
plants

Article

Framework Phylogeny, Evolution and Complex
Diversification of Chinese Oaks

Jia Yang 1,* , Yu-Fan Guo 1, Xiao-Dan Chen 1, Xiao Zhang 1, Miao-Miao Ju 1, Guo-Qing Bai 1,2,
Zhan-Lin Liu 1 and Gui-Fang Zhao 1,*

1 College of Life Sciences, Northwest University, Xi’an 710069, China; guoyufan@stumail.nwu.edu.cn (Y.-F.G.);
chenxiaodan@stumail.nwu.edu.cn (X.-D.C.); zhxiao@nwu.edu.cn (X.Z.); jumm089@nwu.edu.cn (M.-M.J.);
bgq@ms.xab.ac.cn (G.-Q.B.); liuzl@nwu.edu.cn (Z.-L.L.)

2 Institute of Botany of Shaanxi Province, Xi’an 710061, China
* Correspondence: yjhgxd@stumail.nwu.edu.cn (J.Y.); gfzhao@nwu.edu.cn (G.-F.Z.)

Received: 24 July 2020; Accepted: 12 August 2020; Published: 13 August 2020
����������
�������

Abstract: Oaks (Quercus L.) are ideal models to assess patterns of plant diversity. We integrated the
sequence data of five chloroplast and two nuclear loci from 50 Chinese oaks to explore the phylogenetic
framework, evolution and diversification patterns of the Chinese oak’s lineage. The framework
phylogeny strongly supports two subgenera Quercus and Cerris comprising four infrageneric sections
Quercus, Cerris, Ilex and Cyclobalanopsis for the Chinese oaks. An evolutionary analysis suggests that
the two subgenera probably split during the mid-Eocene, followed by intergroup divergence within
the subgenus Cerris around the late Eocene. The initial diversification of sections in the subgenus
Cerris was dated between the mid-Oligocene and the Oligocene–Miocene boundary, while a rapid
species radiation in section Quercus started in the late Miocene. Diversification simulations indicate a
potential evolutionary shift on section Quercus, while several phenotypic shifts likely occur among
all sections. We found significant negative correlations between rates of the lineage diversification
and phenotypic turnover, suggesting a complex interaction between the species evolution and
morphological divergence in Chinese oaks. Our infrageneric phylogeny of Chinese oaks accords with
the recently proposed classification of the genus Quercus. The results point to tectonic activity and
climatic change during the Tertiary as possible drivers of evolution and diversification in the Chinese
oak’s lineage.
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1. Introduction

Species diversity is a key element of biodiversity on earth [1,2]. Reconstructing the evolutionary
history of species-rich taxa provides fundamental insights about the forces shaping biodiversity [3–5].
Previous research targeting various taxa suggest that complex interactions, including abiotic elements
(e.g., geohistorical and climatic fluctuations), biological factors (e.g., random genetic drift, introgression
and life-history characteristics of organisms), and stochastic processes, could promote genetic turnover,
evolution, and speciation [6–11]. Furthermore, these interactions have been hypothesized to correlate
with evolutionary trade-offs in organisms’ investment strategies and, as a consequence, they can
potentially shape the patterns of the morphological divergence and diversification rates across species
evolution [12].

Quercus L. (Fagaceae) exhibits spectacular levels of species richness among angiosperms. Oaks are
considered keystone species and they constitute the highest biomass to forest ecosystems in the
Northern Hemisphere [13–15]. Central America and Mexico are a center of recent oak diversification,
where the diverse oak species are demonstrated to be originated from North American oak clades
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through rapid adaptations and niche transitions [16]. Despite the utmost ecological importance of oak
species, their classification has been a challenge that started in the 1800s and still continues today [17].
This challenge has resulted in various classification schemes based on morphology or on molecular
data, and can be attributed to the complex evolutionary history of oak species, which is characterized
by phenotypic similarity, reticulate evolution, and frequent hybridization [7,10,13,18–22]. Chinese oaks
have not been the exception to this problem and have traditionally been classified into two genera
or subgenera (Quercus and Cyclobalanopsis) based on phenotypic characters [23–25]. Recent work
using genome data has made significant progress in the classification at the infrageneric level of
genus Quercus [26]. In the updated classification, genus Quercus is separated into subgenera Quercus
and Cerris, which correspond to the New and the Old World oaks, respectively. Subgenus Quercus
encompasses five infrageneric sections: the white oaks (section Quercus), red oaks (section Lobatae),
intermediate oaks (section Protobalanus), live oaks (section Virentes) and a relictual group with two
endemic oak species (section Ponticae). Subgenus Cerris comprises three infrageneric groups, of which
sections Ilex and Cerris are exclusively distributed across Eurasia, while section Cyclobalanopsis is
entirely found in Asia [26,27]. However, for the Chinese oaks, although the DNA barcoding approach
had been adopted to explore infrageneric groups and species boundaries among some Chinese oak
species [28,29], to date a phylogenetic test assessing the Chinese oak’s lineage based on molecular data
is lacking.

China hosts ca. 130 oak species according to Flora of China and is considered the diversity center
of Eurasian oak species [23]. Fossil records and recently published molecular research suggest that
the evergreen oak species of sections Ilex and Cyclobalanopsis probably originated in Southwestern
China [30–32]. In terms of distribution, the Chinese oak species range from the eastern Himalaya to
Taiwan Island, and from northeastern China to Hainan Island in subtropical and temperate areas,
accounting for a prominent part of woody vegetation in East Asia and thus reflecting a remarkable
ecological flexibility [33].

Despite the ecological and evolutionary importance of Chinese oaks, the diversification patterns
and evolutionary history of the Chinese oak’s lineage are not well estimated. A series of phylogeographic
research on some widespread Chinese oak species suggest that geographical distribution and climate
change during the past geological periods could have affected the intra- and interspecific genetic
variation of these species [34–41]. Additionally, research on Chinese oak species seems to imply that
adaptation to different environments may influence genetic diversity, species turnover, and thus be
relevant for the implementation of conservation strategies [32,42]. Given that a well-resolved phylogeny
could provide a framework to understand diversification patterns and the evolutionary history of plant
species [16], it is imperative to generate a framework phylogeny of the Chinese oaks to understand the
evolutionary process and diversification pattern of this species-rich group.

