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A B S T R A C T

Atthe Institute of Biochemistry named after H. Buniatyan we discovered and studied hypothalamic peptides with
coronary dilatory and antioxidant activities:neurohormone C (NC) and proline-rich peptide-1 (PRP-1). Both NC
and PRP-1 exhibit cardioprotective effects, in part by restoring the calcium affinity for calcium-binding membrane
proteins in cardiomyocytes. This affinity is diminished in the sarcoplasmic reticulum and mitochondriawith
myocardial damage, heart failure, pancreatic necrosis and crush syndrome caused by isoproterenol. The peptides
can also destroy the four detected toxic peptides and myocardial depressant factor, and protect against ischemia-
reperfusion injury. Further studies of these peptides may be promising for the treatment of patients at high risk of
cardiovascular disease, regardless of pathology.
1. Introduction

Cardiovascular diseases ultimately lead to heart failure (HF),
characterized by metabolic derangement underlying hemodynamic
changes and myocardial damage. Such changes develop in one third of
patients with atrial fibrillation (AF) [1, 2]. HF and AF are the leading
cause of morbidity and mortality worldwide affecting more than 30
million people [3, 4]. A decrease in coronary blood flow during HF
correlates with an increase in certain neurohormones, atrial and ce-
rebral natriuretic peptides and cytokine (IL-6) with vasodilating effect,
probably involved in compensatory mechanisms, which are not
effective enough [5]. Coronary dilatory hypothalamic peptides,
discovered and studied at the Institute of Biochemistry after H.
Bunyanyan (NAS RA) can be used to protect the heart muscle [6, 7].
These are the neurohormones K, C and G, glycopeptides produced by
limited proteolysis of specific protein-hormonal complexes in magno-
cellular neurosecretory cells (n. paraventricularis and n. supraopticus)
[6]. Neurohormone C (NC), containing two vasoconstrictor and four
vasodilatоr fractions, can be anchored by heart proteins and regulate
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cardiac hemostasis in precardiac and auricular regions [7].
Proline-rich peptide-1 (PRP-1) (primary structure: AGAPEPAE-
PAQPGVY, molecular weight: 1475.26 Da) was also found in endo-
crine cells of hypothalamus. It is a C-terminal fragment of neurophysin
II, a product of cleavage of prepro-vazopressin-neurophysin II [8].
Both NC and PRP-1 are involved in: competitive inhibition of cAMP
and cGMP phosphodiesterases, regulation of protein synthesis and
degradation, suppression oxidative stress, preventing histopathological
changes in heart [6, 8]. Our results indicate other heart protection
mechanisms involving these peptides. Disruption of intracellular Ca2þ

homeostasis is the main cause of contractile dysfunction and ar-
rhythmias in failing myocardium. It is associated with pathological
changes in the expression and activity of Ca2þchannel proteins and
proteins providing Ca2þ-controlled cell function [9]. The understand-
ing of molecular mechanisms of aberrant Ca2þ handling can serve as
basis for the development of new approaches in innovative treatments
of cardiovascular diseases [4, 10]. Here we summarize our work on
modulatingCa2þhomeostasis via NC and PRP-1 in heart in various
pathological conditions.
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1.1. The effect of hypothalamic peptides on isoproterenol-induced heart
damage

