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Molecular probes for the human adenosine receptors
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Abstract
Adenosine receptors, G protein–coupled receptors (GPCRs) that are activated by the endogenous ligand adenosine, have been
considered potential therapeutic targets in several disorders. To date however, only very few adenosine receptor modulators have
made it to the market. Increased understanding of these receptors is required to improve the success rate of adenosine receptor drug
discovery. To improve our understanding of receptor structure and function, over the past decades, a diverse array of molecular
probes has been developed and applied. These probes, including radioactive or fluorescentmoieties, have proven invaluable inGPCR
research in general. Specifically for adenosine receptors, the development and application of covalent or reversible probes, whether
radiolabeled or fluorescent, have been instrumental in the discovery of new chemical entities, the characterization and interrogation of
adenosine receptor subtypes, and the study of adenosine receptor behavior in physiological and pathophysiological conditions. This
review summarizes these applications, and also serves as an invitation to walk another mile to further improve probe characteristics
and develop additional tags that allow the investigation of adenosine receptors and other GPCRs in even finer detail.
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Covalent ligands

Introduction

Adenosine receptors (ARs) belong to the class A family of G
protein–coupled receptors (GPCRs) and are activated by their
endogenous ligand adenosine. These receptors have been

considered potential therapeutic targets in several disorders,
including Parkinson’s disease, schizophrenia, analgesia, is-
chemia, and cancer [1]. To date, four subtypes of adenosine
receptors have been identified, namely A1, A2A, A2B, and A3.
Activation of A1 and A3 receptors leads to inhibition of ade-
nylate cyclase through their interaction with a Gαi protein,
whereas A2A and A2B receptors stimulate the enzyme through
a GαS-linked pathway. Until now, the 3D structures of the A1

and A2A subtypes have been elucidated [2, 3]; structural stud-
ies on the A2B and A3 subtypes have yet to be successful.
Crystallization of GPCRs, often a prerequisite for structural
biology, still proves to be a challenging task due to their low
expression in native tissue, and their inherent flexibility and
instability once extracted from the membrane, which is need-
ed for further structural studies. Over the past decades, a di-
verse array of molecular probes, bifunctional ligands that can
be used to interrogate receptor structure and function, has
proven invaluable in GPCR research. From a chemical per-
spective, a molecular probe can be defined as a small molecule
that binds the receptor of interest and enables further studies
by virtue of a connected tag or functional group that exhibits
specific properties. These conjugated tags or functional
groups include radioactive or fluorescent moieties to enable
studies on ligand–receptor binding as well as the quantifica-
tion and visualization of receptors. Moreover, tags containing
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a reactive warhead capable of irreversibly binding to the re-
ceptor have been shown to facilitate structure elucidation.
When made bifunctional, i.e., combined with a click handle,
these tags can be used as affinity-based probes (AfBPs), which
are emerging as valuable tools for chemical biology or prote-
omics studies to gain further insight into receptor localization
and target engagement [4–6]. This strategy was inspired by
earlier activity-based protein profiling-click chemistry
(ABPP-CC), which helped in visualizing and quantifying the
activities of drug targets (mainly enzymes) in native biological
systems [7, 8]. In this review, various chemical probes for
human adenosine receptors, comprising radioligands, fluores-
cent ligands, and covalent ligands, will be summarized.

Radioligands for in vitro receptor
characterization

Some adenosine receptor agonists and antagonists have been
developed in a radiolabeled (“hot”) form, so-called
radioligands. Often, these are high-affinity molecules contain-
ing radioactive isotopes such as [3H]-, [125I]-, and [35S]-,
which emit radiation that can be detected and quantified.
The majority of radioligands used for in vitro assays are la-
beled with either [125I] or [3H]. While [125I]-labeled ligands
show a higher specific activity (∼ 2000 Ci/mmol) and shorter
half-life (t1/2 = 60 days) compared to tritium-labeled ligands
(specific activity ~ 25–120 Ci/mmol and t1/2 = 12.5 years),
[3H]-labeled compounds are more biologically indistinguish-
able from the unlabeled parent ligand. These radiolabeled li-
gands are predominantly used in (i) saturation experiments to
measure the radioligand’s equilibrium dissociation constant,
KD, and receptor expression/density (Bmax); in (ii) competition
displacement experiments to determine the affinity (equilibri-
um inhibitory constant Ki) of non-labeled (“cold”) com-
pounds; and in (iii) binding kinetics assays to determine a
ligand’s association (kon) and dissociation (koff) rate constants
[9, 10]. Conventional radioligand binding assays require a
filtration step to separate bound from unbound radiolabeled
ligands and capture the radioligand–receptor complex. A
more recently developed bead-based assay, the scintillation
proximity assay (SPA), has emerged as a rapid and sensitive
assay to perform high-throughput screens in a homogeneous
system. Due to the diverse applicability of these techniques in
receptor research, a diverse set of radioligands for the different
AR subtypes has been developed. All radioligands that are
currently commonly used are summarized in Table 1.

Radioligands for the adenosine A1 receptor

Starting with agonist radioligands for A1R, initially only triti-
ated adenosine-based derivatives were developed. Among
them, [3H]CCPA (Fig. 1; Table 1) showed the highest affinity

with a KD value of 0.61 nM for human A1R (hA1R) [33].
[3H]LUF5834 is a non-nucleoside partial agonist radioligand
(Fig. 1; Table 1) with nanomolar affinity (KD = 2.03 ±
0.52 nM) for the hA1R [12]. Its partial agonistic nature allows
this radioligand to bind to both G protein–coupled and –
uncoupled receptors. This radioligand proved a versatile tool
to estimate the efficacy and the mechanism of action of both
agonists and inverse agonists at the hA1R.

The reference antagonist radioligand for A1R is the
xanthine-derived antagonists/inverse agonist [3H]DPCPX
(Fig. 1; Table 1) [11]. Although this xanthine derivative dis-
plays lower affinity at the human (KD = 3.86 nM) [11] than the
rat receptor (KD = 0.18 nM) [34], it is still a very useful tool for
the characterization of A1R and to consequently discriminate
from other subtypes. It has been applied in SPA technology,
constituting an alternative platform for real-time measure-
ments of receptor–ligand interactions on hA1R [35].
Antagonist radioligands, contrary to agonists, tend to label
all receptors present in a cell membrane preparation indepen-
dent of their coupling to a G protein and are therefore used
more frequently in AR research, and GPCR research in
general.

Radioligands for the adenosine A2A receptor

The reference radioligands for binding assays at A2AR include
the adenosine-based agonists [3H]NECA (Fig. 1; Table 1) [11]
and [3H]CGS21680 (Fig. 1; Table 1) [36]. While [3H]NECA
bound to hA2AR with a KD value of 20 nM, this non-selective
radioligand also exhibited remarkably high affinity for hA3R
with a KD value of 6 nM, threefold higher than at the A2A

receptor [11]. Later, the more selective radioligand
[3H]CGS21680 showed a moderate affinity for human A2AR
with a KD value of 22 nM and has been used in autoradio-
graphic studies, revealing the distribution of the A2AR in the
basal ganglia of the human brain and an increased hA2AR
level in the striatum of schizophrenic patients [14, 37, 38].
However, besides its agonistic binding to high- and low-
affinity states of the receptor, application of this agonist
radioligand is further limited due a limited selectivity over
the A3R (Ki = 67 nM). This resulted in complex binding char-
acteristics related to cortical, non-A2A binding sites [39].