The purposes of this study are: (1) to generate a phylogenetic framework and evolutionary history
for 50 Chinese oak species (Table 1) based on five chloroplast regions and two nuclear loci, (2) to use
simulations to understand the lineage diversification patterns and multiple traits-based evolution of
the Chinese oak species under study, and (3) use simulation data to explore the potential association
between the lineage diversification and phenotypic evolution in the Chinese oak’s lineage.
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Table 1. Taxon information and phenotypic features of the Chinese oak species used in this study.

Section Taxon Samples Leaf Character Cupule Character Florescence Range Fruiting Period with Florescence

Quercus Quercus aliena Blume 9 Deciduous Ovate bract Apr.–May Present year
Q. aliena var. acutiserrata Maximowicz ex Wenzig 9 Deciduous Ovate bract Mar.–Apr. Present year

Q. dentata Thunb. 9 Deciduous Lanceolate bract Apr.–May Present year
Q. fabri Hance 9 Deciduous Ovate bract Apr. Present year

Q. griffithii Hooker and Thomson ex Miquel 6 Deciduous Ovate bract Apr.–May Present year
Q. liaotungensis Koidz. (or Q. wutaishanica Blume) 9 Deciduous Ovate bract Apr.–May Present year

Q. mongolica Fischer ex Ledebour 9 Deciduous Ovate bract Apr.–May Present year
Q. robur L. † 2 Deciduous Ovate bract Mar.–Apr. Present year

Q. serrata Murray 8 Deciduous Ovate bract Mar.–Apr. Present year
Q. serrata var. brevipetiolata (A. DC.) Nakai 6 Deciduous Ovate bract Mar.–Apr. Present year

Q. stewardii Rehd. 3 Deciduous Lanceolate bract Mar.–Apr. Present year
Q. yunnanensis Franchet 3 Deciduous Lanceolate bract Mar.–Apr. Present year

Ilex Q. acrodonta Seemen 6 Evergreen Ovate bract Mar.–Apr. Present year
Q. aquifolioides Rehd. and Wils. 8 Evergreen Ovate bract May–Jun. Present year

Q. baronii Skan 9 Semievergreen Lanceolate bract Apr. Following year
Q. cocciferoides Hand.-Mazz. 3 Evergreen Ovate bract Apr.–Jun. Present year

Q. dolicholepis A. Camus 6 Evergreen Lanceolate bract Mar.–May Following year
Q. engleriana Seemen 3 Evergreen Ovate bract Apr.–May Present year

Q. franchetii Skan 3 Evergreen Ovate bract Feb.–Mar. Present year
Q. gilliana Rehd. and Wils. 3 Evergreen Ovate bract May–Jun. Present year
Q. guyavifolia H. Leveille 8 Evergreen Ovate bract Apr.–May Present year

Q. lanata Smith 3 Evergreen Ovate bract May–Jun. Following year
Q. longispica (Hand.-Mazz.) A. Camus 6 Evergreen Ovate bract May–Jun. Present year

Q. monimotricha Hand.-Mazz. 4 Evergreen Ovate bract May–Jun. Following year
Q. oxyphylla (E. H. Wilson) Hand.-Mazz. 6 Evergreen Lanceolate bract May–Jun. Following year

Q. pannosa Hand.-Mazz. 4 Evergreen Ovate bract May–Jun. Following year
Q. phillyraeoides A. Gray 6 Evergreen Ovate bract Mar.–Apr. Present year

Q. pseudosemecarpifolia A. Camus 6 Evergreen Ovate bract May–Jun. Present year
Q. rehderiana Hand.-Mazz. 3 Evergreen Ovate bract May–Jun. Present year

Q. semecarpifolia Smith 3 Evergreen Ovate bract May–Jun. Present year
Q. senescens Hand.-Mazz. 10 Evergreen Ovate bract Mar.–May Present year

Q. spinosa David ex Franchet 15 Evergreen Ovate bract May–Jun. Following year
Q. tarokoensis Hayata 4 Evergreen Ovate bract Apr.–May Following year

Q. utilis Hu and W. C. Cheng 3 Evergreen Ovate bract Apr.–May Present year
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Table 1. Cont.

Section Taxon Samples Leaf Character Cupule Character Florescence Range Fruiting Period with Florescence

Cerris Q. acutissima Carruth. 9 Deciduous Subulate bract Mar.–Apr. Following year
Q. chenii Nakai 3 Deciduous Lanceolate bract Mar.–Apr. Following year

Q. variabilis Blume 6 Deciduous Subulate bract Mar.–Apr. Following year
Cyclobalanopsis Q. arbutifolia Hickel and A. Camus 2 Evergreen Ring shaped bract Dec.–Jan. Following year

Q. championii (Bentham) Oersted 3 Evergreen Ring shaped bract Dec.–Mar. Following year
Q. gilva (Blume) Oersted 5 Evergreen Ring shaped bract May Present year

Q. glauca (Thunberg) Oersted 7 Evergreen Ring shaped bract Apr.–May Present year
Q. glaucoides Schottky 2 Evergreen Ring shaped bract May Present year

Q. macrocalyx Hickel and A. Camus 2 Evergreen Ring shaped bract Mar.–Apr. Present year
Q. multinervis W. C. Cheng and T. Hong 4 Evergreen Ring shaped bract May–Jun. Following year

Q. myrsinifolia (Blume) Oersted 7 Evergreen Ring shaped bract Jun. Present year
Q. neglecta Schottky 2 Evergreen Ring shaped bract Feb.–Mar. Following year

Q. oxyodon (Miquel) Oersted 3 Evergreen Ring shaped bract May–Jun. Present year
Q. patelliformis (Chun) Y. C. Hsu and H. W. Jen 2 Evergreen Ring shaped bract May–Jun. Present year

