separated on a Luna 5u C18 column of
150 mm × 4.60 mm (Phenomenex, Agilent, Santa Clara, CA, USA) by an HPLC coupled
with a diode array detector (DAD) (Agilent, Santa Clara, CA, USA). The chromatograms
were obtained at 280 nm, 320 nm, and 365 nm, respectively. The mobile phase was A: acidic
water (0.1% phosphoric acid) and B: acetonitrile-phosphoric acid (0.1% phosphoric acid).
The flow rate was 1.0 mL/min at 40 ◦C. The gradient elution was 5% B at 0 min and 50% B
at 30 min. Quantification of each compound was carried out with ferulic acid equivalents.

The identification of phenolic acids was confirmed using an HPLC coupled with
time-of-flight mass spectrometry (LC/MS-TOF) (Agilent Technologies, Santa Clara, CA,
USA) equipped with a negative electrospray ionization source. For the identification of
compounds, the Dictionary of Natural Products and Mass Bank databases were consulted.

2.7. Quantification of Silver Content in Carrot Tissue after Exposure by ICP-OES

At the end of each period of exposition, carrots were washed with 20 mM EDTA-Na2
solution to remove the silver nanoparticles that were on the surface, and then were rinsed
with distilled water. Five grams of tissue of carrot per treatment were measured with an
electronic balance (VELAB VE-204, CDMX, Mexico) with an accuracy of 0.01 g. Then, the
tissue samples were dried in an oven with air flow for 72 h at 60 ◦C, followed by 1 day at
70 ◦C. Subsequently, the tissue of each treatment (500 mg) was digested with 10 mL of nitric
acid (85% v/v) overnight. Resulting digests were diluted up to 10 mL with deionized water
and then metallic silver concentrations were determined by an inductively coupled plasma
optical emission spectrophotometer (ICP-OES 400, Perkin-Elmer, Richmond, CA, USA).
The detection limit in ICP was of 0.22 mg/L. All samples were analyzed at λ = 328.068
nm. Each sample was run in triplicate to guarantee that the measured absorbencies were
constant. Metal concentrations, calculated from each replicate absorbance value, were then
used to calculate an average metal sample concentration. The concentration of metallic
silver in plant tissues is expressed in µg/g on a dry weight (dw) basis.

2.8. Statistical Analysis

GraphPad Prism version 9.00 (GraphPad Software, San Diego, CA, USA, 5 November
2020) was used to analyze data, expressed as the means± standard error. One-way ANOVA
statistical analysis was performed. Significant differences were considered with p < 0.05.
A Tukey’s test was made to identify significant differences among groups.

3. Results
3.1. Total Phenolic Content and Antioxidant Capacity

Figure 1 presents the antioxidant capacity of the carrot tissue stimulated with the
five AgNP formulations measured by the ORAC technique. Carrots were exposed to
four different concentrations of the corresponding AgNPs formulation for three minutes
compared with the negative control treatment. The negative control treatment consisted of
carrot samples immersed in water (0 mg/L of silver nanoparticles).
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Figure 1. Effect of 3-min immersion in five types of silver nanoparticles (AgNPs) of carrots stored at 25 ◦C for 24 h. Samples
were stimulated with 0, 5, 10, 20, or 40 mg/L of AgNPs, and antioxidant capacities (ORAC) were determined and quantified
in Trolox equivalents (TE). Data represent the means of five replicates and their standard errors (p < 0.05). The red line
indicates the antioxidant capacity obtained in the treatment without nanoparticles.

AgNPs Argovit® were able to increase the antioxidant capacity in a dose-dependent
manner. The hormetic effect of AgNPs Argovit® was observed, since the antioxidant
capacity increased with increasing doses, and after a specific dose, the antioxidant capacity
significantly decreased when the concentration of nanoparticles increased. Each AgNP
stimulated the carrot tissue differently, increasing its antioxidant capacity in different doses.
AG1 increased the antioxidant capacity up to 2-fold compared with the control treatment
at a dose of 10 mg/L. AG2 showed the maximum antioxidant capacity at an amount of
20 mg/L and was 2.8-fold greater than the control treatment. AG3 and AG4 increased
antioxidant capacity up to 1.5–1.8-fold at a dose of 20 mg/L and 10 mg/L, respectively.
AG5 was the most effective treatment in improving the antioxidant capacity. It managed to
increase the antioxidant capacity up to 3.25-fold at a dose of 20 mg/L.