To avoid the issues occurring with agonistic radioligands,
two xanthine-based antagonist radioligands [3H]XAC (Fig. 1;
Table 1) [15] and [3H]MSX-2 (Fig. 1; Table 1) [16] were
developed to investigate the A2AR. Although the unlabeled
compound XAC showed poor selectivity for hA2AR over
hA1R (30-fold) and hA3R (90-fold) [11], [3H]XAC was used
to label the hA2AR-binding pocket with a KD value of 9.4 nM
[15]. [3H]MSX-2 is a styrylxanthine-based antagonist which
bound selectively to rA2AR (KD = 8.0 nM) [16]. Furthermore,
in vitro autoradiography with [3H]MSX-2 showed the greatest
binding in the striatum, which is in line with the expected
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density of A2AR in the mouse, rat, and pig brains [40]. A
preliminary ex vivo study confirmed that [3H]MSX-2 pene-
trated the blood–brain barrier, which is promising for in vivo
use [40]. Applications of these styrylxanthine derivatives are
limited however, due to the tendency to undergo photo-
induced isomerization [41]. Meanwhile, two non-xanthine an-
tagonist radioligands were developed as well. [3H]ZM241385
(Fig. 1; Table 1) showed a high affinity and low non-specific
binding to hA2AR [17, 42]. However, this radioligand also
binds to A2BR with nanomolar affinity (KD = 33.6 nM) [43].
[3H]SCH58261 (Fig. 1; Table 1) showed a better selectivity at
the hA2AR (hA2B/hA2A = 8352) than [3H]ZM241385 and was
used in autoradiographic studies to investigate the receptor
distribution in the human brain [18, 37]. Similarly,
[3H]SCH58261 was applied in ex vivo binding studies to
study A2AR receptor occupancy of various ligands in mouse
brain [44]. Additionally, this radioligand was applied in high-
throughput ligand screening using a SPA setup and showed

comparable sensitivity to the conventional filtration assay
[45].

Radioligands for the adenosine A2B receptor

So far only one selective agonist radioligand has been de-
scribed for the A2BR, which is tritium-labeled BAY 60-6583
(Fig. 1; Table 1) [19]. Unfortunately, the specific binding of
[3H]BAY 60-6583 was too low compared to its high non-
specific binding to establish a robust radioligand binding as-
say. Until now, the non-selective agonist radioligand
[3H]NECA, despite its low affinity, remains the only molecu-
lar tool available to specifically study the active A2BR confor-
mation [19, 46].

The A1R radioligand [3H]DPCPX (Fig. 1; Table 1) was
also reported to bind hA2BR (KD = 40 nM) and has been used
to determine the affinity of competing ligands [20, 47].
Another non-selective radioligand is [125I]I-ABOPX (Fig. 1,

Table 1 Commonly used AR
radioligands for in vitro studies Radioligands KD

a (nM) Functionality Refs Commercially available

A1

[3H]CCPA 0.61 Agonist [11] N

[3H]LUF5834 2.0 Agonist [12, 13] N

[3H]DPCPX 3.9 Antagonist [11] Y

A2A

[3H]NECA 20 Agonist [11] Y

[3H]CGS21680 22 Agonist [14] Y

[3H]XAC 9.4 Antagonist [15] N

[3H]MSX-2 8.0 Antagonist [16] Y

[3H]ZM241385 0.60 Antagonist [17] Y

[3H]SCH58261 2.3 Antagonist [18] Y

A2B

[3H]NECA 441 Agonist [19] Y

[3H]DPCPX 40 Antagonist [20] Y

[125I]I-ABOPX 37 Antagonist [21] N

[3H]MRS1754 1.1 Antagonist [22] Y

[3H]MRE-2029-F20 2.8 Antagonist [23] Y

[3H]OSIP339391 0.17 Antagonist [24] N

[3H]PSB-603 0.40 Antagonist [25] N

A3

[3H]NECA 6.2 Agonist [11] Y
125I-APNEA 15 (r) Agonist [26] N

[125I]I-AB-MECA 1.9 Agonist [27] Y

[3H]HEMADO 1.1 Agonist [28] Y

[125I]MRS1898 0.17 (r) Agonist [29] N

[125I]MRS5127 5.7 Partial agonist [30] N

[3H]MRE-3008-F20 0.80 Antagonist [31] N

[3H]PSB-11 4.9 Antagonist [32] N

a The data are KD values for radiolabeled compounds (nM) for the indicated human adenosine receptors unless a
different species is indicated (r = rat)
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Table 1) [21], which bound to A2BR with moderate affinity
(KD = 37 nM) and showed a high specific binding to a hA2BR
overexpressing cell line. The first A2BR-selective antagonist
radioligand reported was [3H]MRS1754 (Fig. 1; Table 1),
which bound to hA2BR with a KD value of 1.1 nM [22].
Later, another xanthine analog radioligand [3H]MRE-2029-
F20 was reported with comparable affinity and selectivity
[23, 48]. The pyrrolopyrimidine-derivative OSIP339391
(Fig. 1; Table 1) was also labeled with tritium, representing
a novel selective and high-affinity radioligand for the hA2BR
[24]. However, all these radioligands showed poor selectivity
(less than 100-fold) towards the hA1R. More recently, Müller
et al. investigated the structure–activity relationships of 1-al-
kyl-8-(piperazine-1-sulfonyl)phenylxanthine derivatives,
yielding a new and potent A2B-selective antagonist, PSB-
603 [25]. Tritium-labeled PSB-603 (Fig. 1; Table 1) was sub-
sequently developed and employed as the first high-affinity
(KD = 0.40 nM) A2BR-specific radioligand for receptor phar-
macological studies. However, the current xanthine-based ra-
dioactive tracers are highly lipophilic compounds that exhibit
unfavorable non-specific to specific binding ratios; this feature
confines their application to receptor studies in isolated
membranes.

Radioligands for the adenosine A3 receptor

Initially, studies on the human A3R (hA3R) were performed
using the non-selective agonist radioligand [3H]NECA (Fig.
1, Table 1) [11]. For binding studies on the rat A3R (rA3R)
however, 125I-APNEA (Fig. 1, Table 1) was the preferred
radioligand [49]. Although 125I-APNEA showed reasonable
affinity for the rA3R (KD = 15 nM), it was shown to be even
more potent for the rA1R (KD = 1.3 nM) [26, 49]. Another
agonist radioligand, [125I]I-AB-MECA (Fig. 1; Table 1),
showed better affinities for both rA3R (KD = 1.5 nM) and
hA3R (KD = 1.9 nM) [26, 27], but still bound to rA1R in the
nanomolar range (KD = 3.4 nM) [26]. To tackle the selectivity
challenge, Klotz et al. developed the tritiated agonist
radioligand [3H]HEMADO (Fig. 1, Table 1) [28], which
showed high-affinity (KD = 1.1 nM) and low non-specific
binding (1–2% atKD value) to hA3R. Even though no binding
on the rat rA3R was observed, the enhanced selectivity versus
other AR subtypes (> 300 fold) made [3H]HEMADO a useful
tool for A3R binding assays. Subsequent efforts in finding a
selective ligand for the rA3R resulted in [125I]MRS1898 (Fig.
1; Table 1), which selectively binds to rA3R with an improved
KD value of 0.17 nM [29]. Still, there are some liabilities
caused by the high non-specific binding. The truncation of

the 5′-position of the ribose moiety generated the latest A3R
agonist radioligand [125I]MRS5127 (Fig. 1; Table 1) with a
KD value of 5.7 nM [30]. Its major advantage is the low degree
of non-specific binding (27 ± 2% at a concentration of 5 nM)
and its improved selectivity versus the other AR subtypes.
These benefits, together with the uniformity of its agonistic
nature across species, may render [125I]MRS5127 the pre-
ferred chemical tool for characterizing the A3R in its active
state over other radioligands reported previously.
Commercially available [125I]I-AB-MECA has emerged as a
reference radioligand though.

Until now, only two antagonist radioligands, [3H]MRE-
3008-F20 (Fig. 1; Table 1) [31, 50] and [3H]PSB-11 (Fig. 1;
Table 1) [32], have been reported for the A3R. While both
derivatives selectively bind the hA3R at (sub)nanomolar con-
centrations, [3H]PSB-11 shows a much lower degree of non-
specific binding (2.5 ± 0.1% at KD value) than [3H]MRE-
3008-F20 (ca. 25% atKD value). The downside of these struc-
turally diverse heterocyclic antagonists is their low affinity for
the A3R in non-human, particularly rodent tissue.

