
123©  R A D C L I F F E  C A R D I O L O G Y  2 0 1 9

Cardiovascular Pharmacotherapy

Access at: www.ECRjournal.com

Statins are most frequently prescribed for the primary prevention of 

cardiovascular disease due to their lipid-lowering properties. They are 

known to exert their effect by competitive inhibition of 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) reductase. The reduction in the 

synthesis of cholesterol induces upregulation of LDL receptors in the 

liver, resulting in increased clearance and decreased deposits of LDL 

in blood vessels.1 These LDL deposits are central to the induction of 

atherogenesis once oxidised by reactive oxygen species.2 Reducing 

circulating LDL leads to less oxidised LDL, which causes less damage.

However, it was discovered that the therapeutic effect of statins is not 

solely due to the reduction of LDL. This is because statins are able to 

reduce mortality in healthy individuals with a normal LDL cholesterol 

profile.3 Similarly, other cholesterol-lowering methods, such as ileal 

bypass surgery or bile acid sequestrants, do not have an immediate 

clinically beneficial result, despite the drop in LDL.4 

Statins also show a significant reduction in morbidity, mortality, 

recurrent unstable angina incidents, non-fatal MI after 4 months and 

reduced rehospitalisation in just 30 days for acute coronary syndrome 

(ACS) patients.5–9 Studies also demonstrated that the use of a higher 

statin dose strategy did not increase the clinical benefit, despite 

greater LDL reduction.10

Apart from their lipid-lowering ability, statins have various 

immunomodulatory properties that have recently been identified.11 

Inhibition of HMG-CoA reductase not only suppresses cholesterol 

synthesis, but also various inflammatory pathways due to the 

intermediates in the mevalonate pathway. Two isoprenoids, farnesyl-

pyrophosphate and geranylgeranyl-pyrophosphate, are involved 

in post-translational modifications, in particular, the prenylation of 

GTPases, such as Ras, Rac, Rho and Cdc42.12 These binary switches are 

involved in various inflammatory pathways activated by their effect 

on cell signalling via phophatidylinositol-3-kinase, mitogen-activated 

protein kinase and nuclear factor kappa-light chain-enhancer of 

activated B-cells. 

Of note, Rho activates nuclear factor kappa-light-chain-enhancer of 

activated B-cells, which reduces endothelial nitric oxide synthase.13 

Inhibition by statins would increase nitric oxide bioavailability and 

improve vascular function, which could explain how statins are able 

to improve vascular endothelial function within 3 hours of treatment 
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in healthy patients.14 Inhibition of these pathways also causes a 

downregulation of vascular cell adhesion protein 1 and tumour necrosis 

factor-alpha-induced expression of intercellular adhesion molecule 1, 

reducing the ability of macrophages to bind to endothelial cells.15 

Macrophage activity is also disrupted because of the reduction in 

chemoattractants, such as monocyte chemoattractant protein 1. 

