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Precision medicine has greatly aided in improving health outcomes using earlier diagnosis
and better prognosis for chronic diseases. It makes use of clinical data associated with the
patient as well as their multi-omics/genomic data to reach a conclusion regarding how a
physician should proceed with a specific treatment. Compared to the symptom-driven
approach in medicine, precision medicine considers the critical fact that all patients do not
react to the same treatment or medication in the same way. When considering the
intersection of traditionally distinct arenas of medicine, that is, artificial intelligence,
healthcare, clinical genomics, and pharmacogenomics—what ties them together is
their impact on the development of precision medicine as a field and how they each
contribute to patient-specific, rather than symptom-specific patient outcomes. This study
discusses the impact and integration of these different fields in the scope of precision
medicine and how they can be used in preventing and predicting acute or chronic
diseases. Additionally, this study also discusses the advantages as well as the current
challenges associated with artificial intelligence, healthcare, clinical genomics, and
pharmacogenomics.
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INTRODUCTION

Precisionmedicine is the utilization of healthcare tools to create specialized treatments that consist of
optimal actions for the patient, based on the data available (König et al., 2017; Pinho, 2017; Gameiro
et al., 2018; Ginsburg and Phillips, 2018; Ahmed et al., 2020a; Ahmed, 2020; Elemento, 2020;
Faulkner et al., 2020; Ahmed et al., 2021a). As clinical, genomic, and metabolic data become easier to
obtain and interpret in relation to complex and chronic diseases such as cancer, disease treatment
will become more effective (McAlister et al., 2017; Pinho, 2017; Ginsburg and Phillips, 2018; Goetz
and Schork, 2018; Bilkey et al., 2019; Ahmed et al., 2020a; Ahmed, 2020; Faulkner et al., 2020; Ahmed
et al., 2021a). In the current state of healthcare, healthcare professionals tend to divide their attention
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and plan treatments based on symptoms (McAlister et al., 2017;
Bilkey et al., 2019). However, symptoms like pain, vary from
patient-to-patient and may even be absent in life-threatening
situations (Lazaridis et al., 2014; McAlister et al., 2017; Pinho,
2017; Goetz and Schork, 2018; Bilkey et al., 2019). Since
symptoms can greatly vary between patients, utilizing genomic
and metabolic data in conjunction with clinical data from
previous patients enables clinicians can prescribe a better,
more personalized treatment plan (McAlister et al., 2017;
Goetz and Schork, 2018). Thus, the development and
implementation of precision medicine should improve the
quality of healthcare compared to the conventional system
dominated by symptom-driven medicine (Lazaridis et al.,
2014; McAlister et al., 2017; Pinho, 2017; Ginsburg and
Phillips, 2018; Goetz and Schork, 2018; Bilkey et al., 2019;
Ahmed et al., 2020a; Faulkner et al., 2020; Ahmed et al., 2021a).

International interest in precision medicine could be seen as
early as 2011, with the American Association for Cancer
Research’s (AARC) Project GENIE, which utilized several “big
data initiatives” such as Genomics Evidence Neoplasia
Information Exchange (GENIE) (Sweeney et al., 2017). The
aim of this project was to address the challenges that came
with sharing large amounts of genomics and clinical data,
specifically regarding effective cancer therapies (Micheel et al.,
2018). This level of innovation in precision medicine coincided
with a decline in costs of DNA-sequencing techniques and amore
widespread adoption of electronic medical records, which
conveniently allowed for sharing and analysis of data (Bentley,
2006; Shendure et al., 2008; Evans, 2016; Kruse et al., 2016;
Garrido-Cardenas et al., 2017; Graber et al., 2017; Howe et al.,
2018). One common application of precision medicine in the
United States is genetic screening, which is used to predict and
diagnose critical conditions, which can reduce rates of morbidity
(Smed et al., 2021). Another emerging application is the
prescription of drugs based on genetic markers of efficacy. For
instance, studies have shown that seizure drug carbamazepine
having the HLA-B*1502 gene is highly likely to experience
adverse effects. However, the integration of these genetic
markers in prescribing drugs requires strong evidence of
clinical validity first. However, the integration of these genetic
markers in the prescription of drugs first require strong evidence
of clinical validity at all stages of the drug product cycle (Sweeney
et al., 2017; Ginsburg and Phillips, 2018). Despite
pharmacogenomics being in the early stages of development, it
shows great promise toward driving patient-specific outcomes.