Q. sessilifolia (Blume) Schottky 5 Evergreen Ring shaped bract Apr.–May Present year
Q. sichourensis Hu 2 Evergreen Ring shaped bract Apr.–May Present year

Species names in bold indicate monophyletic found on the maximum likelihood phylogeny in Figure 1; phenotypic characters are compiled according to Flora of China; † samples of Quercus
robur are collected from cultivation in Tacheng City, Xinjiang Province, China.
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2. Results

2.1. Sequence Information of the Chinese Oaks

The DNA sequence alignment for the five plastid fragments ranged from 289 (psbA-trnH) to
734 bp (matK) while the two nuclear genes were 332 and 355 bp for the internal transcribed spacer
(ITS) and stress-associated protein gene (SAP), respectively (Table S1). All designed primers for the
seven loci showed high amplification rates across the 50 Chinese oak species except for one species
(Quercus macrocalyx), in which the psbA-trnH and ITS regions failed to produce results after repetitive
PCR sequencing three times. The number of successfully sequenced individuals for the two nuclear loci
was smaller than the samples obtained with the five chloroplast primer pairs due to the species-specific
characteristics of SAP gene and the removal of potential ITS pseudogenes (Table S1).

The three genetic datasets (plastid dataset, nuclear dataset and combined plastid–nuclear data matrix)
contained 239, 205 and 184 sequences, respectively, from 49 oak species for subsequent phylogenetic analyses.
The maximum frequency of derived mutations (MFDM) tests among the Chinese oak species suggested
no significant deviation from neutral evolution for the seven genetic loci (Table S1). An examination of
chloroplast and nuclear data showed that the Chinese oaks have high levels of genetic diversity; similar
results were obtained for the identified sections Quercus, Ilex, and Cyclobalanopsis. An exception to this
pattern was the chloroplast dataset for section Cerris, which showed moderate genetic diversity; however,
the nuclear data for this section also indicated high levels of genetic diversity (Table S2).

2.2. Infrageneric Phylogeny of the Chinese Oak’s Lineage

Two major clades of the Chinese oak’s lineage were identified based on the maximum likelihood
and neighbor-net analyses of the three genetic datasets. These two groups correspond to the deep
divergence between the New World (subgenus Quercus) and the Old World oak clades (subgenus Cerris)
(Figure 1, Figures S1 and S2). The New World oak clade comprised all Chinese white oaks (Quercus
section Quercus) with strong bootstrap supports (>95). The rest comprised species from sections Cerris,
Ilex and Cyclobalanopsis, clustered within the Old World oak clade. Section Cerris formed a monophyletic
group with a strong bootstrap support (>90); however, it was unexpectedly nested within section
Ilex (Figure 1a). Additionally, the later section (in chloroplast-based and chloroplast–nuclear-based
phylogeny, Figure 1a and Figure S1) and section Cyclobalanopsis (in nuclear-based phylogeny, Figure S2)
were not monophyletic. The best infrageneric framework uses a concatenated plastid–nuclear dataset,
particularly the neighbor-net phylogenetic relationship that takes into account conflicting signals
between chloroplast and nuclear loci, and clearly recovered the four proposed sections of the Chinese
oak species according to the newly updated classification of the genus Quercus (Figure 1b).

Of the 50 Chinese oaks with two or more samples, 13 were found monophyletic on the best maximum
likelihood phylogeny. Within sections Ilex and Cyclobalanopsis, the monophyletic oaks are endemic species
with narrow distribution ranges (e.g., Quercus cocciferoides, Q. utilis, Q. tarokoensis, Q. arbutifolia and
Q. sichourensis) or species with samples collected from a single location (e.g., Q. semecarpifolia and Q. gilva).
Within section Cerris, the widespread Q. acutissima was monophyletic with a moderate support value (=57),
suggesting possible genetic isolation with its sympatric sibling (Q. variabilis). By contrast, individuals of
the Chinese white oaks from section Quercus were mixed together and no monophyly of a white oak
species was supported by the phylogenetic relationships, indicating unclear species boundaries among
these closely related species (Figure 1a; Table 1).
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Figure 1. Infrageneric phylogeny of Chinese oak species inferred with (a) maximum likelihood and
(b) neighbor-net methods using combined chloroplast–nuclear dataset. The four identified sections in
the Chinese oak’s lineage are color-coded. Gray circles on branches of the maximum likelihood tree
indicate bootstrap values > 60, and bootstrap confidence > 60 were showed for major clusters on the
neighbor-net network.
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2.3. Evolutionary History of the Chinese Oaks

Bayesian evolutionary analyses provided a concordant infrageneric phylogeny for the Chinese
oak’s lineage at the species level (Figure 2). Based on two fossil-calibrated time points, the evolutionary
tree indicated that the divergence between the Quercus ancestor and the outgroup occurred at about
65.54 Ma with a 95% highest posterior density (95% HPD) around 46.43–95.56 Ma. The initial divergence
between the Old World oak clade and New World oak clade was estimated at 43.54 Ma (95% HPD:
25.02–64.92 Ma) (node A in Figure 2; Table 2). Within the Old World oak clade, the first split (node B)
happened between the ring-cupped oak clade (section Cyclobalanopsis) and the Ilex-Cerris cluster at
about 38.69 Ma with a moderate posterior probability (PP = 0.58); this event was closely followed by
the divergence between sections Ilex and Cerris around 36.04 Ma (95% HPD: 28.37–52 Ma, node C).
The crown ages of sections Cyclobalanopsis (node D) and Ilex (node E) were close to 29.29–30.97 Ma,
while the Cerris crown age (node F) was estimated to be 24.56 Ma (95% HPD: 18.47–30.44 Ma). For the
white oak clade (section Quercus), the lineage diversification of this group (node G) was inferred at
about 6.66 Ma with a 95% HPD: 2.61–15.91 Ma (Figure 2; Table 2).

Table 2. Estimations of the major clade age with related abiotic events and mean lineage diversification
rates for the Chinese oak’s lineage.