Statins have also been shown to favour expression of anti-inflammatory 

cytokines, such as interleukin (IL)-4, IL-10 and transforming growth 

factor-beta (TGF-beta), while downregulating interferon-gamma (IFN-

gamma), IL-6, IL-1 and IL-8 due to a shift from T-helper cell type 1 

to T-helper cell type 2 response, as shown in a mouse model of 

autoimmune encephalomyelitis treated with statins.16 A similar milieu 

of anti-inflammatory mediators was seen to improve graft versus host 

disease in animal models with the treatment of atorvastatin due to its 

ability to inhibit protein geranylgeranylation.17 

Independent of HMG-CoA reductase inhibition, statins have been 

shown to bind to an allosteric site on lymphocyte function-associated 

antigen 1, thereby blocking the recruitment of lymphocytes and their 

cytotoxicity.18 All the effects of statins highlighted demonstrate that 

statins tilt the balance towards an anti-inflammatory state, so it is not 

surprising when statins are shown to significantly reduce regulatory 

T-cells (Tregs) in healthy individuals.19

Tregs are a subpopulation of CD4+ T-cells that are induced by an 

inflammatory stimulus in the peripheries from naive CD4+ cells, but 

they can also be derived in the thymus as CD4+CD25− cells.20 It has 

been found that 5–10% of circulating CD4+ T-cells are Tregs.21 They 

are characterised by the constitutive expression of CD25 and CTLA4 

receptors, and FOXP3; a transcription factor that promotes T-cell 

differentiation into Tregs.22,23 Although these markers may also be 

found on classic CD4+ T-cells,24,25 research for a specific marker of 

Tregs has identified a demethylation site in a 5’untranslated region 

of FOXP3 called Treg-specific demethylated region, which allows for 

discrimination of Tregs.26

Tregs are regarded as the master switch of immune system regulation 

by exerting their effect through the modulation of both adaptive and 

innate immune responses through multiple mechanisms. The main four 

mechanisms by which Tregs exert their effects are through the release 

of inhibitory cytokines, antigen-dependent inhibition of immune 

responses, and direct contact and inhibition of APC maturation, as well 

as the interaction with CD80/86 complex on APC via CTLA4.

Tregs release immunosuppressive cytokines IL-10, IL-35 and 

TGF-beta. Secretion of IL-10 by Tregs inhibits synthesis of pro-

inflammatory cytokines (such as IL-6 and IL-2)and expression of 

major histocompatibility complex class II by APC, preventing antigen 

presentation.27 IL-35 secretion mediates induction of CD4+ cells into 

Tregs while also inhibiting proliferation of T-cells.28 TGF-beta released by 

Tregs decreases CD28 expression (a co-stimulatory molecule required 

for the activation of T-cells) and induces CD4+ differentiation into Tregs.29 

Another functional mechanism of Tregs is antigen-dependent 

suppression. Tregs can be activated by an antigen via its T-cell receptor, 

where after it may suppress a T-cell with any antigen specificity.30 

Direct contact of Tregs with APC exerts multiple actions. One of 

them is downregulation of co-stimulatory ligands CD80/CD86, which 

are required for T-cell activation.31 They also prevent dendritic cell 

activation by inhibiting effector T-helper cell type 1 cells (reducing 

IFN-gamma and tumour necrosis factor-alpha production), which is 

required for antigen presentation.32 

Tregs also modulate macrophage activity, in particular, reducing their 

production of matrix metalloproteinases.33 However, the predominant 

mechanism by which Tregs exert their inhibitory effect on immune 

responses is through expression of CTLA4 molecule on its surface. 

CTLA4 binds the CD80/86 complex on APC, hence preventing CD28-

mediated activation of CD4+T-helper cells, leading to downregulation of 

both B-cell and cytotoxic T-lymphocyte (CTL)-mediated inflammatory 

responses.34 Binding also generates inhibitory signals to decrease the 

expression of CD28 while enhancing FOXP3 expression.35 

Finally, CTLA4 and CD80/CD86 binding can also induce expression 

of indoleamine 2,3-dioxygenase, which catabolises tryptophan into 

pro-apoptotic mediators.36 Other mechanisms include Treg-mediated 

cytolysis of B-cells, natural killer cells and CTL via the release of 

granzyme A and perforin.37 Tregs can also cause metabolic disruption 

of CTL, as high levels of CD25 on Tregs cause depletion of IL-2 in 

the local environment, starving the effector T-cells and inducing 

apoptosis.38 Overall, Tregs play a significant role in the prevention of 

autoimmunity and induction of peripheral tolerance, but overactivation 

may also prevent immunity to certain pathogens or tumours.

Vascular endothelial injury and dysfunction are the initial stages of 

coronary atheroma formation. The influx of LDL and its oxidisation 

within the coronary vessels are followed by activation and recruitment 

of monocyte-derived macrophages, leading to formation of lipid-laden 

foam cells in the vessel lumen and early plaque lesions.2 The damaged 

endothelium and macrophages release cytokines and growth factors 

including IFN-gamma, platelet-derived growth factor and TGF-beta, 
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Selection for Each Step of the Systematic Review
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which signal for the recruitment of pro-inflammatory T-cells and 