Artificial intelligence (AI) is a general term used to describe
the process of using computers and technology to create
stimulating software that resembles human-like critical
thinking (Ramesh et al., 2004; Amisha Malik et al., 2019). AI
is known to utilize many techniques (fuzzy expert system and
artificial neural networks, etc.) that can be useful when applied to
healthcare (Ramesh et al., 2004; Hessler and Baringhaus, 2018;
Amisha Malik et al., 2019; Mintz and Brodie, 2019; Hashimoto
et al., 2020). AI can be applied to medicine in two different ways:
virtually and physically. The uses of the virtual aspect of AI can
range from electronic healthcare records (Esteva et al., 2019) to
neural networks guiding patient treatments (McDonnell et al.,

2021). The physical subunit of AI involves physical machines like
robots assisting in surgeries (Bhandari et al., 2020), or AI-
generated prosthetics for the disabled (Bernauer et al., 2021).
In addition, ML, or machine learning, is a subunit of artificial
intelligence, which utilizes algorithms and code in order to
provide personalized experiences, where predictions are backed
by mathematical data points (Deo, 2015; Currie et al., 2019).
Classical machine learning is heavily dependent on human
intervention; however, more unsupervised techniques have
been employed in the healthcare field in more recent years
(Baştanlar and Özuysal, 2014; Shen et al., 2021). This review
focuses on the development of four major fields: AI, healthcare,
clinical genomics, and pharmacogenomics, and their overall
impacts on precision medicine (Figure 1).

HEALTHCARE SYSTEMS

A healthcare system is the combination of institutions, people,
and resources that are involved in delivering health services and
care to individuals (Kim et al., 2017; Ahmed et al., 2019a; Ho et al.,
2020). The two main types of healthcare systems are commercial
and academic (Kim et al., 2017; Ahmed et al., 2019a).
Commercial healthcare systems (e.g., eClinicalWorks, praxis,
and Allscripts) are characterized by continuous data flow and
are utilized by clinical staff to implement patient treatment;
therefore, no mistakes can be made with these data because
this can lead to a detrimental consequence on humans (Kim
et al., 2017; Ahmed et al., 2019a). One example of a commercial
healthcare system is EPIC, a popular electronic medical record
system, which is used by 45 percent of the United States
population to store their records (Epic Systems, 2019; Shull,
2019). Their physicians then utilize the software to monitor
their patients’ healthcare from start to finish (Epic Systems,
2019; Shull, 2019). Academic healthcare systems are research
based and can be characterized by limited clinical data
management and periodic data flow with the overall goal of
improving patient treatment (Rim et al., 2016; Kim et al., 2017;
Ahmed et al., 2019a). An electronic healthcare record (EHR) is
the collection of patient health information that is digitally stored
(Knaup et al., 2007; Wronikowska et al., 2021). The compilation
of patient information serves to also create an overall
understanding of a given population’s health status, for
example, the frequency of specific diseases within the
population or a specific sub-group (Knaup et al., 2007; Yeh
et al., 2020). This information can then be shared across
different healthcare settings, and such communication is
important toward specific treatment for individuals (Koppel
and Lehmann, 2014). Furthermore, an Observational Medical
Outcomes Partnership (OMOP) model can be used alongside the
electronic healthcare system to efficiently provide data to
institutions (Gini et al., 2016; Michael et al., 2020). It was
initially launched with the vision of using the system to
determine the best practices by using healthcare data and
helping patients (Gini et al., 2016; Al-Hanawi et al., 2021).

EHRs can assist healthcare providers in efficiently diagnosing
specific rare medical cases that may not be encountered often

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9297362

Abdelhalim et al. Interdisciplinary Precision Medicine Approaches

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(Knaup et al., 2007; Yeh et al., 2020; Wronikowska et al., 2021). In
recent years, it has become more difficult to improve the health
outcomes for a patient by a drastic margin without raising their
out-of-pocket costs (Al-Hanawi et al., 2021), thus making it
difficult for timely progress toward better patient care
(Pastorino et al., 2019; Al-Hanawi et al., 2021). However, these
obstacles can be overcome by using Big Data, which relies on its
ability to recognize patterns and convert extremely high volumes
of data into usable knowledge in the field of precision medicine
(Ahmed et al., 2019a; Cammarota et al., 2020; Seyed Tabib et al.,
2020). This data can be analyzed in a high-performance
computing (HPC) environment where highly intensive
computing experiments can be performed (Castrignanò et al.,
2020). EHR plays a significant role, as it allows for the
communication of patient data across different platforms
(Knaup et al., 2007; Yeh et al., 2020), thus maximizing the
chance of an effective treatment being developed (Pastorino
et al., 2019; Seyed Tabib et al., 2020; Al-Hanawi et al., 2021).