Infrageneric Event Description (Node) Time Estimation (Ma)
Mean

Speciation/Extinction/Turnover
Rate (Species/Myr)

Related
Climatic/Geological

Event †

Clade divergence New World clade–Old
World clade (A)

43.54 (95% HPD:
25.02–64.92) – Early uplift of the

Qinghai-Tibetan Plateau

Cyclobalanopsis-
(Ilex + Cerris) (B) 38.69 – Eocene–Oligocene

Glaciation

Ilex-Cerris (C) 36.04 (95% HPD:
28.37–52.00) – Eocene–Oligocene

Glaciation

Section diversification Cyclobalanopsis (D) 29.29 (95% HPD:
15.56–46.97) 0.1899/0.0934/0.2833 Oligocene Glaciation

Ilex (E) 30.97 0.1759/0.0865/0.2624 Oligocene Glaciation

Cerris (F) 24.56 (95% HPD:
18.47–30.44) 0.1730/0.0874/0.2604

Late Oligocene
Warming/Establishment

of Asian Monsoon

Quercus (G) 6.66 (95% HPD:
2.61–15.91) 0.2496/0.1508/0.4004

Miocene
cooling/Intensification of

Asian Monsoon

HPD: highest posterior density; † related abiotic events are derived from Zachos et al. (2001) and Favre et al. (2015) [43,44].

2.4. Lineage Diversification and Phenotypic Evolution of the Chinese Oak Species

Diversification simulations showed varying speciation rates for the phylogeny of the 46 Chinese
oak species studied. The phylorate tree suggested only one evolutionary shift (Bayesian factor = 0.21)
with an increased speciation rate (mean: 0.2496 species/Myr) on the stem of the Chinese white oaks
(section Quercus). Within the Old World oak clade, the ring-cupped oaks from section Cyclobalanopsis
showed a slightly higher speciation rate (mean: 0.1899 species/Myr) compared with oaks from sections
Ilex (mean: 0.1759 species/Myr) and Cerris (mean: 0.1730 species/Myr) (Figure 3; Table 2). Analyses of
terminal diversification rates, including the mean speciation rate (lambda), extinction rate (mu) and
turnover rate (lambda + mu), indicated that the diversification rate of the Chinese white oak clade
was significantly higher than the Old World oak clade, while sections Ilex and Cerris had similar
diversification rates (Figure 3; Table 2). Pairwise comparisons of mean speciation rates (lambda rate)
among the four identified sections showed significant differences between the New World oak clade
(section Quercus) and sections Cerris, Ilex and Cyclobalanopsis, which was confirmed with a Bonferroni
t-test with 5000 random samples. Similarly, within the Old World oak clade, significant speciation rate
differences were found between sections Cerris and Cyclobalanopsis and sections Ilex and Cyclobalanopsis;
however, no differences in the simulated speciation rates were found between sections Cerris and Ilex
(Table S3).
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Figure 2. (a) Fossil-calibrated evolutionary history of the Chinese oaks and (b) geohistorical and climate
events that possibly impacted on evolution of the Chinese oak’s lineage during the Cenozoic era [43,44].
Branches of the Bayesian evolutionary tree are colored according to the four identified sections. Black stars
indicate fossil-calibrated points used in molecular dating. Posterior probabilities with values > 0.60 are
shown near the nodes. Black curve in (b) indicates the global trends of temperature and average oxygen
isotope from Paleocene to Pleistocene. Gray dashed lines and yellow triangles mirror the proposed
dynamics of the Qinghai-Tibetan Plateau (QTP)-Himalaya and Asian monsoon systems, respectively.

Simulations of global phenotypic diversification on PC1 traits indicated seven trait-based shifts
with probabilities ranging from <0.02 to 0.21 across the Chinese oak’s lineage (Figure 4). Major transitions
of phenotypic traits with high probability were found within the Old World oak clade, and generally
corresponded to species clusters with increased phenotypic diversification rates (beta rates). In contrast
to the lineage diversification results (Figure 3), the Chinese white oaks (section Quercus) showed
relatively low beta rates; also, two shifts with low Bayesian probabilities (<0.02) were identified on
the stem of this section and on the endemic Q. stewardii (Figure 4). A Bonferroni t-test for pairwise
comparison of mean rates in phenotypic evolution (beta rate) among the four identified Chinese oak
sections indicated no significant differences between the two deciduous sections Quercus and Cerris.
In contrast, the evergreen sections Ilex and Cyclobalanopsis showed significant differences against the
deciduous sections Quercus and Cerris in phenotypic evolution. A significant difference in beta rates
was also found between sections Ilex and Cyclobalanopsis (Table S3).
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Figure 4. Simulation of the phenotypic evolution of the Chinese oaks suggests heterogeneous rates in
trait-based evolution and several phenotypic transitions in the Chinese oak’s lineage. Gray circles on
branches denote potential phenotypic shifts with varying Bayesian probabilities. Trait characteristics of the
tip species are coded with colored squares as follows: leaf character-deciduous (orange), evergreen (green)
and semievergreen (yellow); cupule character-ovate bract (blue), lanceolate bract (orange), subulate bract
(red) and ring shaped bract (green); fruiting time-present year (blue) and the following year (orange).
Dumbbell charts demonstrate the florescent periods of the tip species on the phylogeny.

After using generalized linear regressions, the association analyses suggested significant and
negative correlations between the tip rates in the phenotypic divergence and lineage diversification
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(lambda vs. beta: R2 = 0.2096, P = 0.0014; mu vs. beta: R2 = 0.2522, P = 0.0004) for the 46 Chinese oak
species in diversification simulations (Figure 5).Plants 2020, 9, x FOR PEER REVIEW 11 of 21 
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3. Discussion

The Chinese oak’s lineage is characterized by a high species richness and diverse species
morphology, which are proposed as potential origins of oak species diversity [23,30]. Despite this, there
is no current molecular-based phylogenetic framework to understand the evolution of the Chinese oaks;
one of the main reasons for this outcome is, in part, that previous research has focused on oak species
from areas outside China. In this study, we integrated chloroplast and nuclear data from 50 Chinese oak
species to investigate their phylogenetic relationships, evolutionary history and diversification patterns.
Our results provide an infrageneric phylogeny for the Chinese oaks and point to the potential impact
of past geological and climatic changes on the evolution and diversification of this species-rich lineage.