proliferation of smooth muscle cells.39 

The chronic vicious cycle of inflammation and proliferation of collagen-

secreting smooth muscle cells gradually leads to the thickening of the 

lesion and formation of a fibrolipid cap covering a highly thrombogenic 

necrotic core.40 Such advanced coronary plaques can, however, 

become destabilised and rupture through multiple inflammatory 

processes predominantly mediated by T-cells.41 

In this context, an aggressive and unusual subpopulation of CD4+ 

T-cells, CD4+CD28− cells, has been reported to significantly contribute 

to coronary plaque destabilisation.42 These T-cells are believed to be 

activated by an auto-antigen, namely, human heat shock protein 

60, expressed within the plaque environment. Human heat shock 

protein 60 is a chaperone stress protein that is constitutively 

expressed in all cells, and its expression is significantly increased 

during inflammation.42 Upon antigen exposure and activation, these 

T-cells are able to directly target and lyse the smooth muscle cell 

constituent of the plaque through the release of cytotoxic granules, 

resulting in plaque rupture and exposure of its thrombogenic content 

to the coronary blood flow. Once activated, CD4+CD28− cells also 

produce IFN-gamma, which activates local macrophages, leading 

to increased secretion of matrix metalloproteinase enzymes.43,44 

These enzymes can gradually degrade the fibrous plaque cap, 

and contribute to plaque destabilisation and rupture resulting in 

thrombosis and ACS.

ACS is characterised by heightened inflammatory status, and T-cells 

within the coronary environment, in particular, have been implicated 

in both disease initiation and progression.43,45 It has been shown 

that the frequency of Tregs is reduced in patients with non-ST-

segment elevation MI, ST-segment elevation MI, acute MI and unstable 

angina.46,47 In addition, Wigren et al. showed that individuals with 

low levels of Tregs were at increased risk of a first coronary event.48 

Furthermore, Tregs are reported to have compromised functional 

efficacy, increased tendency for apoptosis and reduced responsiveness 

to T-cell receptor-mediated induction.46,49,50 These findings have led to 

suggestions that Tregs are unable to modulate coronary disease 

progression through tilting the internal milieu in support of a pro-

inflammatory state.

ACS patients have been shown to benefit from the anti-inflammatory 

effects of statin treatment; although, the exact mechanisms by 

which these effects are exerted are still debatable. Since ACS is 

characterised by diminished frequency and function of Tregs, their 

induction could potentially shift the immunomodulatory balance to 

an anti-inflammatory state. To date, there is no systematic review and 

meta-analysis compiling results from different randomised controlled 

trials (RCTs) in ACS patients.

The aim of this systematic review and meta-analysis is to evaluate 

whether statin therapy enhances the frequency of CD4+CD25+FOXP3+ 

Tregs in patients with ACS.

Methods
Eligibility Criteria
Studies were restricted to RCTs, with no minimum or maximum length 

of follow-up. Adults diagnosed with ACS were included in this study. 

Studies that quantified Tregs cell frequency by flow cytometric analysis 

before and after statin treatment were included. A minimum of at 

least two of the conventional markers from CD4+CD25+FOXP3+ was 

compulsory to identify Tregs.

The intervention must have been any of the oral tablet forms of statins: 

simvastatin, atorvastatin, rosuvastatin, pravastatin and fluvastatin, of 

which at least a minimum of 10 mg and a maximum of 80 mg dosage 

were prescribed

Search Strategy
Studies from all years and languages were allowed for inclusion. MeSH 

terms were used to add synonyms and to increase the scope of the 

search (Supplementary Material Appendix 1). Following identification 

of eligibility criteria and the relevant search terms, the PubMed (1996 

to search date) and EMBASE (1947 to search date) databases were 

searched on 13 June 2017. The detailed search strategy can also be 

found in Supplementary Material Appendix 2.

Data Collection and Analysis
The title and abstract of all studies retrieved were evaluated for 

relevance to the objective of this review using the population, 

intervention, comparator, outcomes and study type (Supplementary 

Material Appendix 1). The piloted spread sheet contained the population, 

intervention, comparator, outcomes and study type, p-value, power, 

mean, Treg percentage, SD, 95% CI and length of the study.