Release of catecholamines into the blood is accompanied by an in-
crease in their level in the rat myocardium, and leads to damage, which
also develops after exposure to isoproterenol, a synthetic sympathomi-
metic, non-selective β-adrenoceptor agonist [11]. Isoproterenol is used in
reproducible and well-characterized model of cardiac hypertrophy, since
it increases the need for oxygen in myocardium, reduces effective coro-
nary perfusion and has a harmful effect on heart, i.e. arrhythmias, loss of
myocytes and fibrosis, with progression to HF [12]. We found that
radioactively labeled isoproterenol is not evenly distributed, and pro-
nounced radioactivity is detected in areas of greatest damage to car-
diomyocytes, which leads to myocardial infarction (MI) (confirmed by
electrocardiography, biomarkers, histopathological changes, etc.) [13].
Administration of NC restores the reduced protein synthesis in the outer
and inner membranes and mitochondrial matrix of heart muscle cells,
protects from isoproterenol-induced biochemical and histopathological
changes in rat myocardium [14]. In addition, NC, as a vasodilator, can
improve cardiac blood and lymph flow, reducing necrotic areas of the
heart [15]. We found that isoproterenol-induced necrotic myocardial
damage is accompanied by a loss of calcium-binding properties of car-
diomyocyte proteins, especially in sarcoplasmic reticulum (SR), which is
responsible for the storage of Ca2þ [16]. The loss of calcium affinity was
determined in 5 acidic proteins (3 proteins with Mr 60–80 kDa and 2
proteins with Mr20-30 kDa), in cardiac calsequestrin2 (CASQ2, Mr 55
kDa), which is the only known protein with cyclic storage and delivery of
calcium [17]. Isoproterenol does not affect the calcium-binding ability of
Ca2 þ -ATPase (Mr 100 kDa), but facilitates the binding of calcium to the
32 kDa membrane protein in SR, which usually does not have affinity for
calcium ions, but acquires it as a result of transition from alkaline form to
acidic form, determined by modeling of its tertiary structure with a
specially designed program (software development) [13, 16]. It should
be noted that the loss of calcium-binding ability of CASQ2 can cause
significant damage, while upon binding Ca2þ, CASQ2 is able to poly-
merize and hold up to ~40 Ca2þ per CASQ2 polymer, maintaining a high
content of SR Ca2þ and a relatively low content of free luminal Ca2þ [17].
It is of importance, because cardiomyocyte contraction is mediated by
Ca2þ-induced Ca2þ release with participation of SR-localized ryanodine
receptor 2 (RyR2), directly affected by luminal Ca2þ and indirectly by
CSQ2, which is localized close to RyR2 channels and is involved in direct
structural interaction with RyR2 [18,19]. Impairment of contractility,
cardiac arrhythmias, and HF can be caused by impaired intracellular
Ca2þ-handling, occurring mainly at the SR level and Ca2þleakage
through RyR2 channel, which contributes Ca2þdepletion in SR and de-
polarization of cardiomyocytes, triggering fatal arrhythmias [20].

Interestingly, we found that calcium binding ability is lost in the same
SR proteins and mitochondrial proteins of cardiomyocytes after pancre-
atic necrosis and long-term muscle crush injury (crush syndrome, CS),
which are also accompanied by heart damage and MI (see below). In
these cases, the administration of therapeutic doses of NC can also pro-
tect the myocardium from damage, regardless of whether it is caused by
isoproterenol or acute pancreatitis, and/or CS. Thus, NC can modulate
calcium levels in mitochondria and SR in cardiomyocytes, restoring
calcium affinity for calcium-binding proteins, especially CSQ2, and
completely inhibiting the calcium binding capacity of 32 kDa membrane
protein [13, 21]. It can be assumed that the beneficial effect of NC on
cardiac output is probably related to its effect on the accumulation of
intracellular calcium by Ca2þ-binding proteins involved in the regulation
of Ca2þrelease through RyR2, luminal Ca2þconcentrations due to in-
teractions between CSQ2 and RyR2 transmitted via anchor proteins
junctin and/or triadin [22].

Thus, NC can regulate the level of intracellular calcium, increasing its
binding to proteins and preserving its pool in heart cells. The concen-
tration of calcium serving as an inhibitor of cAMP and cGMP phospho-
diesterases also increases, stimulating myocardial contractility and
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supporting cardiac function after heart attack, decompensated congestive
heart failure, cardiogenic shock, etc. It should be noted that the advan-
tage of phosphodiesterase inhibitors is the combination of positive ino-
tropy with vasodilation, although their long-term use, increasing the
calcium content, can lead to arrhythmias and sudden cardiac death [23].
These negative consequences can be prevented by using NC to lower
calcium levels and increase the ability of cardiomyocyte proteins to bind
calcium.

It is noteworthy that Ca2þ released from the stores of the sarco-
plasmic/endoplasmic reticulum and extracellular pools of Ca2þ can
accumulate in the cytosol and mitochondria of cardiomyocytes and lead
to an overload of Ca2þ and, ultimately, to an opening of mitochondrial
permeability transition pore followed by mitochondrial dysfunction,
apoptosis and necrosis and death of heart cells [24]. Moreover, mito-
chondria are the main source of cellular production of reactive oxygen
species (ROS), and the opening of mitochondrial permeability transition
pore affects the mitochondrial ROS signaling [25]. The efflux of ROS
from mitochondria of heart cells is dynamically regulated by Ca2þ and
ADP, and can be used to develop approaches for prevention of HF [26].
NC can protect from deleterious mechanisms underlying heart damage
and HF by modulating the level of Ca2þ in SR and mitochondria of
cardiomyocytes.