Claims data refers to health insurance claims, which can
contain a large variety of information about a specific patient,
including details about patient diagnoses, treatments required,
and finances (Stein et al., 2014; Moscatelli et al., 2018; Prosperi
et al., 2018). In addition, claims data reduce selection bias by
giving physicians an overall view of the patient’s continued use of
the healthcare system (Stein et al., 2014). These features make
claims data desirable in the field of precision medicine (Prosperi
et al., 2018). This is due to the availability of a larger subset of
data, and the greater the number of individuals the data is pulled
from, the more likely it is for a claim made based on that data to
be accurate. Complex, multivariable modeling is also important
because much of precision medicine is based on the fact that there
are many different factors/determinants of an individual’s health
(Moscatelli et al., 2018). Clinical data are the compilation of
patient data, scattered in numerous databases throughout the
healthcare system (McGinnis et al., 2011). Such data often

address and assess genetic and metabolomic considerations,
individual health, health behaviors, such as lifestyle,
environmental factors, and healthcare financing, defines as the
patient’s management of funds toward the medical area. Clinical
data also address the responses and medical procedures taken
toward the health concern (McGinnis et al., 2011; Bram et al.,
2015).

GENOMICS

Genomics is a subfield of molecular biology concerned with
mapping structure and function genomes. The differences
between individual genomes are due to the unique biological
DNA they are composed of (Woese, 1969; International Human
Genome Sequencing Consortium, 2001; Venter et al., 2001;
Schneider et al., 2017; Roth, 2019; Zeeshan et al., 2020).
Humans have between 20,000 and 25,000 genes, with each
gene consisting of between a few hundred to 2 million DNA
bases (Woese, 1969; International Human Genome Sequencing
Consortium, 2001; Schneider et al., 2017). With the completion of
the mapping of the human genome by the Human Genome
Project in 2003 (Collins et al., 1998), many new and exciting
applications of genomics in the medical field have been made
possible. One of these applications can be seen in
pharmacogenomics, which allows specialists to assign
medication and corresponding dosage based on the patient’s
genetic markers (Wake et al., 2019; Cecchin and Stocco, 2020).
Another application can be seen in clustered regularly interspaced
short palindromic repeats (CRISPR), which allows for efficient
gene modification in a variety of organisms. CRISPR-Cas9 has
aided in understanding of the disease process through
establishing genetically variable disease models (Ma et al.,
2014; Cho et al., 2018; Manghwar et al., 2019). Advancements
in using CRIPSR-Cas9 has made it possible to potentially treat

FIGURE 1 | Concept diagram of the artificial intelligence, clinical genomics, pharmacogenomics, and big data approaches in precision medicine.
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chronic diseases such as cancers (Chen et al., 2019), leukemia
(Tzelepis et al., 2016), HIV (Xiao et al., 2019), β-thalassemia
(Frangoul et al., 2021), and sickle cell anemia (Demirci et al.,
2019; Frangoul et al., 2021).

Constituents of the Genome
The phenotypic display of humans is dependent upon the
expression of genes, which is affected by numerous factors
(Woese, 1969; International Human Genome Sequencing
Consortium, 2001; Venter et al., 2001; Schneider et al., 2017;
Roth, 2019; Zeeshan et al., 2020). The bridge between genotype
and phenotype is proteins, and gene expressions are broken down
into 2 stages: transcription (De Klerk and ‘t Hoen, 2015;
Polychronopoulos et al., 2017; Dieci et al., 2013) and
translation (Simpson et al., 2020; Lyu et al., 2021). RNA
splicing, which takes place between the transcription and
translation processes, results in large portions of the RNA
molecule being removed, with the remaining strands being
reconnected (Montes et al., 2019; Zhao, 2019; Wang and
Aifantis, 2020; Xu et al., 2021). The sequences that are cut out
are known as introns, non-coding intervening sequences within
the primary transcript, while the other strands are known as
exons, sequences within a primary transcript that remain after
RNA processing (Montes et al., 2019; Xu et al., 2021). Due to the
presence of introns, a single gene can encode for more than one
kind of polypeptide depending on which sequences are treated as
exons (Montes et al., 2019; Ule and Blencowe, 2019; Zhao, 2019;
Wang and Aifantis, 2020; Xu et al., 2021; Xu et al., 2021). This
process is commonly known as alternative RNA splicing and
leads to increased diversity in protein coding (Ule and Blencowe,
2019; Zhao, 2019; Xu et al., 2021). However, it is not extensively
regulated, and mis-splicing or mutations can lead to diseases such
as muscular dystrophy (Takeshima et al., 2010; Fletcher et al.,
2013; Scotti and Swanson, 2016) and premature aging dystrophy
(Niblock and Gallo, 2012; Scotti and Swanson, 2016). Protein-
coding DNA accounts for only 1.5% of the human genome.
However, 75% of the genome is transcribed at some point,
indicating that a significant amount of the genome is
transcribed into non-protein-coding RNAs (ncRNAs) (Mattick
and Makunin, 2006; Mishra et al., 2016; Slack and Chinnaiyan,
2019). Non-coding DNA including introns can play a role in the
regulation of gene expression such as transcription initiation and
termination (Hombach and Kretz, 2016; Montes et al., 2019;
Wang and Aifantis, 2020; Xu et al., 2021; Lyu et al., 2021). In
addition, some non-coding DNA is transcribed into function
non-coding RNA molecules like tRNA (Phizicky and Hopper,
2010), rRNA (Yan et al., 2019), and regulatory RNAs which help
with the processes of transcription and translation (Panni et al.,
2020). According to RefSeq (O’Leary et al., 2016), a database run
by the NCBI, there are currently 20,203 protein-coding genes and
17,871 non-coding genes (Polychronopoulos et al., 2017).