Additionally, in Figure 2 is presented the total phenolic content measured in car-
rot samples by the Folin-Ciocalteu method in carrot tissue. The stimulus was a 3-min
immersion in five types of AgNPs at four doses and the negative control treatment.
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with 0, 5, 10, 20, or 40 mg/L of AgNPs and total phenolic contents (TP) were determined by Folin-Ciocalteu method. Data
represent the means of five replicates and their standard errors (p < 0.05). The red line indicates the total phenolic content
obtained in the treatment without nanoparticles.

The hormetic effect was also observed in the phenolic content of the carrot tissue
treated with AgNPs. However, the behavior of phenolic compounds differs from that of the
antioxidant capacity. AG2, AG3, and AG5 increased the total phenolic content by 2.4-fold
at a concentration of 20 mg/L. In contrast, AG1 increased the total phenolic content by
1.4-fold and AG3 by 2-fold, at a dose of 10 mg/L and 20 mg/L, respectively. The differences
observed in the increments of the phenolic compounds compared to the increments in
the antioxidant capacity suggested that the specific phenolic compounds obtained in
each treatment could be differentiated. That is the reason the phenolic compounds were
measured individually by an HPLC.

3.2. Identification of Phenolic Compounds in Carrots

Figure 3 shows the typical HPLC chromatography obtained for the samples to identify
phenolic compounds (280 nm) in carrots used in the present study. Each compound was
identified by comparing the m/z+ of fragments obtained in the mass spectrometry with
the reported mass spectral characteristics of the phenolic compound reported for carrots
(Table 1).
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(1) chlorogenic acid; (2) 3-O-caffeoylquinic acid; (3) 5′-caffeoylquinic acid; (4) ferulic acid; (5) caffeic acid; (6) cis-5′-
caffeoylquinic acid; (7) 4′p-coumaroylquinic acid; (8) 3-O-feruloylquinic acid; (9) 5-O-Feruloylquinic acid; (10) caffeic acid
derivative; (11) 3′4′-dicafferoylquinic acid; (12) 3′5′-dicafferoylquinic acid.

Table 1. Mass spectral characteristics of identified phenolic from carrot samples.

ID Compound [M-H] (m/z) Fragments

1 Chlorogenic Acid 353 MS2 [353]: 345, 255, 147

2 3-O-caffeoylquinic acid 353 MS2 [353]: 135, 179, 191
MS3 [353→191]

3 5′-caffeoylquinic acid 353 MS2 [353]: 179, 191
MS3 [353→191]

4 Ferulic acid 193
5 Caffeic acid 179.9
6 Cis-5′-caffeoylquinic acid 353 MS2 [353]: 135, 179, 191
7 4′p-Coumaroylquinic acid 337 MS2 [337]: 191

8 3-O-Feruloylquinic acid 367 MS2 [367]: 173, 193
MS3 [367→173]

9 5-O-Feruloylquinic acid 367 MS2 [367]: 191
MS3 [367→191]

10 Caffeic acid derivative 367 MS2 [367]: 135, 179, 191
MS3 [367→179]

11 3′4′-Dicafferoylquinic acid 527 MS2 [527]: 203, 365
MS3 [527→365]

12 3′5′-Dicafferoylquinic acid 515 MS2 [515]: 353
MS3 [515→353]