1.2. The effect of hypothalamic peptides on heart damage following
pancreatic necrosis

Acute pancreatitis (AP) is associated with a number of metabolic
disorders, including hypocalcemia, which correlates with clinically sig-
nificant changes in hemodynamics, associated cardiac damage and
impaired myocardial contractility, also observed in AP models [27]. The
exact mechanism of myocardial damage that develops in AP is still un-
clear, but in clinical practice it is necessary to identify AP patients with a
high risk of cardiovascular disease in order to determine the treatment
strategy [28]. Despite the differences in pathophysiology of AP between
various animal models and humans, some common changes are
observed: early activation of proteases, release of inflammatory media-
tors, enhanced permeability in vascular and epithelial tissues, apoptosis
and necroptosis, abnormal calcium signaling in the acinar cells, etc. [29].
We used a rat model of AP induced by local hypothermia of pancreas,
which is characterized by diffuse necrotic myocardial damage and
myocardial infarction. We then studied the processes 3 h after the onset
of AP associated with vascular necrosis (edematous hemorrhagic AP), 24
and 72 h after the onset of AP associated with hemorrhagic pancreatic
necrosis, and 7, 14 and 21 days after the onset of AP associated with
chronic pancreatitis, characterized by symptoms of sclerosis and lip-
omatosisof organs, respectively, corresponding to reparative, chronic,
and chronic recurrent stages of pancreatitis [30, 31]. AP is accompanied
by increased secretion of catecholamines in blood and elevated level of
norepinephrine in heart, contributing to myocardial damage, similar to
isoproterenol-induced HF and MI, resulting in 25–35% of mortality from
AP [32].

At the necrotic stage of AP we observed a loss in the ability of car-
diomyocyte membrane proteins to bind calcium in mitochondria and SR,
including CSQ2, accompanied by compensatory binding of calcium to 32
kDa protein [13, 30, 31]. Calcium depletion and hypocalcemia cause а
total destruction of cardiomyocyte SR that is much more common in
patients with persistent organ failure in AP [33]. We have shown that NC
can protect the heart muscle from damage, possibly due to the fact that it
completely restores the affinity of calcium for calcium-binding proteins,
especially at the end of the necrotic stage of AP, in addition to helping
reduce amylase and trypsin levels and restore mast cell ability to regulate
histamine levels which increase significantly in the pancreas and plasma
of AP rats [13].

Surprisingly, the effective dose of PRP-1 (10�6 M) administered to
rats intraperitoneally 24 and 48 h after the onset of experimental
pancreatic necrosis, protected against heart damage, rapidly repairing
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necrotic areas and calcium affinity for calcium-binding proteins in car-
dyomyocytes [34] (Figure 1). Although, both PRP-1 and NC can increase
the incorporation of radioactive precursors into the proteins of car-
diomyocytes, especially at the chronic recurrent stage, they do not in-
fluence the expression of calcium-binding proteins, the ability of which
to bind calcium, can probably be restored by several mechanisms,
regardless of synthesis de novo [6, 8, 13]. This is especially important
because calcium plays a key role in converting edematous pancreatitis
into necrotic pancreatitis [35]. Excess of calcium in cardiomyocytes may
cause uncoupling of mitochondrial respiratory system and oxidative
phosphorylation, leading to energy deficiency and impairment of
myocardial contractility with a decrease in the strength of contractions
and contracture formation [36].