Next-Generation Sequencing
Next-generation sequencing (NGS) refers to the genome
sequencing technologies that began to rapidly develop in the
early 2000s (Sanger et al., 1977). Prior to this, Sanger sequencing,
a type of sequencing created in 1975, was the primary technique

used to sequence DNA (Sanger et al., 1977). With the later
development of polymerase chain reaction (Green and
Sambrook, 2018) in addition to automated DNA sequencing
using fluorescent tags (Metzker et al., 1994; Welch and
Burgess, 1999), DNA sequencing became powerful enough to
create the first draft of the human genome in 2001 (International
Human Genome Sequencing Consortium, 2001; Venter et al.,
2001). Currently, Illumina sequencing is the most popular
sequencing technology due to its accuracy, cost, and speed
(Liu et al., 2012). Illumina sequencing belongs to a family of
NGS technology that produces short reads (50–300 base pairs),
with the most notable other technology in this category being Ion
Torrent sequencing (Rhoads and Au, 2015; De Coster and Van
Broeckhoven, 2019). Long-read sequencing technologies created
by Oxford Nanopore (Green and Sambrook, 2018) and Pacific
Biosciences (Rhoads and Au, 2015) generate reads that are
thousands of base pairs long, but their reads are generally
lower quality than those created by short-read sequencing
(Rhoads and Au, 2015; Jain et al., 2016; Lahens et al., 2017).
However, due to great interest in structural variants (genomic
alterations that can be thousands of base pairs long) and their
effects on diseases, improvements need to be made to long-read
sequencing to avoid the costs that short-read sequencing reads
suffer from such as low sensitivity (30–70%) when detecting
structural variants (Liu et al., 2012; De Coster and Van
Broeckhoven, 2019; Levy and Boone, 2019). After sequencing
data is collected, the FASTQ file format is the traditional format
used to share this information. FASTQ is a type of plain text files
formatted such that each sequence has four corresponding lines
of text. These lines contain information such as the sequence
identifier, nucleotide sequence, a “+” sign to indicate the end of
the sequence, and a line of quality values corresponding to the
sequence of bases recorded in the second line (Cock et al., 2010).
For storing the reference genome, FASTA, another text-based file
format, is commonly used. Using the reads from the sequencing
and the reference genome, algorithms map the reads to the
reference genome, and these results are stored in either a
Sequence Alignment Map (SAM) or its binary equivalent
(BAM) file (Li et al., 2009; Hoogstrate et al., 2021). A SAM
file is readable by humans, but since file sizes are so large, BAM
files are used to compress the data (Yohe and Thyagarajan, 2017).
Finally, since genetic variation is of interest in research, variant
call format (VCF) files are commonly generated based on this
data, which are files that describe the sequence variations,
insertions, and deletions found in the samples along with rich
annotations (Zhang, 2016; Morash et al., 2018).