Radioligands for in vivo studies—PET/SPECT
tracers

While β-emitting ligands serve their purpose in in vitro or
ex vivo experiments, they are not suitable for in vivo applica-
tion. To that end, positron emission tomography (PET) and
single-photon emission computed tomography (SPECT) scan-
ning have emerged and are noninvasive quantitative tech-
niques to measure the receptor distribution and function
in vivo. Over the years, an ever-expanding library of [11C]-,
[18F]-, and [123I]-labeled radiotracers has been developed that
enables the determination of receptor binding potentials (BPs)
in physiological and pathophysiological studies. Although the
decay of these isotopes is much faster than is the case for [3H]-
or [125I]-labeled ligands, the relatively safe γ- and photon-
emissions make these tracers suitable for physiological appli-
cations. SPECT radioisotopes, such as γ-emitting [123I] (t1/2 =
13.2 h), typically have a much longer half-life than PET
tracers labeled with [11C] (t1/2 = 20.3 min) or [18F] (t1/2 =
110 min), which allow for longer radiosynthetic protocols
and enable SPECT imaging to be conducted for longer time
periods. Nonetheless, PET studies of adenosine receptors have
been more widely performed due to the higher resolution and
sensitivity that can generally be achieved compared to
SPECT. In the development of radiotracers for ARs, particu-
larly in the brain and central nervous system, it is desirable to
not only optimize for affinity and low non-specific binding
capacity, but also for blood–brain barrier permeability. A ma-
jor challenge is that the short radioligand half-life requires on-
site synthesis and rapid purification and validation of the
probes. PET and SPECT imaging times, which are also related

�Fig. 1 Chemical structures of commonly used AR radioligands for
in vitro studies. Unlabeled version was drawn for radioligands with
unknown radioisotope position (i.e., [3H]LUF5834 and [3H]BAY
60-6583)
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to radioligand t1/2, are usually insufficient to allow
radioligand–receptor binding to reach an equilibrium; there-
fore, appropriate kinetic models should be used to correct for
this shortcoming. PET imaging of ARs in vivo and the appli-
cations thereof in drug discovery have been comprehensively
reviewed [51–53]. Here, we will focus on the recent applica-
tions of clinical PET imaging studies on ARs.

PET tracers for the adenosine A1 receptor

Two xanthine derivatives, [18F]CPFPX (Fig. 2, Table 2) and
[11C]MPDX (Fig. 2, Table 2), have been extensively
employed for the characterization of A1R in human brain,
and their results are summarized in several reviews [51, 65].
While [18F]CPFPX has a higher affinity for A1R than
[11C]MPDX, the latter has been shown to be much more sta-
ble against peripheral metabolism. Using these PET tracers,
the cerebral distribution of the A1R has been successfully
visualized and quantified in human brain [66, 67]. From these
studies, a correlation between A1R distribution and aging as
well as sleep deprivation was established [68, 69]. Additional
studies on receptor occupancy using PET tracers, for example
[18F]CPFPX in a bolus-plus-constant-infusion PET assay,
showed that repeated intake of caffeinated beverages resulted
in a 50% occupancy of the cerebral A1Rs during the day [70].
This effect might cause adaptive changes and lead to chronic
alterations of receptor expression and availability.
Furthermore, these PET tracers have been valuable tools for
clinical studies on neurodegenerative diseases, revealing the
functional mechanisms and pharmacokinetic profiles of new
potential drug treatment strategies. In early Parkinson’s dis-
ease, increased binding of [11C]MPDX was found in the tem-
poral lobe, suggesting a compensatory mechanism of A1R
expression in non-dopaminergic systems in response to the
diminished availability of dopamine [71]. With [18F]CPFPX,
a phase- and region-specific pattern of A1R expression in
Huntington’s disease was detected, providing evidence that
adenosinergic targets are involved in the pathophysiology of
this disease [72]. More recently, the first partial agonist PET
tracer, [11C]MMPD (Fig. 2, Table 2), was evaluated in rat
brain [54]. It showed suitable blood–brain barrier (BBB) per-
meability, high specificity, and subtype selectivity in vivo.
This finding may open new routes to visualize receptor occu-
pancy of agonists or partial agonists at the A1R in drug
development.

PET/SPECT tracers for the adenosine A2A receptor

Several radioligands for PET imaging of cerebral A2ARs have
been introduced since the 1990s. The initial design of PET
tracers for the A2AR started from xanthine-based antagonists,
leading to the discovery of [11C]TMSX (Fig. 2, Table 2), pre-
viously abbreviated as [11C]KF18446. Though in vivo

imaging of the human brain in healthy controls and in patients
with Parkinson’s disease (PD) was relatively successful [73,
7 4 ] , t h e s e x an t h i n e d e r i v a t i v e s a r e p r on e t o
photoisomerization, and thus [11C]TMSX could only be ap-
plied in PET scans under dimmed light. To circumvent this
limitation, the first non-xanthine-based PET tracer,
[11C]SCH442416 (Fig. 2, Table 2), was designed based on a
known precursor, SCH58261. An increased binding potential
of [11C]SCH442416 was observed in the striatum of
Parkinson’s patients with levodopa-induced dyskinesias
(LIDs), providing evidence that A2AR is a potential pharma-
cological target for the management of LIDs [75]. Since the
problem of high non-specific binding (and consequential low
target-to-non-target ratios) still remains for these ligands [76],
Zhou et al. incorporated the 11C-radionuclide into clinical
candidate preladenant. PET imaging in rats showed a high
uptake of [11C]preladenant (Fig. 2, Table 2) in the striatum
and low uptake in other regions of the brain, consistent with
cerebral A2A distribution [77]. Using [11C]preladenant in clin-
ical PET studies, receptor occupancy by istradefylline, an ap-
proved A2AR antagonist, was measured in patients with
Parkinson’s disease. It was demonstrated that istradefylline
binds to A2AR in a dose-dependent manner, consequently
resulting in near-maximal (94%) occupancy in the ventral
striatum, thus establishing the dosage regimen of such CNS
drugs [78]. Subsequently, to benefit from the prolonged half-
life of these tracers, 18F-labeled A2AR antagonist PET tracers
have been investigated for human studies. For example, two
fluorine-18 labeled SCH442416 analogs, [18F]FESCH (Fig. 2,
Table 2) and [18F]FPSCH (Fig. 2, Table 2), were reported as
PET tracers used to image the A2AR in rat brain [79].
[18F]FESCH and [18F]FPSCH showed identical striatum-to-
cerebellum ratios (4.6 at 37 min and 25 min post-injection,
respect ively) , s imilar to the rat io obtained with
[11C]SCH442416. Other examples are preladenant-based li-
gands, including a SPECT tracer, [123I]MNI-420 (Fig. 2,
Table 2), and a PET ligand, [18F]MNI-444 (Fig. 2, Table 2).
Both have been successfully applied in A2AR imaging studies
in the human brain [80, 81]. [123I]MNI-420 rapidly entered the
human brain and showed the highest specific binding in the
striatum, consistent with known A2AR densities. [18F]MNI-
444 showed an improved binding potential in the brain com-
pared to [11C]TMSX and [11C]SCH442416, opening up the
possibility to more broadly use in vivo A2A PET imaging in
neuroscience research.

PET tracers for the adenosine A2B receptor

So far only two radioligands for use in in vivo studies have
been developed for A2BR, namely 1-[11C]”4” (Fig. 2, Table 2)
and -[18F]”7a” (Fig. 2, Table 2) [61, 62]. The first compound,
featuring a triazinobenzimidazole scaffold with moderate po-
tency (IC50 = 210.2 ± 12.3 nM) towards A2BR, has been
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applied in PET studies in rats and showed the highest uptake
in brown adipose tissue, lungs, and testes [61]. With a high
chemical stability and good pharmacokinetic profile, this tool
compound represented a good lead for the development of
A2BR radiotracers. The second A2BR PET tracer was devel-
oped on a pyrazine-based antagonist with the potential to pen-
etrate the blood–brain barrier [62]. Despite poor selectivity
(A2A/A2B = 13, A1/A2B = 5), this radiolabeled ligand was fur-
ther evaluated for its in vivo pharmacokinetic profile, reveal-
ing the formation of a radio-metabolite capable of penetrating
the blood–brain barrier. With these PET studies, the stage is
set for further A2BR probe design to enhance their selectivity
and metabolic stability.