Experimental AP is characterized not only by redox dysregulation and
progression of ischemia and ion channel dysfunction, but also by the
depressing effect of pancreatic toxins, which affect the cardiac contrac-
tility associated with diastolic myocardial dysfunction [37]. So,
myocardial depressant factor (MDF, a toxic octapeptide, released into the
blood from ischemic pancreas) can reduce myocardial contractility and
cause damage to heart muscle in AP and various shocks [38]. An increase
in MDF is accompanied with an increase in activity by 8–12 times of
serum alpha-amylase, a marker of pancreatic dysfunction [13, 39]. Even
a single injection of an effective dose of NC can reduce alpha-amylase
activity by 80–85% and destroy MDF in blood and myocardium in the
acute stage of AP (the first 3 h of pancreatic inflammation) [13, 21].
Moreover, an effective dose of PRP-1 has a similar effect to NC, sup-
pressing both MDF and alpha-amylase in serum during pancreatic ne-
crosis [35].
Figure 1. Effect of proline rich peptide-1 (PRP-1) on the calcium binding to the
cardiomyocyte SR membrane proteins in the dynamics of pancreatic necrosis
(PN). 1, 3, 4, 5, 6 - acidic proteins; 2 - calsequestrin; 7 - two subunits of Ca2þ-
ATPase. (a) control; (b) early stage of PN - the 24th h after PN initiation; (c)
reparative stage of PN - the 7th day of PN/PRP-1 treatment; (d) chronic stage of
PN - the 14th day of PN/PRP-1 treatment; (e) chronic recurrent stage of PN - the
21st day of PN/PRP-1 treatment. Notes. 45CaCl2 was administered prior to initiation
of PN and its binding was assessed after SDS-PAGE separation of the cardiomyocyte
SR membrane proteins. PRP-1 was injected 24 and 48 h after the PN initiation.
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1.3. The effect of hypothalamic peptides on heart damage following crush
syndrome

Myocardial damage is developed in our model of experimental mus-
cle crush injury culminating in crush syndrome, which often leads to
death due to extreme hypovolemic shock, hypocalcemia, hyperkalemia,
metabolic acidosis, acute renal failure, etc. [40, 41]. Decompression is
accompanied by restoring blood flow in the damaged limbs and by
release of toxic compounds, including peptides, formed during anaerobic
proteolysis of myoglobin, which penetrate into the blood, causing
toxemia and systemic pathological changes [42]. The combination of
peritoneal dialysis and massive fluid resuscitation is used to reduce lactic
acidosis, serum levels of myoglobin and Kþ and myoglobin-derived toxic
peptides, which protect against tissue damage increasing the survival of
animals with long-term crush injuries [43]. We revealed four toxic pep-
tides resulting from anaerobic cleavage of muscle myoglobin after
long-term compression (more than 2–5 h), accompanied by ischemia and
necrosis, resulting in MI and cardiac arrest [44]. One of these peptides is
nonapeptide, which completely coincides with MDF except additional
C-terminal L-arginine, which enhances penetration of the peptide into
the tissues, in particular, the myocardium [45]. Clinical data also show
an accumulation of MDF and nonapeptide in myocardium 24–48 h after
AP and/or 24 h after decompression (reperfusion) in crush syndrome,
and are associated with the death of people from myocardial infarction.
MDF released during pancreatic necrosis and/or during decompression
in crush syndrome cannot cross the blood-brain barrier, but penetrates
the brain after N-terminal arginylation [35]. This “re-uptake”mechanism
works also for other small peptides formed in crush syndrome, which,
crossing the BBB in the form of "arginine proteins" cause neurodegen-
erative lesions in the nervous tissue [35, 46]. N-terminal arginylation of
proteins occurs in all eukaryotic cells, and arginylated proteins are
rapidly ubiquitinated and degraded by serine proteases, which can be
inhibited by endogenous molecules with a molecular weight from one to
five thousand [47].

Damage to cardiomyocytes is induced in crush syndrome in the early
stage of decompression, but not during compression [48]. We found
histomorphological changes in the heart in early period of decompres-
sion (2–48 h), which are accompanied by a decrease in calcium-binding
ability of membrane proteins in SR of cardiomyocytes, including CSQ2,
and these processes are strikingly similar to those observed with
pancreatic necrosis [40]. An effective dose of PRP-1 (10�6 M), admin-
istered at the end of compression and after an hour, significantly ame-
liorates the heart damage caused by pancreatic necrosis and/or crush
syndrome and protects against harmful processes, sufficiently modu-
lating the calcium-binding properties of Ca2þ-binding proteins in the
cardiomyocytes, and also destroying MDF, nonapeptide and other toxic
peptides derived from myoglobin [44]. It can be assumed that there is a
possible interaction between NC and PRP-1, since they use similar
mechanisms of heart protection for the same pathologies, but this re-
quires further study (Figure 2).