NGS data can supplement other genomic sequencing methods
and further develop the capabilities of DNA sequencing, which
can significantly improve the effectiveness of precision medicine
(Yohe and Thyagarajan, 2017; Morash et al., 2018). In
conjunction with whole-genome sequencing (WGS), which has
become more affordable, NGS can improve disease risk detection
with improvedmethods for analyzing sequenced data. This assists
in the development of precision medicine (Yohe and
Thyagarajan, 2017; Zeeshan et al., 2020; Caspar et al., 2021).
Reporting on NGS utilization, several studies have shown its
efficiency in identifying actionable genetic mutations in cancer
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patients, developing drugs to target tumors, and utilizing
sequencing results to match patients to therapy methods
(Yohe and Thyagarajan, 2017; Morash et al., 2018; Nakagawa
and Fujita, 2018; Morganti et al., 2019; Zhao et al., 2019; Caspar
et al., 2021). While the current effectiveness of NGS data in
precision medicine remains controversial, primarily due to the
experimental design of studies determining the efficacy of NGS
data, and there is still immense potential for development (Yohe
and Thyagarajan, 2017; Nakagawa and Fujita, 2018; Morganti
et al., 2019).

Variant Discovery
WGS and WES are two different types of NGS, which are more
efficient and accurate methods of DNA sequencing than
traditional Sanger sequencing (Ahmed et al., 2019b). These
two techniques can be used to find different variants in an
individual’s DNA that may be of clinical significance (may
relate to the appearance of a specific disease). WGS involves
the sequencing of an individual’s entire genome, including both
exons (protein-coding regions) and introns (non-protein coding
regions) (Meienberg et al., 2016; Petersen et al., 2017). WES,
however, only involves the sequencing of exons, or protein-
coding regions (Petersen et al., 2017; Ahmed et al., 2019b).
Variants in the human genome are changes in the DNA/
nucleotide sequence that may or may not result in changes to
the protein-encoding transcript and protein-building process as a
whole (Petersen et al., 2017). There are several different types of
variants that can be detected by the WGS and WES processes,
such as single-nucleotide polymorphisms (SNP) and short or
long insertions or deletions polymorphism (indels) (Petersen
et al., 2017; Ahmed et al., 2021b). Variant calling or the
identification of different types of variants is important
because it can help researchers develop a greater
understanding of the genetic components of various diseases,
which can aid in future diagnoses and disease prevention (Ahmed
et al., 2021b). There are three main types of WGS and WES
pipelines: cloud-computing, centralized, and standalone (Ahmed
et al., 2021b). The main differences between these three pipelines
are the environments in which they are applied. Cloud-
computing pipelines are used in environments with, “on-
demand compute resources managed and provided by external
vendors” (Petersen et al., 2017; Ahmed et al., 2021b). Centralized
pipelines are used in local computers (Petersen et al., 2017).
Standalone pipelines are mainly used in high-performance
computing environments (Petersen et al., 2017). These
pipelines are designed to effectively collect and process the
data from WGS or WES in a way so that it can be used by
researchers or medical professionals to best recognize the links
between genetic variants and diseases (Petersen et al., 2017;
Ahmed et al., 2021b; Ahmed et al., 2021c).

CLINICAL GENOMICS

The gene–disease relationship involves the detection of diseases
associated with numerous genes with the help of sequencing
techniques (Ahmed et al., 2020b). Applications can be used to

help organize and assimilate information from the genomic data
with the phenotypic data. By doing so, the gene–disease
relationship can improve precision while detecting
abnormalities in patients. They can also predict patient
susceptibility to a particular disease and open the possibility of
treatment options of rare diseases (Strande et al., 2017; Hu et al.,
2021; Megías-Vericat et al., 2021). The study of this association
can also help elucidate gene function (Van Dam et al., 2018),
estimate the prevalence of genes in populations (Zhou and
Skolnick, 2016), differentiate among subtypes of diseases
(Nakatsuka et al., 2017) and trace how genes may predispose
to (Sørlie et al., 2003) or protect against illnesses (Pirmohamed,
2006), and improve medical intervention (Ahmed et al., 2020b;
Wickenhagen et al., 2021).

Gene–disease databases are essential due to their unique
display of information regarding the “exchange and reporting
of actionable genetic variants and associated phenotype” (Ahmed
et al., 2020b). This information is vital because it can be used to
aid in treatment for complex diseases like cancer, where detection
of just a few vital variants can help warn about the development of
a tumor (Orkin and Bauer, 2019). An example of gene–disease
databases is a database of disease–gene associations with
annotated relationships among genes (eDGAR), which collects
and arranges data related to gene/disease associations along with
interactions in heterogenous and polygenic diseases (Huang et al.,
2018). With a focus on “the structural and functional annotations
of the genes” (Huang et al., 2018), the database provides the
cytogenetic location of a gene. When multiple sets of genes are
prevalent in the same disease, the data are organized in such a way
that it allows for customized data search (Huang et al., 2018). This
is important because it allows for multiplatform usage and
comparability so users can get the information that they need
as accurately as possible in order to tailor procedures specific to
their patients or research (Huang et al., 2018).