PET tracers for the adenosine A3 receptor

The firs t PET tracer for A3R was developed by
radiofluorination of FE@SUPPY (Fig. 2, Table 2), a selective
and potent antagonist for hA3R [82, 83]. Although it had al-
ready been shown for the parent compound that the affinity for
rat A3R was 140-fold lower than for human A3R,
[18F]FE@SUPPY was studied for its biodistribution in rats,
and specific binding in the rat brain was demonstrated using
autoradiography [83]. A further preclinical PET study using
[18F]FE@SUPPY to image A3R revealed a pronounced up-
take in xenografted mice injected with cells overexpressing
humanA3R. This “humanized animal model” inspired to eval-
uate [18F]FE@SUPPY in mice xenografted with a human co-
lorectal cancer cell line (HT-29) overexpressing A3R as a
tumor marker. Unfortunately, this study to visualize the A3R
in vivo was unsuccessful, presumably due to insufficient up-
take of [18F]FE@SUPPY in the tumors, poor conservation of
target expression in xenografts, or unfavorable pharmacoki-
netics of the tracer in mice [63]. In analogy to this,
[18F]FE@SUPPY:2 (Fig. 2, Table 2) was developed by
transforming the fluoroethylester into a fluoroethylthioester
[84]. While a higher specific radioactivity was obtained
( [ 1 8F ]FE@SUPPY :2 = 340 ± 140 GBq /mo l and
[18F]FE@SUPPY = 70 ± 26 GBq/mol), the uptake pattern
for the two PET tracers is distinct. Especially, brain to blood
ra t i o s a r e r emarkab ly inc r ea sed ove r t ime fo r
[18F]FE@SUPPY, whereas those for [18F]FE@SUPPY:2
stayed unaltered. Lastly, a pair of structurally similar ligands
(i.e., agonist MRS3581 and antagonist MRS5147) were re-
ported as [76Br]-labeled potential PET radiotracers [64].
Both ligands showed similar biodistribution in rats, i.e., pri-
marily uptake in the organs of metabolism and excretion.
However, the uptake of agonist [76Br]MRS3581 (Fig. 2,
Table 2) was an order of magnitude faster than that of antag-
onist [76Br]MRS5147 (Fig. 2, Table 2), possibly due to the
presence of a uronamide group in the agonist to influence its
bioavailability and permeation in vivo. In contrast, the antag-
onist [76Br]MRS5147 demonstrated an increased uptake in rat

testes, an A3R-rich tissue, suggesting that the antagonist may
also serve as a viable diagnostic molecular probe for patho-
logical conditions with increased A3R expression.

Fluorescent probes

As an alternative to radiolabeledmolecular probes, fluorescent
ligands have also been included into the pharmacological tool-
box. This approach avoids the safety concerns associated with
the disposal of radioisotopes and also provides the opportunity
of a “real-time” readout of the ligand–receptor interaction.
Fluorescent ligands for GPCRs are usually designed by incor-
porating an organic fluorophore, such as a BODIPY,
AlexaFluor®, rhodamine, or NBD (nitrobenzoxadiazole)
moiety into an existing GPCR agonist or antagonist
pharmacophore via a linker. The use of these fluorescent
probes in GPCR research has recently been reviewed [85]
and includes studies on receptor localization, function, and
regulation, but also on ligand–target binding kinetics, thus
contributing to a detailed understanding of receptor physiolo-
gy and pathophysiology. In addition, the development of
newer methods and techniques, such as scanning confocal
microscopy, fluorescence polarization, fluorescence correla-
tion spectroscopy, resonance energy transfer (FRET or
BRET), and flow cytometry, is boosting the potential use of
fluorescent probes in drug discovery. The development of
fluorescent ligands to characterize adenosine receptors has
been the subject of intense investigation, which has been sum-
marized in detail by Kozma et al. in 2013 [86]. Here, we will
therefore summarize and review emerging fluorescent ligands
for more recent applications on ARs.

Fluorescent ligands for the adenosine A1 receptor

Tomonitor ligand binding to receptors on the surface of living
cells, a nano-luciferase (NanoLuc) BRET methodology
(NanoBRET) has recently been established [87–89]. This ap-
proach was also applied to a study of allosteric modulators in
intact living cells using fluorescent A1R agonists, such as the
adenosine-based agonist, ABA-X-BY630 (Fig. 3, Table 3),
and two NECA-based ligands, ABEA-X-BY630 (Fig. 3,
Table 3) and BY630-X-(D)-A-(D)-A-G-ABEA (Fig. 3,
Table 3) [90]. The two positive allosteric modulators tested
were shown to increase the specific binding of the fluorescent
A1R agonists, indicative for a switch of the A1R population to
a more active receptor conformation.

Fluorescent ligands for the adenosine A2A receptor

MRS5424 (Fig. 3, Table 3) is a fluorescent adduct of agonist
APEC with AlexaFluor®532. Using this probe, allosteric
modulation within A2AR/D2R heterodimers was followed
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using real-time FRET [101]. A negative allosteric effect on
A2AR ligand binding and receptor activation was found when

the D2R agonist quinpirole was added. This heterodimer in-
teraction was further validated in a higher-throughput flow

Fig. 2 Chemical structures of AR radioligand tracers for in vivo studies
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cytometry–based assay with the fluorescent agonist
MRS5206 (APEC-AlexaFluor® 488) (Fig. 3, Table 3)
[102]. These experiments provided evidence for a differential
D2R-mediated negative allosteric modulation of A2AR agonist
binding, in particular for apomorphine, a drug used in the
treatment of PD. Recently, using a fluorescence polarization
assay, McNeely et al. employed a fluorescent agonist, FITC-
APEC (Fig. 3, Table 3), to characterize the binding kinetics of
three hA2AR ligands [91, 92]. The kinetic parameters of these
unlabeled ligands, computed using a numerical solution ap-
proach, showed good consistency with those determined in a
conventional radioligand binding assay.

Endeavors to enhance selectivity towards hA2AR and im-
prove the physicochemical properties of fluorescent ligands
led to the discovery of MRS7416 (Fig. 3, Table 3), which is
based on the antagonist SCH442416 [93]. As a fluorescent
tracer, MRS7416 displayed low non-specific binding at
hA2AR in flow cytometry experiments. From molecular
docking studies, the researchers suggested that the fluorescent
AlexaFluor® 488 moiety present in MRS7416 is binding to
the hydrophilic extracellular loops of the receptor. This would
make the probe essentially “bitopic,” i.e., bridging two sepa-
rate domains of the hA2AR. Very recently, the toolbox was
expanded with a series of preladenant-based ligands equipped

with a range of fluorophores [94]. These compounds showed
pKD values between 7.1 and 7.8 and were highly A2A-selec-
tive with practically no binding to the other adenosine receptor
subtypes.

Fluorescent ligands for the adenosine A2B receptor

The first selective A2B fluorescent ligand reported, PSB-
12105 (Fig. 3, Table 3), was synthesized by integrating a
BODIPY moiety into the pharmacophore of 8-substituted
xanthine derivatives [95]. Besides fluorescently labeling
CHO cells expressing recombinant human A2BR, this ligand
was used to establish an A2BR binding assay on living cells in
a flow cytometry setup. Barresi et al. reported on another
series of (non-selective) fluorescent antagonists for labeling
A1Rs and A2BRs [96]. In one of the ligands, a fluorescent
group, NBD (Fig. 3 , Table 3) , was l inked to a
triazinobenzimidazole scaffold. This fluorescent antagonist
showed a clear labeling of bone marrow–derived mesenchy-
mal stem cell membranes, which was largely prevented by
pre-incubation with selective agonists for A1R and A2BR.
These findings provide a sound basis for the design of novel
fluorescent ligands to monitor the expression and localization
of A2BR in living cells.