3.3. Quantification of Phenolic Compounds in Carrots and Selectivity

Figure 4 presented the phenolic compounds determined by an HPLC coupled to a
UV-vis detector identified in each stimulated carrot tissue with the AgNP formulation
at the four tested concentrations and the negative control treatment, which consisted of
carrot samples immersed in water (0 mg/L of silver nanoparticles). The methanolic extract
probably contains not only phenolic compounds; however, in the present study the aim
was to identify phenolic compounds, especially ones with pharmaceutical interest.
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Figure 5 shows the selectivity to induce the content of chlorogenic acid, 3-O-caffeoylquinic
acid, 5′-caffeoylquinic acid, and ferulic acid. These compounds were the compounds with
the highest selectivity. The chlorogenic acid reached the highest selectivity (39.36%) with
the AG4 treatment at concentrations of 40 mg/L. In addition, chlorogenic acid achieved a
significant selectivity with AG3 at concentrations of 5 and 10 mg/L (32.31% and 36.16%,
respectively), and with AG4 at a dose of 20 mg/L (38.47%). The 3-O-caffeoylquinic acid ob-
tained the highest selectivity of 37.92% stimulated with AG1 at a concentration of 5 mg/L.
For 5′-caffeoylquinic acid, the highest selectivity (33.82%) was obtained with the AG3
treatment at a dose of 20 mg/L. The ferulic acid selectivity only increased with the AG2
stimulus at a dose of 10 mg/L (12.00% selectivity) and AG4 at a concentration of 40 mg/L
with a selectivity of 11.80%.
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3.4. Quantification of Silver after Carrots Exposure to AgNPs Formulations

The quantification of silver by ICP-OES was performed in carrots exposed to the
highest concentration used in this study (40 mg/L) and was compared with the control
group. The results show that the silver content of the control and the treated groups were
always below the detection level.

4. Discussion

The five types of AgNPs could significantly increase the antioxidant capacity of carrots’
tissue (Figure 1). The increase of antioxidant capacity is dose-dependent. Previously,
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reports have described that silver nanoparticles stabilized with PVP could significantly
increase the antioxidant capacity [12,23]. The treatments AG2 and AG5 reached the highest
antioxidant capacity in carrot tissue. Treatments with 20 mg/L of AG2 and AG5 increased
the antioxidant capacity 3.3-fold and 4.1-fold, respectively (Figure 1).

The phenolic content of carrot also increased with the AgNP concentration growth for
the five types of AgNPs (Figure 2). However, the increased phenolic content (Figure 2) did
not correlate with the increased antioxidant capacity (Figure 1). This is attributed to the fact
that the profile of the compounds produced in each treatment and each concentration were
different (Figure 4). It is essential to mention that the antioxidant response of carrots was
observed despite the short exposure time assessed. The absence of silver quantified by ICP-
OES in carrot tissues exposed to the highest concentration evaluated in this work suggests
that the effect elicited by the AgNP formulations is swift and does not imply a significant
silver incorporation into the carrot tissue. These factors could be extremely helpful in the
design of noninvasive strategies to produce valuable carrot secondary metabolites.

The compounds that increased their contents to the greatest extent after AgNP treat-
ments were chlorogenic acid, 3-O-caffeoylquinic acid, and 5′-caffeoylquinic acid. Chloro-
genic acid has been studied for many potential health benefits, including its antidiabetic,
antiproliferative, anti-inflammatory, and antiobesity effects [27]. 3-O-caffeoylquinic acid is
an antioxidant marker in several plants [28] that have been reported as an essential precur-
sor of flavonoids with anti-inflammatory effects [29]. Additionally, 3-O-caffeoylquinic acid
has been known for its regulatory effects in lipid metabolism [30]. 5′-Caffeoylquinic acid
has been also described as a precursor of important flavonoids such as quercetin with an-
tioxidant, anticarcinogenic, and anti-inflammatory effects [31–33]. Meanwhile, ferulic acid
has been widely reported for its antioxidant, anticarcinogenic, neuroprotective, antidiabetic,
hepatoprotective, and cardioprotective effects [34–36]. The overproduction of three out of
four of these bioactive compounds in carrots after the treatment with AgNPs represents a
nonpharmacological and noninvasive approach for treating or preventing some chronic
diseases. Other reports have described the increasing of lipidic secondary metabolism due
to stimuli with silver nanoparticles at different doses on sunflower. Authors reported that
60 mg/L of the complete formulation concentration of the tested green-synthesized AgNPs
improved the biochemical, fatty acid, and enzymatic attributes of sunflower plants [19].