3.1. Infrageneric Phylogeny of Chinese Oaks

The phylogenetic reconstruction obtained in this study identified two major clades (subgenera
Cerris and Quercus) with four sections—Quercus, Ilex, Cerris and Cyclobalanopsis—for the Chinese
oak’s lineage (Figures 1 and 2). Although a previous study based on chloroplast loci did not provide
enough support for these sections [29], the use of a combined plastid–nuclear dataset improved the
infrageneric resolution of the Chinese oak phylogeny. An examination of the phylogenetic trees based
on separate plastid and nuclear datasets revealed a phylogenetic incongruence, which has previously
been documented for oaks [45,46]. Specifically, the concatenated chloroplast dataset showed sections
Cerris and Cyclobalanopsis as monophyletic but nested within section Ilex, while the phylogenetic tree
based on nuclear data revealed a very different tree structure with a monophyletic section Cerris and a
polyphyletic section Cyclobalanopsis, both nested within section Ilex (Figures S1 and S2). Apart from
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the limited genetic data used in this study, this incongruence is proposed to be affected by taxonomic
decoupling and geographic restraint in the plastid genealogy of oak species; thus, the plastid sequence
data is suggested to be less useful for estimating species phylogenetic relationships in oaks [27,46].
However, the conflict between the two datasets seems to be recovered by the neighbor-net method
in this study, as the neighbor-net network based on combined plastid–nuclear data strongly shows
the presence of two subgenera and four infrageneric species groups for the Chinese oak’s lineage
(Figure 1b). Overall, our results are consistent with the Quercus infrageneric phylogeny proposed
by Denk et al. (2017), which is based on a large number of DNA sequences from a comprehensive
sampling of European and American oaks [20,21,27,47,48]; furthermore, this updated infrageneric
phylogeny is fully consistent with an oak genomic landscape analysis [26].

The infrageneric phylogeny of the Chinese oaks that we obtained shows that only 13 from the
50 collected species were monophyletic, reflecting an extensive introgression and consequent difficulty
in defining species boundaries, especially among closely related species. Most of the monophyletic
species are endemic in sections Ilex and Cyclobalanopsis; in contrast, not a single monophyletic species was
resolved in section Quercus (subgenus Quercus) (Figure 1). These results are likely the consequence of the
complex gene flow among closely related species which suggests an incomplete lineage isolation [28,34].
Similar interspecific gene flow patterns have been observed among some close relatives of sections
Ilex and Cyclobalanopsis [49,50]. Moreover, it is likely that the limited genetic data used in this study is not
enough to identify the biological boundaries and phylogenetic relationships among closely related species;
thus, additional data will be necessary to identify monophyletic groups. Ideally, the species delimitation
problem in oaks could be solved using genome information; however, recent studies based on plastome
and genomic data have revealed similar difficulties to those faced in this study. Indeed, several authors
have highlighted that, even with the use of genome data, finding monophyletic groups for some oak
species is challenging [26,46].

3.2. Evolutionary History of the Chinese Oaks

Several research groups have studied the evolutionary history of Quercus and have estimated
dissimilar divergence times for different oak groups, e.g., [16,48,51,52]. Based on a robust phylogeny of the
genus Quercus, Hipp et al. (2020) obtained older crown times, for all infrageneric clades, than previously
reported [26]. In evolutionary analyses, different factors could cause discrepancies in the estimation of
molecular dating such as: the calibration time points (e.g., fossil-calibrated point on a crown age or a stem
age), the phylogenetic signals among different genetic datasets (e.g., multiple genetic datasets considered
in this study), and the inclusion of species from different lineages [16,45,48,51]. In fact, in our study,
the limited genetic data and calibrated points could have introduced some bias to the molecular dating.
For example, the minimum and maximum age range for section divergence and lineage diversification
were broad for some clades (Figure 2; Table 2); these broad age range intervals could be the result of
conflicts between the phylogenetic signals from the plastid and nuclear datasets. Despite this situation,
the combined chloroplast and nuclear dataset using a coalescent method produced a phylogenetic
framework that is consistent with the most recent phylogeny for the genus Quercus (Figure 1).