As the technology for genomic analysis advances, more
reports of gene–disease relationships are beginning to expand,
facilitating the need for accessibility to information storage
(Babbi et al., 2017; Ahmed et al., 2020b). The ability to
analyze a database containing information about genetic
diseases and cross referencing that data with patient records
has the potential to treat a genetic disease before it proliferates
(Babbi et al., 2017; Huang et al., 2018). There are approximately
18,000 gene–disease databases that collect data (Huang et al.,
2018). Out of these 18,000, there are approximately 50 authentic
databases. However, there are no existing databases that cover the
entire human genome. Examples of these gene–disease databases
are Ensembl (Landrum et al., 2016), GenCode (Aken et al., 2016),
ClinVar (Frankish et al., 2019), GeneCards (Landrum et al.,
2016), HGMD (Stelzer et al., 2016), OMIM (Stenson et al.,
2012), Orphanet (Amberger et al., 2015), SwissProt (INSERM,
1997), and LncRNADisease (Consortium, 2015). Table 1 further
details the extensive availability of various databases that contain
raw and multi-omics data. Very few of these gene–disease
databases are approved by the American College of Medical
Genetic and Genomics (ACMG), a medical organization that
focuses on improving health through medical genetics and
genomics.
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Despite the plethora of gene–disease databases available to
researchers and the healthcare industry, there are quite a few
shortcomings within the databases (Huang et al., 2018). The
primary issue stems from the fact that there is no standardization
within these databases, as no singular database contains all the
data on the currently available genome, diseases, and drugs in the
market (INSERM, 1997; Stenson et al., 2012; Amberger et al.,
2015; Consortium, 2015; Aken et al., 2016; Cardon and Harris,
2016; Landrum et al., 2016; Stelzer et al., 2016; Babbi et al., 2017;
Huang et al., 2018; Frankish et al., 2019). In addition, these
databases are often out-of-date or do not provide relevant
essential information regarding diseases, reducing the
practicality and usability of these databases (Chen et al., 2012;
Ahmed et al., 2020b). To resolve these issues, the IOS application
PAS-Gen or PROMIS-APP-SUITE has been developed to
provide an accessible central database for genomic and disease
information, potentially accelerating medical discoveries in the
future (Stenson et al., 2017). The purpose of the app is to provide
researchers and employees in the healthcare industry with
information about genes that could result in the development
of certain diseases for educational and non-commercial uses. In
addition, the user-friendly interface of the application enables
accessibility to a wide variety of users and for the app to
continuously receive updates if needed (Stenson et al., 2017).
This application includes a total of 59,293 genes (19,989 protein-
coding and 39,304 non-protein-coding), and “is composed of
98,064 gene–disease combinations reported from 809 distinct
sources” (Stenson et al., 2017). These features make the PAS App
comprehensive, easily accessible, and suited for the future of
personalized medicine. This centralized database and application
could prove to be tremendously useful in the future, boosting the
abilities of healthcare researchers to understand the human

genome and its implications in the development of diseases
(Stenson et al., 2017).

PHARMACOGENOMICS

Pharmacogenomics is the analysis of how an individual’s genome
(their unique genetic makeup) influences their reaction to certain
medications prescribed to them (Wake et al., 2019; Karol and
Yang, 2020). Protein-coding genes could influence the treatment
of the drug either by breaking it down, absorbing it, or
transporting the drug to desired (or undesired) locations
(Hoehe and Morris-Rosendahl, 2018; Venkatachalapathy et al.,
2021). Grouping people that have similar genetic variations will
allow for better observation of how these groups may have a
common treatment response to a given treatment (Hoehe and
Morris-Rosendahl, 2018; Wake et al., 2019b; Karol and Yang,
2020; Venkatachalapathy et al., 2021). One example of
pharmacogenomics is thiopurine methyltransferase testing to
determine candidates for thiopurine drug therapy, which are
used to treat autoimmune disorders like Crohn’s disease or
rheumatoid arthritis (Wake et al., 2019).