Table 2 Recent AR radioligands used for clinical PET or SPECT imaging

Radioligands KD (nM)a Functionality Ref

A1 A2A A2B A3

A1

[18F]CPFPX 1.3 940 N.D. N.D. Antagonist [51]

[11C]MPDX 4.2 (r) > 100 (r) N.D. N.D. Antagonist [51]

[11C]MMPD 0.5 71 75 42% (1 μM) Partial agonist [54]

A2A

[11C]TMSX or [11C]KF18446 1600 (r) 5.9 (r) N.D. N.D. Antagonist [55]

[11C]SCH442416 1.1 0.05 > 10,000 > 10,000 Antagonist [56]

[11C]preladenant > 1000 1.1 > 1700 > 1000 Antagonist [57]

[18F]FESCH 43% (10 μM) 12 N.D. 60% (10 μM) Antagonist [58]

[18F]FPSCH 1000 54 N.D. 1320 Antagonist [59]

[18F]MNI-444 N.D. 2.8 N.D. N.D. Antagonist [60]

[123I]MNI-420 N.D. 2.0 N.D. N.D. Antagonist [60]

A2B

[11C]”4” 230 548 210 N.A. Antagonist [61]

[18F]”7a” 19 55 4.2 796 Antagonist [62]

A3

[18F]FE@SUPPY 4030 1720 N.D. 6.0 Antagonist [63]

[76Br]MRS3581 N.D. N.D. N.D. 0.63 Agonist [64]

[76Br]MRS5147 N.D. N.D. N.D. 0.62 Antagonist [64]

N.D. not determined, N.A. not active
a The data are KD values of radiolabeled compounds for human adenosine receptors unless otherwise indicated (r = rat) or % inhibition at the indicated
concentration in brackets
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Fluorescent ligands for the adenosine A3 receptor

The non-selective A1R/A3R antagonist, CA200645, was
employed as a tool compound to develop a robust competition
binding assay to, e.g., screen for new chemical templates and
fragments for A3R at a live cell high-content screening system
[87, 88]. Besides, CA200645 was also applied to study the
A3R localization on intact human neutrophils. It appeared that
A3R activation induces the formation of filipodia-like exten-
sions and bacterial phagocytosis [103]. Modification of the
linker component in CA200645 by the insertion of a dipeptide
yielded two A3-selective fluorescent ligands, BODIPY 630/
650-X-Tyr-Ser-XAC (Fig. 3, Table 3) and BODIPY FL-X-
Tyr-Ser-XAC (Fig. 3, Table 3) [97]. Both ligands showed
displaceable membrane binding with little non-specific bind-
ing in a fluorescent confocal microscopy setup. Additionally,
these ligands were applied in a NanoBRET-based assay to
study the kinetic aspects of ligand binding [98]. A similar
strategy to incorporate a (three amino acid) peptide linker
was applied to an existing non-selective adenosine-based fluo-
rescent agonist, ABEA-X-BY630, yielding the highly potent
fluorescent agonist BY630-X-(D)-Ala-(D)-Ala-Gly-ABEA at
A3R [104]. This probe was used to visualize the internaliza-
tion of YFP-tagged as well as -untagged receptors, and ap-
peared to promote the formation of intracellular receptor–
arrestin-3 complexes. In addition, click chemistry serves as a
versatile approach to simplify compound synthesis, as it pro-
vides the means for facile incorporation of fluorescent tags.
CGS15943, a triazolo-quinazoline antagonist scaffold, was
extended with an alkyne moiety to be click-conjugated with
AlexaFluor® 488, yielding a selective A3R fluorescent probe,
MRS5449 (Fig. 3, Table 3) [99]. In flow cytometry, this mo-
lecular probe was used to quantify hA3R and to perform li-
gand screening in intact cells. The most recent addition to the
A3R toolbox has been a series of pyrazolo[4,3-e]-1,2,4-
triazolo[1,5-c]pyrimidine derivatives equipped with
fluorescein-based fluorophores FITC and AlexaFluor® 488
[100]. The best compound from this series (MRS5763) ex-
hibits a reasonable affinity of 32 nM on the hA3R and has
some selectivity towards the hA2AR.

Covalent ligands

Another class of molecular probes is formed by covalent li-
gands. The term covalent here refers to the ability of these
compounds to bind the receptor irreversibly by forming a
covalent bond to a specific amino acid residue located at or
near the ligand binding site [105]. Depending on the type of
covalent interaction induced, some different considerations
are made concerning the design of these compounds.
Generally, high affinity and selectivity for the target receptor
will increase receptor occupancy and decrease non-specific or

off-target binding, thus improving specific covalent labeling
[106]. Two types of covalent ligands have been developed
until now: electrophilic and photo-reactive ligands.
Choosing the correct functional group (or warhead) that can
react with the amino acid residues present in the binding site is
essential for successful covalent probe design. Photo-reactive
ligands possess a light-sensitive group, such as aryl azide,
diazirine, or benzophenone, which is irradiated with light of
a specific wavelength to yield highly reactive nitrene, carbene,
or benzophenone-derived diradicals. These reactive species
subsequently form a covalent bond with a neighboring amino
acid residue through a variety of insertion reactions [107].
Photo-reactive ligands, occasionally combined with mass
spectrometry, have been applied in GPCR research to deter-
mine the binding site of ligands and to identify the partner
receptor for orphan ligands [108]. When combined with a
radioactive label, photoaffinity probes emerge, which are used
to study GPCR localization using autoradiography [109].
Electrophilic ligands on the other hand possess a reactive
electrophile as a warhead, such as (iso)thiocyanate, sulfonyl
fluoride, or a Michael acceptor like acrylamide. These elec-
trophiles react with nucleophilic amino acid residues such as
lysine, serine, and cysteine near the binding site of the ligand.
When combined with in silico modeling and site-directed mu-
tagenesis studies, these chemo-reactive ligands often enable
characterization of the GPCR ligand binding site.
Additionally, electrophilic covalent ligands have been applied
to study receptor reserve, turnover, and subtype discrimina-
tion [110, 111]. Lastly, binding of a covalent ligand stabilizes
the receptor into an active or inactive conformation, which in
turn facilitates crystallization of the receptor–ligand complex.
This aids in structural biology studies using X-ray diffraction
or cryoEM, providing valuable insights into the structure and
function of GPCRs [112]. A prime example of this is the case
of the human adenosine A1 receptor, which was recently co-
crystallized with covalent antagonist DU172 [3]. There are
numerous reported covalent ligands for adenosine receptors
that have in some way contributed to the characterization of
these receptors and their ligand binding sites. These ligands
will be summarized below, and their applications will be
discussed.

Covalent ligands for the adenosine A1 receptor

Arguably, the first example of photoaffinity labeling of an aden-
osine receptor dates back to 1985 when N6-2-(4-
aminophenyl)ethyladenosine (APNEA), a non-selective adeno-
sine-based agonist with high affinity for both A1R and A3R, was
coupled to the A1R [113]. In an attempt to characterize the A1R
structure, radioiodinated 125I-APNEA (Fig. 4, Table 4) was in-
cubated with A1R and reacted with crosslinking reagent N-
hydroxysuccinimidyl 6-(4-azido-2-nitrophenylamino)hexanoate
(SANPAH) in situ. Subsequent UV irradiation resulted in a 38-
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kDa protein being covalently labeled with the radioligand in rat
cerebral cortex and adipocytemembranes. Since this process was

completely blocked by co-incubating with a selective A1R ago-
nist, this protein was designated as A1R. Strictly speaking, this

Fig. 3 Chemical structures of recent fluorescent tools for ARs
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radioactive ligand is obviously not inherently photo-reactive and
thus not a photoaffinity probe per se. Interestingly, in the same
year, efforts to develop an inherently photo-reactive ligand based
on the R-PIA scaffold, one of the most selective A1R agonists,
were successful. A photoactivatable azido group was positioned
at the purine core structure, generating the photolabile ligand R-
AHPIA (Fig. 4, Table 4) [129]. It exhibited similar affinity (Ki=
1.5 nM) and efficacy (EC50 = 35 nM) as its parent compound, R-
PIA, but after photoactivation, it showed irreversible inhibition of
approximately 40% of the receptor binding sites. Such covalent
labeling of A1R led to a concentration-dependent reduction of
cellular cAMP levels, consistent with activation of rA1R and
correlating with receptor occupancy [130]. Similar to the case
of APNEA, when R-AHPIA was radioiodinated to yield 125I-
AHPIA (Fig. 4, Table 4), SDS-PAGE analysis of rat brain mem-
branes that were incubated with this covalent radioligand and
UV-irradiated showed the appearance of a single protein band
of ~ 35 kDa [129]. Interestingly, even though R-AHPIA is about
60-fold selective for the A1R, it is also a partial agonist at the
A2AR, and pretreatment with R-AHPIA reduced the stimulatory
effect of NECA, indicating persistent binding of the ligand and
subsequent reduced activation by a full agonist [131]. In the
search for covalent antagonists, 4-azidophenethyl xanthine deriv-
ative [125I]BW-A947U (Fig. 4) was synthesized, and

optimization (analogous to the development of selective A1R
antagonist DPCPX) yielded the next photoactivatable antagonist,
125I-azido-BW-A844U (Fig. 4, Table 4) [114, 132, 133]. Both
ligands are xanthine-based antagonists that have a light-sensitive
aryl azide located on the xanthine 3-position. Photoaffinity label-
ing of partially purified receptor with 125I-azido-BW-A844U
followed by chemical or enzymatic fragmentation experiments
demonstrated that the covalently modified amino acids were lo-
cated at transmembrane domain III of the A1R. This approach
provided clear insight into the amino acids surrounding the bind-
ing pocket of the A1R and thus aided in the development of
three-dimensional models of the receptor.