Our results indicate that the initial divergence of the Chinese oak’s lineage, that is the split between
the two subgenera Quercus and Cerris, possibly happened around the mid-Eocene, 43.54 Ma (node A
in Figure 2; Table 2) when the Qinghai-Tibetan Plateau (QTP) began to uplift [43,53]. Contrasting opinions
also suggest that the elevation of the QTP reached about 4000–5000 m at the mid-Eocene epoch
(ca. 45 Ma) [54]. This might have caused a decrease in temperature during mid- to late Eocene, leading to
the Eocene–Oligocene glaciation [43,44]. Climatic and geological fluctuations during this period likely
caused ecological differentiation between low and high latitude regions, triggering the divergence between
ancestors of the Old World oak clade (subgenus Cerris) (from a mid- to low latitude), and the New World
oak clade (subgenus Quercus), distributed at a high latitude [27,45]. Within the Old World oak clade, the
sections recognized in our work could have arisen before the late Eocene, thus it is possible that the low
temperature with an arid environment during the Eocene–Oligocene glaciation could have promoted the
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split of the humidity-adapted Cyclobalanopsis lineage (node B) and the arid-tolerant oaks from section Ilex
(node C). Evidence for this inference is the appearance of fossil records of sections Ilex and Cyclobalanopsis
in Asia from the mid- to late Eocene [23,55]. According to our reconstruction, the initial diversification
within the two evergreen clades (sections Cyclobalanopsis and Ilex, nodes D and E in Figure 2; Table 2)
probably took place during the early to mid-Oligocene; during this glacial period, the relatively stable
climates likely promoted long distance migration (such as the European holly oaks, which originated
from the East Asian oak lineage and migrated via the Tibet-Himalaya corridor) [32] and the geographical
isolation of some evergreen oaks (e.g., Q. sichourensis and Q. tarokoensis in this study). We estimated
that most species from sections Ilex and Cyclobalanopsis differentiated around the early to mid-Miocene
when the intense uplift of the QTP and Himalaya took place; during this time, temperature fluctuations
from the climatic optimum to cooler temperatures could have promoted the increase in genetic variation
and ecological differentiation of species in these two sections [31,43]. Furthermore, fossil evidence from
the Miocene consisting of abundant and morphologically diverse evergreen oak species supports the
diversification of sections Cyclobalanopsis and Ilex during this time period in Asia [23]. Within section
Cerris, the presence of fossil records in Western Eurasia appears to support our estimation that the first
divergence of this group probably happened around the Oligocene–Miocene boundary (node F in Figure 2;
Table 2). However, a revised fossil record of section Cerris in the Russian Far East suggests that the
differentiation of this section could have occurred in the early Oligocene [56]. If the divergence of Cerris
oaks took place during the late Oligocene, then it is possible that the establishment of the Asian monsoon
system, with increasing temperatures, might have triggered the differentiation of deciduous oaks in this
section. Independently of the origin, the Cerris oaks are currently the most diverse group in Western
Eurasia with eight accepted species. In contrast to the early divergence between the New and Old World
oak clades, species differentiation within section Quercus likely took place in the late Miocene (node G in
Figure 2; Table 2). Species diversification in this section could be the result of descending temperatures and
an intensification of the Asian monsoon system during the late Miocene [43]. Within section Quercus, it has
been suggested that the Eurasian Roburoid oaks became established around the mid-Miocene period from
ancestors of the North American Prinoideae and Albae clades, and then split into East Asian and Western
Eurasian lineages since ca. 10 Ma [26], corresponding closely to our time estimation. Similar to previous
research on American and Eurasian oak species [16,48], our analyses also support a rapid radiation of the
Chinese white oak clade (section Quercus) from the late Tertiary to early Quaternary (Figure 2).

3.3. Complex Diversification of the Chinese Oak’s Lineage

In general, diversification simulations suggest homogeneous lineage diversification rates
(mean lambda: 0.1731 species/Myr) for the 46 oak species studied, with the exception of a possible
evolutionary shift (non-core shift) for the Chinese white oak clade (section Quercus) (mean lambda:
0.2496 species/Myr) (Figure 3; Table 2). In a study of global oak evolution based on genomic data,
Hipp et al. (2020) found a similar pattern for species in section Quercus; their results showed an
evolutionary shift with an increased speciation rate for a group of white oak species referred to as
the Roburoid clade (which included some Chinese white oak species) [26]. This evolutionary shift
in section Quercus could be the result of different evolutionary dynamics between the New and Old
World oak clades, as fossil evidence suggests that the ancestors of these two clades originated in the
Nearctic and Palearctic Indomalayan regions, respectively [27,45]; thus, it is possible that species in
these clades adapted to the different geological and ecological conditions associated with their distinct
regions of origin. Furthermore, different species diversification patterns and migration routes could
have led to disparate evolutionary conditions for species in sections Quercus (the New World oak
clade) and other sections (the Old World oak clade) [16,26]. Another plausible explanation for the
diversification differences between subgenera Quercus and Cerris is that the rapid radiation of the white
oak clade since the late Miocene (Figure 2) might generate a conserved evolutionary configuration
during relatively short speciation processes [57]. Within subgenus Cerris, the mean diversification rate
for the ring-cupped oak clade (section Cyclobalanopsis) is slightly higher than sections Ilex and Cerris
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(Table 2), but it is not identified as a shift by the Bayesian models. Given the small fraction of species
from section Cyclobalanopsis included in the Bayesian analysis of macroevolutionary mixtures (BAMM)
(Table S4), this result requires further investigation with a more comprehensive sampling.

Simulations on global phenotypic evolution (PC1) suggest a low morphological diversification
rate in section Quercus, mirroring the similarity of the morphologies among Chinese white oaks;
however, this outcome could be a reflection of the limited phenotypic difference information provided
by the selected morphological characters (Figure 4; Table 1 and Table S5). Alternatively, the low
morphological diversification rate in section Quercus could be the result of their recent origin (Figure 2) and
associated absence of strong reproductive isolation barriers, which could facilitate extensive hybridization.
An example that supports the latter statement comes from studies in Roburoid oaks (a subgroup that
belongs to section Quercus), such as Q. robur and Q. petraea, which appear to have frequent interspecific
introgressions [58]. The taxonomic confusion in the Roburoid clade is proposed to be the result of
morphological convergence and niche conservatism [26]. By contrast, Chinese oak sections belonging to
the Old World oak clade show diverse rates in phenotypic diversification; possible shifts of morphological
traits found on several clusters in sections Ilex and Cyclobalanopsis correspond to the differences in traits
of phenotypic characters, florescence and fruiting time (Figure 4; Table 1 and Table S5). Given the early
divergence of the Old World oak clade (Figure 2; Table 2), potential reasons for a phenotypic turnover within
this clade are its long evolutionary history, adaptation to heterogeneous environments, and divergence
caused by migration and geographic disruptions [31,32,45].

Interestingly, the significant and negative linear relationships between the tip rates in the lineage
diversification and phenotypic evolution of the Chinese oak’s lineage indicate that morphological traits tend
to be more differentiated in oak species that have low diversification rates (Figure 5). Complex associations
between morphological divergence and species diversification have been predicted in animals [59].
Although this process has rarely been investigated in plant groups, an early study on the species-rich
clades Adoxaceae and Valerianaceae has revealed negligible correlations between the rates of diversification
and morphological innovation [60]. For the Chinese oaks in this study, it is plausible that the increased
rates of lineage diversification in section Quercus (Figure 3; Table 2) could be associated with a relatively
high genetic variation (Table S2) in the genome (such as structural variation) [61], while this type of generic
variation is not correlated with distinct morphology. Additionally, frequent introgressions among oak
siblings likely induces the exchange of adaptive genes as well as reduces the phenotypic variability in
section Quercus [58,62]. On the other hand, a study on the diversification patterns of the American oaks in
a community assembly showed that the ecological divergence among closely related species from the same
clade, accompanied by the niche convergence of species between distant clades, could trigger complex
diversification patterns in oak lineages [57]. A third possibility for the negative correlations we found
is that the intrinsic trade-offs between the functional traits and phenotypic traits in species investment
strategies could generate multivariate associations with lineage diversifications [12,63]. According to this
hypothesis, our negative correlations might be a predictor of the diversification process of the Chinese
oak’s lineage. Yet, given the neutrality of the genetic data in this study (Table S1), future work integrating
adaptation genes, functional traits, as well as ecological data may help us understand the complex
associations of diversification patterns in the genus Quercus [64].