Quality Assessment of Included Studies
To assess the risk bias of eligible RCTs, authors (NS and HA) used the 

Cochrane risk of bias tool. The randomisation, allocation concealment, 

blinding of patients, researchers, outcome, completeness of data 

reported and selection of biomarkers used to identify Treg cells were 

evaluated. Studies should state the patient characteristics, exclusion 

criteria, lost to follow-up and number of patients in each group. If 

studies did not use all three CD25, CD4 and FOXP3 biomarkers, they 

were classified as high risk of information bias, as this may increase the 

probability of an impure yield of Tregs. Studies needed to report that 

Table 1: Characteristics of Included Studies

Author
Statin Control

Statin and dose (mg/day) Length of administration Treg markers used
M F M F

Xie at al. 201454 59 20 56 24 Rosuvastatin 40 24 hours CD4+FOXP3+

Hu et al. 200753 24 24 Atorvastatin 10 2 weeks CD4+CD25−

Wang et al. 201552 44 16 42 18 Atorvastatin 20 4 weeks CD4+CD25−FOXP3+

Zhang et al. 201151 42 10 52   8 Atorvastatin 80 3 months CD4+CD25−FOXP3+

Total 215 224

F = female, M = male, Treg = regulatory T-cell.
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division of participants into control or statin therapy groups had been 

conducted randomly. However, a detailed account of randomisation 

was not required, as long as the patient characteristics of both groups 

were included and did not differ significantly (p>0.05).

Synthesis of Results
Standardised mean difference (SMD) was used as a summary measure 

due to the nature of the outcomes. As the data type is continuous, the 

statistical method to pool the results will be inverse variance.

Assessment of Homogeneity
Chi-squared and I-squared were calculated using Review Manager 

5.3. Heterogeneity was interpreted according to guidelines by the 

Cochrane Handbook 5.1.0. A random effects model was used, as the 

I-squared was significant (>50%). Due to the significant heterogeneity, 

a subgroup analysis was performed by the type of statin. A meta-

regression was also performed to see the dose-related effect.

Results
Study Selection
Search Results
The search results retrieved 192 articles. Four additional records were 

identified through bibliographies. After duplicates were removed, 187 

articles remained. Ten full-text articles were reviewed for inclusion, 

of which four met the full eligibility criteria. Figure 1 shows the flow 

diagram for study selection.

Characteristics of Included Studies
There was a total of 439 participants from all the included studies, of 

which 215 received statin therapy and 224 were part of the control 

groups. The characteristics of the included studies are summarised in 

Table 1.

All studies were RCTs reported in English. Three studies administered 

atorvastatin oral tablets, one at a dose of 80 mg, and the rest at 20 mg 

and 10 mg, respectively.51–53 A study by Xie et al. used rosuvastatin oral 

tablets at a dose of 40 mg.54 Only studies by Zhang et al. and Wang 

et al. used placebos in the control group, compared with Hu et al. and 

Xie et al., who did not administer any medication to the control group, 

besides conventional ACS medication.51–54

Risk of Bias
Random Sequence Generation
The four studies had a low risk of bias due to randomisation 

(Figures 2 and 3).51–54

Allocation Concealment
None of the studies provided adequate information to assign bias as 

low or high, consequentially the risk of bias remains unclear.51–54

Blinding
All studies had a high risk of bias by blinding due to the nature of the 

study, as blinding was not possible.51–54

Incomplete Outcome Data
All studies included had a low risk of incomplete outcome data, as 

all results were reported for outcomes identified at the start of the 

review.51–54

Information Bias
Two studies used the three known markers, CD4, CD25 and FOXP3, 

to identify Tregs.51,52 Therefore, they had a low risk of bias. In contrast, 

Hu et al. and Xie et al. only used two markers each – CD4 and CD25, 

and CD4 and FOXP3, respectively.53,54 Both Hu et al. and Xie et al. used 

fewer surface markers to identify Tregs, which increased the chance of 

an impure yield. Further details of the rationale of bias assessment are 

found in Supplementary Material Appendix 3.

Synthesis of Results
There was an increase in the mean frequency of Treg percentage in 

patients who received statins in all four studies (Table 2). Each study 

reported a p<0.01 for Treg frequency. Meta-analysis for Treg frequency 

demonstrated significantly higher values in patients treated with 

statins (SMD 1.93; 95% CI [1.16–2.71]; p<0.00001; Figure 4).

Heterogeneity of Results
The heterogeneity of effect sizes resulted in a I-squared value of 91%. 

These results signify that the effect sizes are heterogeneous with very 

high inconsistency in the data.

