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Abstract: LPS molecules of marine bacteria show structures distinct from terrestrial 

bacteria, due to the different environment that marine bacteria live in. Because of these 

different structures, lipid A molecules from marine bacteria are most often poor stimulators 

of the Toll-like receptor 4 (TLR4) pathway. Due to their low stimulatory potential, these 

lipid A molecules are suggested to be applicable as antagonists of TLR4 signaling in sepsis 

patients, where this immune response is amplified and unregulated. Antagonizing lipid A 

molecules might be used for future therapies against sepsis, therapies that currently do not 

exist. In this review, we will discuss these differences in lipid A structures and their 

recognition by the immune system. The modifications present in marine lipid A structures 

are described, and their potential as LPS antagonists will be discussed. Finally, since 

clinical trials built on antagonizing lipid A molecules have proven unsuccessful, we 

propose to also focus on different aspects of the TLR4 signaling pathway when searching 

for new potential drugs. Furthermore, we put forward the notion that bacteria probably 

already produce inhibitors of TLR4 signaling, making these bacterial products interesting 

molecules to investigate for future sepsis therapies. 
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1. LPS 

The major component of the outer leaflet of the outer membrane of Gram-negative bacteria is 

lipopolysaccharide (LPS). These molecules are in direct contact with the outside environment and, as 

such, are thought to play a role in resistance against outside dangers [1]. LPS is essential for viability 

in almost all Gram-negative bacteria. One cell of the model organism for Gram-negative bacteria,  

E. coli, contains approximately 3.5 × 10
6
 LPS molecules [2]. LPS consists of three different parts, in 

the following order, from inside the membrane to the outside: lipid A, the core (sometimes subdivided 

into the inner and the outer core) and the O-antigen [2]. The normally hidden lipid A part (Figure 1) is 

highly immunogenic and is recognized to be responsible for the development of septic shock or sepsis, 

an amplified and unregulated immune response by the host, which eventually could lead to organ 

failure, coagulation abnormalities and death [3,4]. Currently, there are no specific drugs for  

LPS-induced clinical syndromes [5,6]. 

Figure 1. Structure of the E. coli lipid A molecule, which is regarded as the most potent 

immune stimulator.  

 

2. Immune Recognition of LPS through the TLR4 Pathway 

The Lipid A part of LPS is not recognized by the host when it is anchored inside the bacterial outer 

membrane. When LPS is released, the lipid A part becomes exposed and initiates an immune response. 

The release of LPS from the membrane is caused by growth or cell lysis [4] A schematic overview of 

the immune recognition of LPS is given in Figure 2. The recognition of Lipid A starts with binding to 

lipopolysaccharide-binding protein (LBP), an acute phase protein. LBP then catalyzes the transfer  

of LPS to CD14 [4,6]. CD14 is a glycosyl-phosphatidylinositol (GPI)-linked receptor on monocytes, 

macrophages and polymorphonuclear leukocytes and binds LPS-LBP complexes. Because CD14  

lacks transmembrane and cytoplasmic domains, it is thought not to have signaling capabilities [4,6].  
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These signaling capabilities are provided by Toll-like receptor 4 (TLR4) [7], in complex with  

myeloid-differentiation protein 2 (MD-2), which interacts with CD14. Both TLR4 and MD-2 are found 

to be essential for signaling [8–10]. Where rough (R-form) LPS requires LBP and CD14, smooth  

(S-form) LPS has been described to directly interact with TLR4 [11]. Upon binding of LPS to the 

TLR4-MD-2 complex, dimerization of this complex occurs, and signaling is initiated by the interaction 

of the intracellular TLR4 domains [6,10]. Dimerization leads to the recruitment of adapter molecules 

and, via a signaling cascade, eventually, to the activation of the transcription factor nuclear factor-κB 

(NF-κB), which leads to the production of pro-inflammatory cytokines, such as IL-6 and tumor 

necrosis factor-α (TNF-α) [6,12,13]. 

Figure 2. The TLR4 signaling pathway. When LPS is bound to the bacterial outer 

membrane or present in intact outer membrane vesicles, its toxic potential is not released, 

and as such, these molecules were termed ―endotoxins‖. As soon as LPS is released, this is 

changed. Free LPS is bound by LBP and transferred to CD14. MD-2 then binds the LPS 

and forms LPS-MD-2-TLR4 complexes. Dimerization of two of these complexes then 

occurs. Dimerization of TLR4 molecules leads to the recruitment of adapter molecules: 

MyD88, the TIR-domain containing adapter protein-inducing IFN-β (TRIF) and the  

TRIF-related adapter molecule (TRAM). A signaling cascade is initiated, which eventually 

leads to the degradation of the IKK complex, which frees the transcription factor, NF-κB. 