4. Material and Methods

4.1. Species Information and DNA Extraction

We collected 268 individuals representing 50 Chinese oak species covering the proposed infrageneric
groups of Eurasian oaks. Species identifications were made based on their morphological descriptions in
Flora of China (Table 1). Oak samples were collected from natural populations and arranged according to the
identified taxonomy of the genus Quercus [26,27]. Of the 50 oaks studied, Quercus robur is a European oak
species and was sampled from cultivation in Tacheng City, Xinjiang Province. Voucher specimens of the
collected oak species were archived in the herbarium of the College of Life Sciences at Northwest University.
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Fresh leaves were collected from adult oak trees and were dried with silica gel prior to DNA
extraction. The total genomic DNA was isolated using the plant genomic DNA Kit from TIANGEN
(Tiangen, Beijing, China) and stored at 4 ◦C for PCR amplification.

4.2. PCR Amplification and Molecular Data Processing

Five chloroplast DNA fragments (psbA-trnH, matK, ycf 1, ycf 3-trnS and matK-trnK), showing
relatively high genetic variations in some Chinese oaks, were selected from the preliminary research [28].
Two nuclear regions, the internal transcribed spacer (ITS, partial regions) and a confirmed single-copy
gene SAP (a predicted stress-associated protein gene) [28] were also sequenced for all samples collected.
The primer information for these seven loci is listed in Table S1. PCR amplifications were performed in
a PTC-2000 thermal cycler (MJ Research) following Yang et al’s method [65], and the PCR products were
purified and sequenced by Sangon (Sangon Biotech, Shanghai, China). All obtained sequences for this
study were deposited in GenBank with accession numbers: KX836866-KX838287, MT129797-MT130099,
and MT131185-MT131230.

All DNA sequences obtained were checked and aligned in BioEdit 7.0.9.0 [66]. Ambiguous sites
with poly-(A/T) structures detected in three plastid fragments (psbA-trnH, ycf 3-trnS and matK-trnK)
and poly-C in the ITS region were deleted from the alignments. Insertion-deletions (indels) were treated
as missing data and removed prior to the analyses. Following the criteria used by Yang et al. (2017),
the obtained sequences of the ITS region were carefully examined to filter out potential pseudogenes,
while functional ITS orthologues were retained for phylogenetic reconstruction [28]. Sequencing peaks
of nucleotide sites with an overlap greater than 80% in the two nuclear loci were treated as heterozygous,
and the ambiguity code was used to replace the overlapped sites according to the IUPAC (International
Union of Pure and Applied Chemistry). For each alignment of plastid and nuclear data, a neutrality
test using the maximum frequency of derived mutations (MFDM) method, with a 5% significance level,
was performed to detect selection among the Chinese oak samples [67].

4.3. Reconstruction of Infrageneric Phylogeny

The individual alignments of the seven genetic regions provided poor information for deciphering
the Chinese oaks infrageneric phylogeny (Figures S3 and S4); thus, the aligned genetic data were
processed as three data matrices: (1) the concatenated chloroplast data matrix, (2) concatenated nuclear
dataset, and (3) combined chloroplast–nuclear genetic data for phylogenetic tests. For the chloroplast
(matrix 1) and nuclear (matrix 2) datasets, the global indices of genetic diversity (such as polymorphic
and parsimony sites, gene and nucleotide diversity, and variance of segregating sites) for the Chinese
oak’s lineage and each identified section were estimated using DnaSP 5.0 [68].

The ultrafast bootstrap approximation (UFBoot) implemented in the IQ-TREE software package
was used to estimate the maximum likelihood (ML) phylogeny for the Chinese oak species under
study [69,70]. Unrooted ML trees were constructed for the three genetic data matrices and for the
individual gene alignments. The evolutionary models were initially evaluated by Bayesian schemes
with the ModelFinder option and Akaike information criterion (AIC) implemented in the IQ-TREE
for the three datasets. Phylogenetic trees were then estimated using the best-fit partition models with
1000 UFBoot replicates. Final trees were visualized in iTOL v4 [71].

The neighbor-net method was also used to estimate the genetic relationships among all oak samples
in SplitsTree4 [72]. This method is an extension of the neighbor-joining method and quantifies the
potential conflicting signals among multiple genetic loci for phylogenetic analyses. For heterozygous
sites, all possible resolutions were averaged using the uncorrected P-distance, and 1000 bootstrap
simulations were estimated for the neighbor-net network.