Subgroup Analysis
A subgroup analysis of studies that only used atorvastatin is shown 

in Figure 5. This was carried out by removing the study by Xie et 

al., which used rosuvastatin. The meta-analysis still indicated a 
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significant increase in Treg frequency compared with the control group 

(SMD 1.58; 95% CI [1.10–2.07]; p<0.00001). However, pooled results 

showed a lower SMD than that of all the studies combined. Although 

this subgroup analysis showed a further decrease in heterogeneity 

(I-squared from 91% to 66%), it still remained significant.

Meta-regression
To further explore the high heterogeneity values, dosage-related 

effect was explored through a meta-regression (Figure 6). The meta-

regression including all the studies resulted in an R2 value of 0.15 and 

correlation coefficient of −0.39. The graph showed a dose-related 

effect; however, there was an outlier – the study by Xie et al. – which 

used 40 mg of rosuvastatin.54

A meta-regression of the other three studies that used atorvastatin was 

conducted. It resulted in an R2 value of 0.98 (Figure 7) and correlation 

coefficient of −0.99. These values are very close to 1, suggesting a 

strong negative relationship.

Discussion
The results of the present review highlighted that statins significantly 

increase the frequency of Tregs. However, there is a considerable 

amount of heterogeneity in the pooled results, which was explored in 

terms of the statin type and dosage used. In terms of statin type, three 

of the studies used atorvastatin in the experimental group, and only 

Xie et al. used rosuvastatin.54 By removing Xie et al., the heterogeneity 

decreased, indicating that the effect on the frequency of Tregs varies 

according to the statin type. The dose-related effect was evaluated by 

conducting a meta-regression. It was found that there is a negative 

Table 2: Summary Data of Each Study Included in the Review

Study Statin therapy Control 

Sample size Mean (%) ± SD [95% CI] of Treg  

quantity post-intervention

Sample size Mean (%) ± SD [95% CI] of Treg 

quantity post-intervention

Xie at al. 201454 79 9.65 ± 2.10 [9.18–10.11] 80 4.97 ± 0.87 [4.77–5.16]

Hu et al. 200753 24 6.47 ± 1.75 [5.76–7.17] 24 3.26 ± 1.71 [2.57–3.94]

Wang et al. 201552 60 6.47 ± 1.75 [6.02–6.91] 60 3.26 ± 1.71 [2.82–3.69]

Zhang et al. 201151 52 7.64 ± 3.16 [6.78–8.49] 60 4.56 ± 2.05 [2.4–5.07]

Treg = regulatory T-cell.

Statins Control Std Mean Difference Std Mean Difference
IV, Random, 95% CIStudy or subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI

Hu et al. 200753

Wang et al. 201552

Xie et al. 201454

Zhang et al. 201151

6.47 1.75 24 24 22.9% 1.82 [1.14–2.51]3.26 1.71
6.47 1.75 60 60 25.7% 1.84 [1.41–2.27]

[2.46–3.35]
3.26 1.71

9.65 2.1 79 80 25.5% 2.904.97 0.87
[0.76–1.57]

[1.16,2.71]

7.64 3.16 52

215 224 100.0% 1.93

60 25.9% 1.174.56 2.05

Total (95% CI)

Control Statins

0 2 4−4 −2
Heterogeneity: tau2 = 0.56; chi2 = 32.15; d.f. = 3 (p<0.00001); I2 = 91%
Test for overall effect: Z = 4.89 (p<0.00001)

Figure 4: Forest Plot Showing the Standardised Mean Difference of Regulatory T-cells Frequency in the Control and 
Statin Groups

Study or subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI

Hu et al. 200753

Wang et al. 201552

Zhang et al. 201151

6.47 1.75 24 24 25.5% 1.82 [1.14, 2.51]3.26 1.71
6.47 1.75 60 60 36.6% 1.84 [1.41, 2.27]3.26 1.71

[0.76, 1.57]

[1.10, 2.07]

7.64 3.16 52

136 144 100.0% 1.58

60 37.9% 1.174.56 2.05

Total (95% CI)
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Heterogeneity: tau2 = 0.12; chi2 = 5.91; d.f. = 2 (p=0.05); I2 = 66%
Test for overall effect: Z = 6.39 (p<0.00001)

Statins Control Std Mean Difference Std Mean Difference
IV, Random, 95% CI

Figure 5: Forest Plot Showing the Standardised Mean Difference of Regulatory T-cells Frequency in the Control and 
Atorvastatin Groups, While Excluding Xie et al., Which Used Rosuvastatin
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correlation with dose and the frequency of Tregs. However, there were 

very few studies that used the same statin type and dose, limiting the 

amount of data available for statistical aggregation.