Initial attempts in the development of chemo-reactive ago-
nist ligands for the A1R were focused on functionalizing the
adenosine scaffold with isothiocyanates or sulfonyl fluorides
to serve as warheads [115, 134]. In the first reported case, p-
and m-DITC-ADAC (Fig. 4, Table 4), both adenosine deriv-
atives with nanomolar affinity substituted on the N6-position
with an isothiocyanate-bearing linker, were synthesized and
tested on the A1R [135]. At nanomolar concentration, both
ligands irreversibly occupied approximately half of the A1R
binding sites. In a functional cAMP accumulation assay, both
agonists elicited a sustained, antagonist-insensitive, A1R-me-
diated response. Since the incorporation of a warhead via the

Table 3 Recent AR fluorescent ligands

Ligands Ki/KD
a Functionality Ref

A1 A2A A2B A3

A1 CA200645 34 N.D. N.D. 6.2 Antagonist [87, 89]

ABA-X-BY630 589 N.D. N.D. N.D. Agonist [90]

ABEA-X-BY630 1023 N.D. N.D. N.D. Agonist [90]

BY630-X-AAG-ABEA 676 N.D. N.D. N.D. Agonist [90]

A2A FITC-APEC N.D. 57 (bovine) N.D. N.D. Agonist [91, 92]

MRS7416 1680 30 N.D. 32% (10 μM) Antagonist [93]

“12” 0b 41 0b 0b Antagonist [94]

“13” 0b 41 0b 0b Antagonist [94]

“14” 0b 17 0b 0b Antagonist [94]

“15” 0b 22 0b 0b Antagonist [94]

“16” 0b 83 0b 0b Antagonist [94]

“17” 0b 60 0b 0b Antagonist [94]

A2B PSB-12105 ≥ 10,000 > 10,000 1.8 > 10,000 Antagonist [95]

NBD-derivative 1380 > 10,000 20%c (10 μM) > 10,000 Antagonist [96]

A3 BODIPY 630/650-X-Tyr-Ser-XAC 24 N.D. N.D. 0.76 Antagonist [97, 98]

BODIPY FL-X-Tyr-Ser-XAC 316 N.D. N.D. 11 Antagonist [97, 98]

MRS5449 87 73 N.D. 6.4 Antagonist [99]

MRS5763 N.D. 90 N.D. 32 Antagonist [100]

N.D. not determined
aKi/KD values for compounds for the indicated human adenosine receptors
b Specific BRET ratio on respective (NanoLuc-labeled) adenosine receptors
c% of cAMP production induced by 100 nM of NECA in CHO cells expressing human A2BR at 10-nM concentration compound
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N6-position of the adenosine scaffold was well tolerated and
showed no negative effect on the ligands’ affinities, a series of
adenosine derivatives bearing diverse linker types and war-
heads were synthesized and examined. Two promising com-
pounds, isothiocyanate 15b and sulfonyl fluoride 15d (Fig. 4,
Table 4), were validated as irreversible agonists promoting
persistent A1R-mediated guanine nucleotide exchange activi-
ty in a manner resistant to both agonist and antagonist addition
[134]. Furthermore, these two ligands demonstrated their ca-
pacity to thermo-stabilize purified, detergent-solubilized A1R
in a ThermoFluor assay to a significantly higher degree than
the high-affinity agonist NECA could. These thermostabilized
receptors with covalently bound ligands allowed purification
of the receptor in a monodisperse state, which greatly facili-
tated structure determination by X-ray crystallography [134].
Very recently, our group reported a capadenoson derivative,
which was equipped with a fluorosulfonyl warhead to give
LUF7746, a non-ribose (dicyanopyridine-based) partial ago-
nist for the A1R [116]. This compound was shown to selec-
tively bind the A1R in a time-dependent manner with an ap-
parent affinity (at 4 h pre-incubation) in the low-nanomolar
range. Additionally, LUF7746 was compared to LUF7747, a
non-reactive methylsulfonyl control compound, which
showed no time-dependent binding. Interestingly, whereas
both compounds showed an intrinsic activity with Emax

around 60%, which was also demonstrated in a label-free
whole cell assay, only the effect of LUF7747 could be dimin-
ished by the addition of antagonist DPCPX. The ability of
LUF7746 to persistently activate the receptor was largely
abolished by performing site-directed mutagenesis
(Y271F7.36) to remove the tyrosine’s reactive hydroxyl, indi-
cating the importance of this conserved amino acid in the
covalent interaction. With respect to chemo-reactive antago-
nists, two approaches have been explored, both starting from
the xanthine scaffold. The first class comprises the 8-
substituted 1, 3-dipropylxanthines [136]. One such compound
is m-DITC-XAC (Fig. 4, Table 4), an isothiocyanate deriva-
tive of the relatively non-selective AR antagonist XAC. It was
found to be a potent A1R antagonist in rat brain (Ki = 2.4 nM)
and was used to study the receptor reserve in guinea pig atrio-
ventricular nodes [137]. In the second approach, the electro-
philic fluorosulfonyl group was placed on the 3-position of the
xanthine core, as was done in covalent tool FSCPX (Fig. 4,
Table 4) [138]. This compound had a good affinity for the
A1R (IC50 = 10 nM), and treatment with 10- or 50-nM
FSCPX led to reductions in the available A1R binding sites
of 60% and 74%, respectively. In a follow-up study, it was
demonstrated that FSCPX irreversibly antagonized cardiac
A1R-mediated responses. Subsequently, it was shown that
FSCPX was unable to significantly decrease the maximal di-
rect inotropic response to four A1R full agonists (NECA,
CPA, CHA, and adenosine) in guinea pig atria, which dem-
onstrated a considerable A1R reserve for direct negative

inotropy [139]. In in vivo experiments, FSCPX was used suc-
cessfully as a “receptor knock-down” tool when IV infusion
of FSCPX in conscious rats attenuated CPA-mediated brady-
cardia [140]. As the ester bond present near the warhead of
FSCPX is prone to hydrolysis, a follow-up structural modifi-
cation was performed with a focus on linker types [117, 141].
This resulted in a closely related analog with improved stabil-
ity, DU172 (Fig. 4, Table 4). The affinity of DU172 (IC50 =
25 nM) was in line with that of FSCPX, and pretreatment of
DDT1 MF2 cells with DU172 resulted in a concentration-
dependent decrease in the A1R binding sites, indicating that
it behaved as an irreversible ligand indeed. This covalent
ligand–receptor interaction has been the basis for the structure
elucidation of A1R due to improved receptor stability [3].

Covalent ligands for the adenosine A2A receptor

For the A2AR, initial characterization of the receptor was aided
by a radioiodinated analog of APEC, a prototypical ribose-
based selective A2AR agonist. Similar to the initial A1R stud-
ies, 125I-PAPA-APEC (Fig. 5, Table 4) was cross-linked to the
A2AR in bovine striatal membranes using SANPAH and was
shown to covalently label a 45-kDa protein [121, 142]. Both
NECA and R-PIA were able to prevent the covalent labeling
of the 45-kDa protein by 125I-PAPA-APEC, providing evi-
dence that this protein is the A2AR indeed. Subsequently, the
photoactivatable azido analog 125I-azido-PAPA-APEC (Fig.
5, Table 4) was developed and was used to directly label the
same 45-kDa protein in bovine striatal membranes with 3-fold
greater efficiency of photo-incorporation [118]. A further
characterization of the binding domain was performed by
Piersen et al., who performed photoaffinity labeling of the
canine A2AR overexpressed in COS M6 cells with 125I-azi-
do-PAPA-APEC and tracked the cross-linked transmembrane
domain V [143]. However, no individual amino acid residues
responsible for the covalent interaction were identified. These
studies were later repeated with a novel adenosine-based
radioligand [125I]I-APE, which showed less hydrophobic in-
teractions than 125I-PAPA-APEC and had higher specific ra-
dioactivity than [3H]CGS21680 [119]. Its azido analog,
[125I]AzPE (Fig. 5, Table 4), showed saturable, high-affinity
binding in rabbit striatal membranes (KD = 1.7 nM), and
photolabeling identified a protein of 45 kDa that displayed
the appropriate pharmacology of the A2AR. More recently,
photoaffinity labeling has been combined with mass spec-
trometry analysis to map detailed ligand–receptor binding
sites. Muranaka et al. started from the not-so-A2AR-selective
SCH58261 scaf fold [144] and incorpora ted the
trifluoromethyl diazirine group to yield photoaffinity ligand
9 (Fig. 5, Table 4) [120]. When purified hA2AR was
photolabeled with this ligand and subjected to protease diges-
tion, cross-link positions were identified with LC-MS/MS.
The most likely amino acid candidate for this ligand was
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Y2717.36 in transmembrane domain VII. This is the first re-
ported case in which the cross-linked amino acid was eluci-
dated by mass spectrometry, which demonstrates the power of
combining mass spectrometry–based proteomics and covalent
labeling in the elucidation and characterization of GPCR li-
gand binding sites.