Nanomaterials, particularly Argovit® silver nanoparticles, can change the agronomic
characteristics of plants, such as plant growth, biomass, and shoot and root length, among
others [10,18,23]. These physiological parameters directly influence the yield and quality
obtained from a crop. Additionally, silver nanoparticles, such as the Argovit® nanoparticles,
could be used as a source of controlled abiotic stress to increase the directed bio-production
of secondary metabolites of pharmaceutical and nutritional interest.

Exogenous applications of Argovit® silver nanoparticles work like controlled abiotic
stress and produce reactive oxygen species (ROS) in carrots. Then, the adaptive response
of plant cells leads to maintaining homeostasis in plants. However, the increasing ROS
levels break the homeostasis and generates hormesis, resulting in the enhancement of
the phytochemical content in the carrot. The hormetic response, due to other controlled
abiotic stresses of carrots and other crops, has been widely reported before. Regarding
the Argovit® silver nanoparticles, the dose-dependent effect and generation of hormesis
was suggested already for vanilla [10] and sugarcane [12]. In addition, a dose-dependent
effect in the reactive oxygen species (ROS) generation, malondialdehyde production, and
anthocyanin biosynthesis due to AgNPs in Brassica rapa seedlings has been also reported.
The results suggest that authors also observed a hormetic effect in their experiments [20].

Under extreme stress conditions, horticultural crops can act as biofactories of nu-
traceuticals, which can be extracted and commercialized in dietary supplements or food
industries. The present work described how nanomaterials, particularly Argovit® silver
nanoparticles AG2 and AG5, could be used as abiotic elicitors to improve the yields of
plant-derived bioactive compounds of great pharmaceutical and/or nutritional interest.
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5. Conclusions

The Argovit® silver nanoparticles studied in the present work were able to induce the
production of secondary metabolites in a differentiated way in carrots. The difference in the
production of metabolites was due to the small changes in the physicochemical properties
of the Argovit® silver nanoparticles (AG1, AG2, AG3, AG4, AG5) and the dose of each
nanoparticle applied endogenously.

The treatments with the silver nanoparticles AG2 and AG5 led to the highest increase
(3.3-fold and 4.1-fold, respectively) of antioxidant capacity and bioactive compounds, such
as chlorogenic acid, 3-O-caffeoylquinic acid, 5′-caffeoylquinic acid, and ferulic acid. These
acids exhibit different biological activities such as anti-inflammatory, anticarcinogenic,
antidiabetic, hepatoprotective, cardioprotective, and neuroprotective actions, etc. Therefore,
using these nanoparticles for carrot postharvest treatment is an effective approach for
overproducing these bioactive compounds and furthering their use in pharmaceutical
and/or nutritional areas.

Unlike most AgNP formulations, the Agrovit® formulation demonstrated low geno-
toxicity and cytotoxicity in sensitive plants such as Allium cepa [21]. It has also been
reported that the Agrovit® nanoparticles improve the physiological characteristics of plants
such as vanilla and sugar cane obtained by micropropagation [10,12]. In the present study,
these formulations demonstrated a significant effect in the overproduction of bioactive
compounds in a postharvest crop such as Daucus carota. The effect elicited by the AgNP
formulations is swift and requires minimal concentrations and exposure time. These factors
could be extremely helpful in the design of nontoxic and noninvasive strategies to pro-
duce valuable plant secondary metabolites. Thus, Agrovit® can be exogenously applied in
postharvest crops to increase the performance of bioactive compounds with pharmaceutical
interest. Nevertheless, a deep understanding of the role of AgNPs in plant physiology at
the molecular level is still lacking, and further studies should generate more information
about it.
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