The studies included in the review have a high risk of information. In 

terms of information bias, the studies by Hu et al. and Xie et al. have 

a high risk because these did not use all the Tregs markers used  to 

identify Treg cells, which may alter the results.53,54 However, even 

the studies that used all three or at least two of the classic markers 

(CD4, FOXP3 and CD25) may also have a risk of bias. This is because 

conventional CD4+ T-cells express FOXP3 transiently when activated 

and express CD25 upon stimulation.55–57 ACS patients are known to 

have heightened CTL, which correlates with the extent of the disease. 

Therefore, using biomarkers that may detect CTL in such patients 

could further increase the impurity of the results. However, due to the 

lack of studies, subgroup analysis could not be performed to measure 

whether the effect of statins on Tregs correlated with the different 

patterns of Treg markers used. Future studies need to use a more 

accurate method in identifying Tregs to produce more reliable results. 

The use of the FOXP3 locus (Treg-specific demethylated region) is 

recommended as a specific marker of Tregs rather than the sole use 

of fluorescence-activated cell sorting.26

The present review is only applicable to the Asian population, as all 

studies were conducted in Asia. Moreover, it can only be applied to 

countries where the use of rosuvastatin and atorvastatin is approved.

Despite the limitations highlighted by the review, the potential of statins 

in inducing the frequency of Tregs has been shown by different studies 

with a plausible mechanistic effect. A similar benefit induced by statins 

was shown in rheumatoid arthritis, which is also characterised by 

impaired Tregs functioning.58 A RCT showed that atorvastatin treatment 

increases the amount of Tregs in the PBMC of rheumatoid arthritis 

patients and reduces disease activity.59

This trend was also seen in people with asthma, for whom statin therapy 

improved symptom control, and in vitro studies with the incubation of 

statins and CD4+ T-cells revealing expansion of Tregs.60,61 The effect 

of statins in upregulating of Tregs and reducing disease burden was 

also seen in animal models of autoimmune neuritis, experimental 

autoimmune myasthenia gravis (Li et al.), ischaemia-reperfusion injury 

and apolipoprotein E (ApoE)−/− model of atherosclerosis.62–65

However, Hasib et al. demonstrated that patients with ACS had a low 

baseline frequency of Tregs, and despite 12 months of extensive statin use 

after an acute event, Treg frequency remained significantly unchanged, 

which contradicts our findings.66 Although that was an observational study, 

it did not provide any strong support to the theory that statins exert a 

pronounced effect on Treg levels in a clinical scenario.

Finally, in terms of mechanism, Maussner-Fainberg et al. highlighted 

the ability of statins to induce FOXP3+ expression from peripheral 

CD4+CD25−FOXP3−.67 This expression may be induced by inhibition 

of HMG-CoA reductase, which suppresses intermediates in the 

mevalonate pathway leading to prenylation of GTPases, such as Ras, 

Rac, Rho and Cdc42.11–13 These small G proteins are postulated to be 

the reason for the induction of foxp3+ Tregs.67

Conclusion 
ACS patients have been shown to clinically benefit from the 

anti-inflammatory effects of statin therapy through different 

pharmacological mechanisms. The current literature indicates a 

significant difference in Treg frequency following statin therapy in ACS 

patients. It is hypothesised that this is due to the stabilisation of the 

plaque by decreasing pro-inflammatory mediators involved in plaque 

destabilisation. It is proposed that future RCTs use accurate methods 

to identify Tregs and study the dose-related effects.

Overall, these results have considerable implications for patients who 

would benefit from restoring the Treg-induced immunomodulatory 

balance, with a view to exploring new therapeutic approaches to the 

management of disease progression in ACS.

Despite the limited data available and heterogeneity, the present 

review highlights areas for improvement, such as using more specific 

universal markers for Tregs, such as the Treg-specific demethylated 

region, and determining the statin type and dose-related effect. 

Figure 7: Meta-regression Evaluating the Dose-related 
Effect of Atorvastatin on Regulatory T-cells Frequency
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