Analogous to the photo-reactive ligands, APEC also served
as a parent ligand for the initial design of chemo-reactive
ligands for A2AR. One exemplary compound is p-DITC-
APEC (Fig. 5, Table 4), which has a reactive 4-
isothiocyanatophenyl residue attached to the C-2 substituent
of the purine ring [121]. It had good affinity (Ki = 7.1 nM at
bovine A2AR) [121] and, at a concentration of 100 nM, irre-
versibly blocked 77% of [3H]CGS21680 binding in rabbit
striatal membranes [145]. In isolated, perfused guinea pig
hearts, treatment with p-DITC-APEC caused a prolonged,
persistent, and concentration-dependent coronary vasodilata-
tion, which is evidence of an irreversible activation of A2AR
[146]. More recently, an APEC analog bearing an active 2-
nitrophenyl ester was synthesized (MRS5854, Fig. 5,
Table 4). This ligand was designed to bind to the receptor
irreversibly and subsequently transfer its terminal acyl group
to a nucleophilic amino acid residue on extracellular loop 2
(ECL2) of the A2AR [122]. This acyl transfer would prevent
the ECL2-lysine-mediated recognition of ligands, effectively
blocking the receptor. Pre-incubation of hA2AR with

MRS5854 followed by extensive washing indeed showed
near-complete inhibition of radioligand binding. When
ECL2-lysine K153wasmutated to an alanine residue, a partial
restoration of Bmax was observed after treatment with
MRS5854, confirming that K153 is the anchor point for the
covalent interaction. Interestingly, the KD for the radioligand
used ([3H]ZM241385)was not significantly influenced by this
mutation, indicating that the targeted lysine residue is not im-
portant for ligand binding and that acyl transfer seems to pre-
vent binding by blocking entry to the binding pocket instead
of preventing the recognition of ligands. In parallel, the active
acyl was replaced by an azido-pentanoate group to generate
MRS5854-azide. Although this ligand showed diminished af-
finity towards the A2AR, it nevertheless caused a slight reduc-
tion in Bmax, suggesting that at least part of the receptors was
covalently labeled with the azido-pentanoate. This azido
group would theoretically allow for click-ligation to function-
alized alkynes; however, applications have not yet been
reported.

Three approaches have been taken to develop electrophilic
covalent probes for the A2AR. The first example is ISC (Fig. 5,
Table 4), an isothiocyanate-functionalized xanthine-based an-
tagonist for A2AR, which irreversibly binds to 80% of rA2AR
at 20 μM [123]. A second approach yielded FSPTP (Fig. 5,
Table 4), the para-fluorosulfonyl derivative of SCH58261,
which was used to investigate the level of A2AR reserve

Fig. 4 Chemical structures of covalent ligands for A1R. LUF7747 is a reversible control ligand for LUF7746
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[147]. More recently, our research group used the molecular
structure of the antagonist ZM241385 as a starting point for
the design of a third electrophilic covalent ligand. This en-
deavor yielded LUF7445 (Fig. 5, Table 4), a potent
fluorosulfonyl-equipped antagonist with an apparent affinity
for the hA2AR in the nanomolar range (pKi = 8.99) [124].
Aided by site-directed mutagenesis studies, it was shown that
LUF7445 binds to K153ECL2, the same residue that was also
involved in the acyl transfer of covalent agonist MRS5854.
After optimization of the chemical structure, the most potent
ligand was retained for further structural modification and was
equipped with an alkyne click handle (adjacent to the war-
head), resulting in the bifunctional probe LUF7487 (Fig. 5,
Table 4) [6]. This affinity-based probe made it possible to
visualize the receptor on SDS-PAGE via click-ligation with
a sulfonated Cy-3 fluorophore. The hA2AR was successfully
labeled in cell membranes, making LUF7487 a promising tool
compound that sets the stage for the further development of
probes to study GPCRs. The development of affinity-based

probes may open the door for the identification and target
validation of GPCRs in a more native environment.

Covalent ligands for the adenosine A3 receptor

While there are no photo-reactive or chemo-reactive ligands
available for the A2BR, the case for the A3R is also still rather
minimal. No photo-reactive ligands and only four “classes” of
chemo-reactive ligands are available for the A3R. MRS1163
(Fig. 6, Table 4), the only irreversibly binding agonist for the
A3R, was derived from the selective A3R agonist IB-MECA
[125]. It features a chemo-reactive isothiocyanate moiety,
which replaced the iodine substituent on IB-MECA, and
showed an apparent Ki value in the low-nanomolar range
(10 nM), which is comparable to IB-MECA. Treatment of
rA3R with 100 nM of MRS1163 led to a 41% loss in the
available receptor binding sites, and its irreversible nature
was demonstrated by the lack of recovery of A3R binding sites
after extensive washing. Using a “functionalized congener

Table 4 Covalent ligands for adenosine receptors

Ligands Apparent IC50/Ki/KD (nM)a Functionality Ref

A1 A2A A2B A3

A1
125I-APNEA 2.0 (r) N.D. N.D. N.D. Agonist [113]

R-AHPIA 1.6 (r) N.D. N.D. N.D. Agonist [113]
125I-AHPIA 2.0 (r) N.D. N.D. N.D. Agonist [113]
125I-azido-BW-A844U 0.14 (b) N.D. N.D. N.D. Antagonist [114]

p-DITC-ADAC 0.47 (r) 191 (r) N.D. N.D. Agonist [115]

m-DITC-ADAC 0.87 (r) 176 (r) N.D. N.D. Agonist [115]

LUF7746 4.0 26% (1 μM) 26% (1 μM) 25% (1 μM) Partial agonist [116]

m-DITC-XAC 2.4 (r) 343 (r) N.D. N.D. Antagonist [115]

FSCPX 12 1200 N.D. N.D. Antagonist [117]

DU172 21 2.8 N.D. N.D. Antagonist [117]

A2A
125I-azido-PAPA-APEC N.D. 1.2 N.D. N.D. Agonist [118]

[125I]AzPE N.D. 1.7 N.D. N.D. Agonist [119]

“9” N.D. 40 N.D. N.D. Agonist [120]

p-DITC-APEC 276 (r) 35 (r) N.D. N.D. Agonist [121]

MRS5854 500 23 N.D. 207 Agonist [122]

MRS5854-azide 30% (10 μM) 4360 N.D. 1810 Agonist [122]

ISC 20,300 111 N.D. Antagonist [123]

LUF7445 372 1.0 0% (1 μM) 49 Antagonist [124]

LUF7487 19 1.5 N.D. 60 Antagonist [6]

A3 MRS1163 145 (r) 272 (r) N.D. 10.0 (r) Agonist [125]

SO2F-MRS1191 41% (100 μM, r) 20% (100 μM, r) N.D. 2.4 Antagonist [126]

SO2F-MRE-3008-F20 < 5% (100 nM) 50 N.D. 79% (100 nM) Antagonist [127]

LUF7602 794 1300 0% (10 μM) 10 Antagonist [128]