Pharmacogenomics has a multitude of applications for both
precision medicine and related fields, allowing for the
improvement of drugs in all stages of the process, from
production to consumption (Wake et al., 2019; Kim et al.,
2021). One such application comes in the field of drug
research and production, where information from
pharmacogenomics practices can help assist in how best to
research potential medicine for patients for certain diseases
(Penny and McHale, 2005; Payami and Factor, 2014; Relling
and Evans, 2015). There have been genome-wide association

TABLE 1 | Multi-omics/genomics databases: Ensembl, GENCODE, ClinVar, GeneCards, HGMD, OMIM, Orphanet, SwissProt, TCGA, GenBank, EMBL, InterPro,
Reactome, 1000 Genomes, European Nucleotide Archive, Sequence Read Archive, United Kingdom Biobank, and TOPMed.

Database Description

Ensembl Ensembl genome browser, provides genomics sequence variation, annotates genes, and computes multiple alignments
GENCODE Generalized Coding, identification of protein-coding genes
ClinVar NCBI ClinVar, integration of genomic variation and human health
GeneCards Human genes integration database
Human Gene Mutation Database (HGMD) Human Gene Mutation Database, aligning gene lesions for human-inherited diseases
Online Mendelian Inheritance in Man (OMIM) Online Mendelian Inheritance in man, a database on human genes and genetic phenotypes and identification of

gene–disease association
Orphanet Orphanet Rare Disease Ontology (ORDO), analyzing rare diseases and gene–disease relationship
SwissProt Protein sequence database, information about high level of annotations
The Cancer Genome Atlas (TCGA) The Cancer Genome Atlas, analyzation of primary cancer samples that genomically sequenced and molecularly

characterized
GenBank National Center for Biotechnology Information for the primary database
The EMBL Nucleotide Sequence Database Molecular Biology Primary Database, in-depth data collection of primary nucleotide sequences
InterPro Protein-based secondary database, provides protein functionality analysis and information about classification of them into

families, domains, and sites
Reactome A specialized database for metabolic and biological pathways
1000 Genomes A comprehensive catalog of human genetic variation
European Nucleotide Archive European Nucleotide Archive, provides nucleotide sequence information and raw sequencing data
Sequence Read Archive Sequence Read Archive, stores raw sequencing data and alignment information
United Kingdom Biobank Biomedical database, provides profoundly genetic and health information
Trans-Omics for Precision Medicine (TOPMed) NHLBI Trans-Omics for Precision Medicine, provides whole-genome sequencing (WGS) and other omics data
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studies conducted to measure responses to certain drugs, which
have allowed for the identification of groups of people in which a
drug may be more effective than it would be in other groups (Kim
et al., 2021). Pharmacogenomics also has applications in a later
step of the drug manufacturing and distribution process,
primarily in the production and labeling of drugs.
Pharmacogenomics information (PGx) has been increasingly
included in the labels of new drug approvals, with most of
these being clinically actionable, allowing for better testing and
utilization in clinical practices (Cheng et al., 2021; Kim et al.,
2021). A third application comes in the prescription of these
drugs. For instance, the dosage and selection of drugs can be
optimized with data regarding the effects of nucleotide
polymorphisms on drug efficacy (Chung et al., 2020; Megías-
Vericat et al., 2021).

DISCUSSION

Clinical genomics, AI, big data, and pharmacogenomics are
essential in the future development of precision medicine
(Figure 1). Precision medicine has many advantages, such as
providing the means for physicians and other healthcare
professionals to make more accurate diagnoses, giving
healthcare officials and researchers easier access to larger
amounts of medical data, and leading to a greater
understanding of diseases and their underlying causes
(McAlister et al., 2017; Pinho, 2017; Ginsburg and Phillips,
2018; Goetz and Schork, 2018; Bilkey et al., 2019; Ahmed
et al., 2020a; Ahmed, 2020; Faulkner et al., 2020; Ahmed et al.,
2021a). At present, the most prominent challenge in precision
medicine is identifying which approaches to implement when
working with different types of medical data (Ahmed, 2020). In
addition, there is no current system in place that allows for the
comparison of multi-omics patient data to provide accurate
predictive and personalized results. A more user-friendly
interface would be required for effective implementation of
precision medicine in the healthcare field. While there have
been many developments in this field in recent years, there are
also many ethical and logistical challenges that are need to be
addressed in clinical genomics, big data, and pharmacogenomics
implementation. Furthermore, the prematurity of some these
approaches, such as the pharmacogenomics field, in the scope
of precision medicine present a challenge in providing reliable
and accurate results.