1.4. The effect of proline-rich peptide-1 on ischemia-reperfusion injury

Ischemic events in the heart are the most common cause of HF, and
are characterized by insufficient blood supply, depletion of energy re-
serves, changes in membrane potential and fluidity, impaired homeo-
stasis, etc., which can lead to MI and localized necrosis [49]. Reperfusion
is the only treatment recommended to reduce infarct size after the acute
MI, although ischemia-reperfusion (IR) can cause systemic inflammation
and oxidative stress contributing to complicated situation in the clinic,
such as cardiac arrest with successful reanimation, as well as ischemic
events in brain and heart leading to highmortality [50, 51]. Bioactive
peptides may have a protective effect against IR injury, they exhibit low
toxicity and immunogenicity and are often more selective for their target
than ordinary small organic molecules [52, 53]. Our findings show that
PRP-1 can also be used to reduce biochemical andmorphological changes



Figure 2. Effect of proline rich peptide-1 (PRP-1) on the calcium binding to the
cardiomyocyte SR membrane proteins in the dynamics of crush syndrome. (a)
control; (b) 2 h decompression; (c) 4 h decompression/PRP-1 treatment; (d) 48
h decompression/PRP-1 treatment. Notes. prior to initiation of muscle crush injury
45CaCl2 was administered and its binding assessed after SDS-PAGE separation of the
cardiomyocyte SR membrane proteins. PRP-1 was injected immediately at the end of
compression and an hour later.
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associated with pathological cardiac remodeling, including, development
and progression of ventricular dysfunction, arrhythmias, as well as ven-
tricular rupture and aneurysm, leading to death [54]. The diffuse and
granular immunoreactivity of PRP-1 is determined in the muscle fiber
network of sinoatrial node of human heart, and can affect cell death,
inflammation and oxidative stress, regulating the expression of cytokines
(TNF-α, IL-1 and IL-6), caspase activity, lipid peroxidation, energy
metabolism, glucose utilization, calcium transport, etc. [8]. It is impor-
tant, because oxidative stress (in particular, lipid peroxidation), inflam-
matory response, necrosis, apoptosis and other mentioned processes can
contribute to the development of MI [55].

Open-chest model of myocardial IR injury is the most acceptable and
suitable model for the reproduction of human MI and screening of
pharmacological activity of various compounds [56, 57]. Using this
model, we demonstrated that post-ischemic administration of an effec-
tive dose of PRP-1 significantly reduces in vivo necrotic area of myocar-
dial infarction, caused by temporary occlusion of coronary artery in rats,
as well as it improves cardiac hemodynamics and coronary circulation,
by increasing the left ventricular ejection fraction, which is an indicator
of efficiency of pumping into the systemic circulation [58]. PRP-1
significantly reduces the levels of superoxide anion and malondialde-
hyde in early period of reperfusion (up to 40–45% and 20–25%,
respectively), as well as inhibits the activity of myeloperoxidase and the
accumulation of neutrophils in heart tissues, attenuating inflammation
and necrosis and restoring contractile activity of rat myocardium after 24
h reperfusion [59]. In addition, PRP-1 can activate catalase, stimulate
energy metabolism and inhibit the activity of phospholipase A2
providing a membrane-stabilizing effect [8]. Of note, elevated levels of
lipoprotein-associated phospholipase A2 are detected early after MI and
are strongly and independently associated with mortality. Overall, PRP-1
inhibits oxidative and inflammatory processes that cause IR damage, and
ultimately supports cardiac function, which indicates an urgent need for
PRP-1 studies for its use in acute treatment of patients with MI.
4

2. Conclusion

Our findings show that hypothalamic peptides, neurohormone C and
proline-rich peptide-1 can protect from heart failure by affecting the
intracellular mechanisms of myocardial damage. They restore the
impaired calcium-binding ability of membrane proteins in sarcoplasmic
reticulum and mitochondria of cardiomyocytes and destroy toxic pep-
tides, including myocardial depressant factor, thereby providing higher
safety of cardiomyocytes, improving cardiac hemodynamics and coro-
nary circulation, and protecting against myocardial infarction caused by
isoproterenol, and/or pancreatic necrosis and crush syndrome. PRP-1
exerts also a dose-dependent cardioprotective effect against ischemia-
reperfusion injury, suppressing oxidative stress, reducing inflammation
and necrosis, and restoring myocardial contractility. Further studies of
these peptides may be promising for the treatment of patients at high risk
of cardiovascular disease, regardless of pathology.
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