N.D. not determined
a The data are apparent affinities (nM) for the human adenosine receptors or % displacement at the concentration in brackets unless indicated otherwise (r
= rat, b = bovine)
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approach,” the Jacobson group developed an electrophilic an-
tagonist for the A3R based on the 1,4-dihydropyridine tem-
plate, a selective A3R scaffold. A fluorosulfonyl-substituted
phenyl group was installed on MRS1191, thereby generating
the functionalized congener SO2F-MRS1191 (Fig. 6, Table 4)
[126]. It was reported to possess improved affinity (2.4 nM)
over the corresponding sulfonamide compound (292 nM).
When 100 nM of SO2F-MRS1191 was incubated with
hA3R-transfected HEK-293 cell membranes, approximately
56% of the hA3R binding sites were irreversibly occupied. A
second covalent antagonist was generated based on MRE-
3008-F20, a highly potent and selective A3R antagonist
[127]. By replacing the methoxy group in MRE-3008-F20
with a sulfonyl fluoride moiety, an irreversibly binding deriv-
ative, SO2F-MRE-3008-F20 (Fig. 6, Table 4), was synthe-
sized. At a concentration of 100 nM, SO2F-MRE-3008-F20
inhibited binding of the radioligand [125I]I-AB-MECA by
79%. By docking the ligand in a homology model of the
A3R, it was speculated that two amino acids, Cys251 or
Ser247, are the most probable binding partners for covalent
interaction. Recently, our group also designed covalent antag-
onists for the hA3R [128]. A series of tricyclic xanthine–
derived ligands bearing a fluorosulfonyl warhead and varying
linkers was synthesized. The most potent ligand, LUF7602

(Fig. 6, Table 4), had high affinity for the hA3R (Ki =
10 nM). Additionally, a non-reactive methylsulfonyl deriva-
tive LUF7714 was developed as a reversible control com-
pound. A series of assays, comprising of time-dependent af-
finity determination, washout experiments, and [35S]GTPγS
binding assays, then validated LUF7602 as a covalent antag-
onist. Based on homology docking, tyrosine Y2657.36 was
identified as potential covalent anchor, and when this residue
was mutated to phenylalanine, the mutant receptor displayed a
significant decrease in affinity for LUF7602 (IC50 = 16 nM for
hA3R-WT, IC50 = 1000 nM for hA3R-Y265

7.36F), while the
affinity of LUF7714 (IC50 = 1259 nM for hA3R-WT,
IC50 = 1000 nM for hA3R-Y265

7.36F) was unaltered. It
is worth mentioning that this particular tyrosine residue
is conserved among adenosine receptors and is also the
anchor point of DU172 and LUF7746, the aforemen-
tioned covalent antagonist and partial agonist for the
hA1R [117]. Hence, this tyrosine residue potentially rep-
resents a universal anchor point for covalent probes de-
signed for adenosine receptors. In general, covalent
probes, supported by molecular modeling and site-
directed mutagenesis, can serve as powerful tools to
characterize the spatial orientation and topography of
ligand–receptor binding sites.

Fig. 5 Chemical structures of covalent ligands for A2AR
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Concluding remarks

Molecular probes, including radioligands and fluorescent and
covalent ligands, are important tool compounds that fa-
cilitate the biochemical and structural investigation of
GPCRs. As shown in this review, these probes provide
information about the nature of adenosine receptors,
next to a deeper understanding of receptor regulation
and the pathological and physiological roles of this GPCR
subfamily. In particular, when combined with other tech-
niques such as receptor mutagenesis, X-ray crystallography,
and homology modeling, these tools provide a powerful plat-
form for molecular receptor pharmacology.

Radioligands are the most developed tools for GPCRs. An
established standard radioligand binding assay provides cru-
cial and reliable measurements of GPCRs interacting with
their synthetic ligands as well as newly developed probes.

Binding of an agonist radioligand may reveal different appar-
ent affinity states depending on the receptor states (i.e., G
protein–coupled and G protein–uncoupled) or cell-dependent
effector coupling; agonist binding often labels the G protein–
coupled (“active”) state of the receptor only. Thus, antagonist
radioligands are generally considered more acceptable in re-
ceptor classification than agonists. Among the adenosine re-
ceptors, there is still an urgent need for the development of
antagonist radioligands for the A2BR and A3R with high af-
finity (KD values of 1 nM or less), low non-specific binding,
and better selectivity. For in vivo assays, the development of
PET ligands targeting A2BR and A3R has still been limited to
receptor occupancy studies, biodistribution, or pharmacoki-
netic characterization, while PET ligands for A1R and A2AR
have blossomed in clinical studies, particularly for neurolog-
ical disorders. Studies on A2BR and A3R are generally con-
sidered to be hampered by the low expression level of these

Fig. 6 Chemical structures of covalent ligands for A3R. LUF7714 is a reversible control ligand for LUF7602

Table 5 Major pros and cons of radioligands versus fluorescent ligands

Radioligands Fluorescent ligands

Pro Con Pro Con

Established standard assays Radiation concerns No radiation/safety issues, easy handling Target often engineered

Highly sensitive Limited shelf life Shelf stable Non-specific binding, sensitivity

In vivo use (PET ligands) Limited “real-time” readout “Real-time” measurements Limited in vivo applicability

Commercial availability Safety issues, waste handling Application in microscopy setup Tag size
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receptors in endogenous tissue, insufficient affinity of the tool
compound, and unclear mechanisms involved in receptor
function. It is anticipated that continued efforts to develop
high-affinity and selective PET tracers for adenosine receptors
will further our understanding of the role these receptors have
in disease conditions.

Concerns about radiation safety and shelf life have fueled
the continuing interest in small-molecule fluorescent tools.
Recent examples summarized in this review demonstrate that
fluorescent probes represent an alternative approach to inves-
tigate AR characteristics. However, their use is still sub-
optimal due to the often high level of non-specific membrane
binding brought by the hydrophobic pharmacophore and
fluorophore. Hence, researchers should pay more attention
to designing probes with favorable physicochemical proper-
ties. Besides, the in vivo applications of such tools are still
hampered, partly due to their short excitation wavelengths and
low tissue penetration [148]. Future development of synthetic
ligands with a focus on near-infrared (NIR) fluorophores
might be advantageous, especially since such wavelengths
are not harmful to cells and have a relatively low absorption.
NIR probes have already been employed to study the canna-
binoid CB2 and α1-adrenergic receptors [149, 150].
Depending on the intended goal and applicability domain,
careful consideration of the pros and cons of fluorescent or
radiolabeled compounds (Table 5) is essential.

Compared to radioligand and fluorescent probes, covalent
ligands do not possess any detectable functionality for direct
quantification or visualization of receptors. However, when
combined with site-direct mutagenesis, mass spectrometry,
and peptide sequencing, they constitute a powerful approach
compared to classic reversible ligands to study adenosine re-
ceptor subtype and structure, map ligand binding sites, investi-
gate the physiological and pathological roles of receptors, and
determine the correlation between receptor occupancy and re-
sponse (Table 6). The emergence of the activity-based protein
profiling technique inspired researchers to equip probes with
click handles to yield bifunctional probes that can be used to
visualize receptors for target validation. In this strategy, a probe
binds the receptor with less perturbation compared to relatively
large tags linked to ligand scaffolds beforehand, which bridges
the field of chemical biology with the field of molecular phar-
macology to better investigate receptor–ligand interactions. In
future research, different tags may be introduced; for instance, a
biotin tag would allow for streptavidin-mediated receptor en-
richment followed by LC/MS analysis. Of note, the A2BR has
been known as the more poorly characterized adenosine recep-
tor subtype. This also has limited the development of molecular
probes targeting A2BR specifically, in particular for covalently
binding ligands, where no case has been reported so far.
Covalent probes for A2BR and A3R may also assist in the
structure elucidation of these two adenosine receptor subtypes,
which are currently still lacking.Ta
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For decades, scientists have been continuously developing
tool compounds to study adenosine receptors. In this
endeavor, the use of covalent or reversible probes,
whether radiolabeled or fluorescent, has been instrumen-
tal (i) to discover new chemical entities, (ii) to charac-
terize and interrogate adenosine receptor subtypes both
in vitro and in vivo, and (iii) to study their behavior in
physiological and disease conditions. This review has
summarized evidence for these applications, but hope-
fully, it also serves as an invitation to walk another mile to
further improve probe characteristics and develop additional
tags that allow the investigation of adenosine receptors and
other GPCRs in even finer detail.
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