With the rapid development of many new approaches in
precision medicine, the integration of two or more fields is
currently being explored. Each type of approach offers a
unique understanding and perspective of the data. The
integration of multiple approaches allows for a more holistic
and comprehensive approach to precision medicine,
incorporating information from several different fields. In
precision medicine, integration of these approaches provides
researchers a comprehensive understanding of a given medical
case, from the cause of the disease to the relevant mechanisms and
interactions associated with the disease (Hasin et al., 2017). This,
in turn, allows for a more accurate selection of treatment method

for a given disease. One example of the integration of these
approaches in precision medicine is the application of AI to
genomics. Extensive developments have been made in the
intersection of the field of these two fields. AI has aided in the
process of combining different algorithms to make disease
analysis and predictions more efficient (Xu et al., 2019).
Genomic analysis using AI is mainly focused on gene
expression, DNA methylation, somatic point mutation, and
copy number alteration (Xu et al., 2019). By employing
machine and deep learning approaches among many others,
predictive models are built that can utilize genomic and other
multi-omics data to speedup the process of data analysis thus,
resulting in faster decision-making (Xu et al., 2019). Different
integration methods of multi-omics datasets are essential when it
comes to capturing the complexity of each omics approach
(Picard et al., 2021). While recent advancements have been
observed in the genomics and multi-omics field, more
benchmark studies are needed to choose the ideal machine-
learning strategy to be implemented (Picard et al., 2021; Reel
et al., 2021). Multi-omics integrative models can aid in
understanding the intricacies of disease abnormalities, which is
not always possible with only genomic or other single-omics
analysis (Reel et al., 2021).

Although big data have some advantages in medical research,
such as reduction of medical error and enablement of the correct
treatment approach to a disease, the need to standardize the data
content and clinical definition presents a significant disadvantage
(Xu et al., 2019). Despite their own advantages in precision
medicine, there are also some limitations in open access
clinical data and claims data in precision medicine. One
significant limitation is that the health care-specific
information included in the claims can be incomplete,
inaccurate, or altogether missing. This originates difficulties in
determining how patient-specific treatment is appropriate or
effective (Stein et al., 2014). Clinical genomics is also an
emerging approach in precision medicine and involves using
clinical patient data to derive relationships between genes and
diseases. These gene–disease relationships are typically stored in
genomic databases. These databases enable the collection and
analysis of genomic data, which allows for personalized treatment
of the disease before significant proliferation. Similar to open
access clinical data, one major limitation of such databases is that
they are not standardized, meaning data cannot be easily transferred
from database-to-database. This complicates the process of cross-
referencing data between different databases and can prove to be an
obstacle to efficient patient treatment. Pharmacogenomics is similar
to clinical genomics in that it is a branch of genomics (analysis of an
individual genome). However, it focuses more on the individual’s
reaction to specific treatments and medications rather than the
disease itself. This is essential in precision medicine, as such study
provides an insight into how patients respond to specific treatments.
Such correlations can be derived between a patient’s genomicmakeup
and their reaction to treatments. This then allows for the grouping of
patients based on similar genetic variations and allow for more
precise and personalized prescription of treatment. However,
pharmacogenomics is still a new field of study and has not been
developed enough to be reliably utilized.
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The advancements in AI, healthcare, clinical genomics, and
pharmacogenomics have resulted in a substantial volume of data
generated. However, this large influx of data presents an issue, as
no reliable or standardized means of analysis has been developed.
Such data are too large to be analyzed through common visual
analysis or statistical correlation methods (Álvarez-Machancoses
et al., 2020; Caudai et al., 2021). The use of AI and ML techniques
alleviates this issue by allowing for the efficient management of
data and providing the ability to recognize patterns in complex
datasets (Caudai et al., 2021). In addition, the AI and ML
techniques do not require explicit programming to complete
specific tasks, as they are able to independently detect and
analyze patterns within the data (Caudai et al., 2021). The
implementation of such techniques and methods also provides
the ability to predict an attribute based on correlated data. For
example, this is especially beneficial in clinical settings, in which
such techniques can be implemented to predict the
pharmaceutical properties of drug targets and drug candidates
(König et al., 2021). Overall, the AI and ML methods are one
promising solution to the rapidly increasing volume of high-
throughput data (Vadapalli et al., 2022).

In this study, we hypothesize that the continued integration of
pharmacogenomics, clinical genomics, AI, and healthcare will
allow for increased potential in patient diagnosis and treatment.
A standardized model linking and translating all these different
variables needs to be implemented at the clinical level in order to
further progress in the precision medicine field. The application
of clinical genomics, pharmacogenomics, artificial intelligence
algorithms, and big data analytics in precision medicine across
different types of patient data (multi-omics) will allow for better
prognosis and prediction of disease states and their mechanisms.
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