4.4. Molecular Dating

To estimate the evolutionary history of the Chinese oak species, we utilized a multispecies
coalescent-based Bayesian analysis, as implemented in BEAST 1.8.4 [73], for the combined chloroplast–nuclear
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data matrix (matrix 3). Species samples from Castanopsis and Castanea were included as outgroups.
The combined chloroplast–nuclear data matrix was partitioned into six input groups (psbA-trnH,
matK, ycf 1, ycf 3-trnS + matK-trnK, ITS, SAP) according to the IQ-TREE partition results (Table S1),
and their corresponding evolutionary models were used to estimate the Bayesian evolutionary tree.
For the data matrix, 46 of the 50 Chinese oak species with more than two individuals were retained,
and a “trait” file was compiled to assign the samples of each oak species. The Bayesian evolutionary
tree was calculated using a relaxed clock model in a lognormal distribution and a linear coalescent
species model with a birth–death speciation process. Heterozygous sites in the two nuclear regions
were treated as polymorphisms with a modified setting (“useAmbiguities” = “true”) in the input file
for estimation. Three independent runs were carried out with 8 × 108 Markov chain Monte Carlo
(MCMC) generations and sampled every 104 generations to ensure an effective sample size (ESS > 200)
and model convergence. We considered two fossil time points to calibrate the divergence of major
groups among the Chinese oaks: (1) a normal divergence between genera Castanopsis and Castanea
at a mean age of 45–55 Ma [74], and (2) a minimum split time at 23 Ma for the crown age of section
Cerris (23–33 Ma) [48]. The final results of the three independent simulations were combined using
LogCombiner, and a maximum clade credibility (MCC) tree with a posterior probability >0.8 was
calculated after removing the first 20% simulations as burn-in. The fossil-calibrated MCC tree of the
Chinese oak’s lineage was visualized in FigTree 1.4.2 from the BEAST software package. Major climatic
and geological events during the Cenozoic era were derived to evaluate the possible abiotic triggers of
divergence and diversification for the Chinese oak’s lineage [43,44].

4.5. Diversification Simulation

Based on the Bayesian evolutionary tree for the Chinese oak species, we simulated the patterns
of lineage diversification by estimating the transitions of diversification rates using the time-varying
speciation–extinction model in the Bayesian analysis of macroevolutionary mixtures (BAMM)
program [75]. To account for our incomplete species sampling of Chinese oaks, a species-specific
file indicating sampling fractions of the backbone (Table S4) was compiled to correct for a possible
analytical bias during the simulations of lineage diversification. The R package “BAMMtools” was used
to configure the prior parameters and downstream analyses of BAMM simulations [76]. The analyses
were performed with 107 MCMC generations and sampled every 1000 swap periods across four
Markov chains for convergence.

The phenotypic diversification of the Chinese oak species was also evaluated using the trait-based
model in the BAMM program. We assembled four species-specific traits including the leaf character,
cupule character, mid-time of florescence and fruiting for the collected Chinese oak species (Table 1)
based on the morphological descriptions in Flora of China. The four phenotypic traits represented in a
numerical format were processed using a principal component analysis (PCA) (Figure S5), and the
standard scores for each oak species on the first principal component (PC1, accounted for 51.6% of the
variance in the PCA) (Table S5) were extracted and used to simulate the global traits-based diversification
of the Chinese oak species using BAMM. Simulations were performed with 8 × 108 MCMC generations
and sampled every 4000 generations under four Markov chains.

For the identified infrageneric sections on the Chinese oaks phylogeny, a pairwise comparison of
diversification rates from BAMM simulations was estimated using a Bonferroni t-test with 5000 random
samples of each infrageneric section. The potential associations between the tip rates in the lineage
diversification and phenotypic evolution of the Chinese oaks were assessed with a generalized linear
regression. These statistical analyses were performed in R 3.6 [77].

5. Conclusions

In this study, we generated a framework phylogeny for 50 Chinese oak species based on chloroplast
and nuclear data. Our infrageneric framework clearly identifies two subgenera (Quercus and Cerris) and
four infrageneric sections (Quercus, Cerris, Ilex and Cyclobalanopsis), in agreement with the most recent
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phylogeny of the genus Quercus [27]. Additionally, the results support that the widely used traditional
classification of Chinese oak species based on morphology needs to be revised. In terms of evolutionary
history, our study suggests that the primary divergence of the Chinese oaks probably occurred at
mid-Eocene, and was followed by the establishment of sections Cerris, Ilex, and Cyclobalanopsis in
subgenus Cerris around the late Eocene to early Oligocene. Furthermore, we estimated that the rapid
diversification of the Chinese white oaks from section Quercus probably began since the late Miocene.
Using a temporal simulation model on diversification patterns, we found a potential evolutionary shift
on the Chinese white oak clade, suggesting an evolutionary decoupling between the New World and
Old World oaks at their initial divergence. Additionally, we identified several phenotypic shifts for all
sections in the Chinese oak’s lineage, which suggests a complex history of diversification during the
evolution of oak species. Given the ecological importance of the genus Quercus, this research provides
evidence that integration of abiotic processes, including tectonic activity and climatic fluctuations
during the Tertiary, have shaped the evolution and diversification of the Chinese oak’s lineage.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/8/1024/s1,
Figure S1: Infrageneric phylogeny of Chinese oak species inferred with (a) maximum likelihood and (b) neighbor-net
methods using a concatenate chloroplast dataset. The four identified sections in the Chinese oak’s lineage are
color-coded. Gray circles on the branches of the maximum likelihood tree indicate bootstrap values > 60, and a
bootstrap confidence of > 60 was shown for major clusters on the neighbor-net network; Figure S2: Infrageneric
phylogeny of Chinese oak species inferred with (a) maximum likelihood and (b) neighbor-net methods based on a
combined nuclear dataset. The four identified sections in the Chinese oak’s lineage are color-coded. Gray circles on
branches of the maximum likelihood tree indicate bootstrap values > 60, and a bootstrap confidence of > 60 was
shown for major clusters on the neighbor-net network; Figure S3: Unrooted maximum likelihood trees based on
five chloroplast alignments from the Chinese oak species. Individuals are colored according to the four identified
sections in the Chinese oak’s lineage; Figure S4: Unrooted maximum likelihood trees based on two nuclear loci from
the Chinese oak species. Individuals are colored according to the four identified sections in the Chinese oak’s lineage;
Figure S5: Multiple traits-based principal component analysis (PCA) in 46 Chinese oak species; Table S1: Information
of seven molecular markers used in this study; Table S2: Genetic estimation of the Chinese oak’s lineage based
on chloroplast and nuclear datasets; Table S3: Bonferroni t-test of the rates of speciation (lambda) and phenotypic
evolution (beta) among four sections of the Chinese oak species; Table S4: Sample fractions of 46 Chinese oak species
for a simulation of Bayesian analysis of macroevolutionary mixtures (BAMM); Table S5: Values of phenotypic traits
and first two principal components (PCs) in 46 Chinese oak species.
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