NF-κB then moves into the nucleus and starts transcription of pro-inflammatory cytokines, 

such as IL-6 and TNF-α. Via a different pathway, initiated by different adapter molecules, 

type I interferon genes are also transcribed, leading to the production of IFN-α/β.  
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3. Sepsis and the Potential of Structurally Different LPS Molecules as Antagonists 

Sepsis is a clinical syndrome that originates from the TLR4 response, and therefore, future therapies 

focus on the elements of this signaling pathway. The observation that not all LPS molecules produced 

by different bacteria induce the same immune response, and some not at all, has triggered research into 

the capability of certain LPS molecules to act as antagonists to treat sepsis in future therapies [5]. 

Because these LPS molecules are still able to bind MD-2 and TLR4, but not initiate the signaling 

pathway, they are able to compete for MD-2 and TLR4 binding sites with more potent inflammatory 

LPS molecules. Successful competition leads to an inhibition of TLR4 signaling and, therefore, a 

reduction of sepsis syndromes. Bacteria can produce many different forms of lipid A with their 

modification systems, which are mostly induced or repressed by the changes in growth conditions, 

such as pH, the presence of antimicrobial peptides and divalent cation concentrations [14]. It is shown 

that marine bacteria, which live in very different and harsh environments, with low temperature, high 

salt concentration and high hydrostatic pressure, produce different lipid A molecules. These have the 

potential to be used as antagonists in therapies against sepsis, when they show reduced immune 

stimulatory abilities [5,15]. 

4. Structure and Immune Recognition of E. coli Lipid A 

In order to determine the consequences of structural differences in the lipid A molecule  

regarding immune recognition, a basic understanding of the TLR4-MD-2-LPS complex is required.  

The crystal structure of this complex was determined using an E. coli LPS [16], which is regarded as  

one of the most potent LPS molecules [17]. The E. coli lipid A molecule consists of a β-1,6-linked  

D-glucosamine disaccharide, which is acylated with six fatty acids and carries two phosphate molecules  

(see Figure 1) [17]. Five of these six fatty acids interact with a hydrophobic pocket of MD-2, while one 

fatty acid is partially exposed on the surface for hydrophobic interactions required for dimerization. 

The ester and amide groups that connect the fatty acids to the glucosamine backbone are also exposed 

to the surface of MD-2, and they interact with hydrophilic side chains on the MD-2 pocket, TLR4 and 

the second TLR4 molecule. The phosphate groups interact with positively-charged residues from  

MD-2 and both TLR4 molecules. In order to establish dimerization, binding of lipid A induces a 

structural shift of 5 A° in MD-2, which moves critical residues for interaction with the second TLR4 

molecule into the right conformation [16]. Not only do all components of the lipid A interact with the 

MD-2-TLR4 complex, but many residues also interact with the second TLR4 molecule, thereby 

promoting dimerization [16]. The structure and interaction with the TLR4-MD-2 complex of the  

E. coli lipid A molecule will serve as the reference for other lipid molecules described below, and the 

effects on immune recognition by structural differences will be evaluated by comparing it to this  

lipid A.  

5. Immune Recognition of Lipid A Structures of Other Terrestrial Bacteria  

The effects of structural differences in lipid A structure on immune recognition are described 

below. The LPS molecule of Acinetobacter baumannii was found to be a very potent stimulator of 

TLR4 signaling, comparable to E. coli LPS [18]. The structure of the lipid A molecule was found to 
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resemble the structure of E. coli LPS, except for one extra fatty acid chain [19,20]. This higher degree 

of acylation does not seem to influence immune recognition by the TLR4-MD-2 complex, showing 

that in the case of A. baumannii, an extra fatty acid does not abrogate LPS binding to the complex, and 

the LPS is still able to initiate signaling. 

Although the most potent lipid A molecules contain six fatty acids, not all lipid A molecules with  

six fatty acids are recognized by TLR4. The lipid A molecules of Leptospira interrogans and  

Legionella pneumophila contain six fatty acids, but show other structural differences with the E. coli 

lipid A. The L. interrogans lipid A contains only one methylated phosphate group [21], and the  

L. pneumophila lipid A contains one large acyl chain of 27 of 28 carbon atoms [22]. It was described 

that LPS of Leptospira interrogans and Legionella pneumophila are not recognized by TLR4,  

but by TLR2 [23]. However, all observations in the literature describing the recognition of lipid A by 

TLR2 are now thought to be caused by contamination of the lipid A with lipoproteins, the direct 

activator of TLR2 [24–26]. Immune recognition of Leptospira interrogans lipid A by TLR4 is 

probably disturbed by the absence of negative-charged residues at the site of the phosphate groups, 

since these negative charges are important for TLR4 signaling [16]. Interestingly, the LPS of 

Bordetella pertussis (which signals via TLR4) was able to antagonize the effect of the Legionella lipid A 

molecules [22]. 

6. Decreased Lipid A Acylation Reduces Immune Potency 

Although an extra fatty acid does not seem to influence immune recognition by TLR4 for the LPS 

of Acinetobacter baumannii, the decrease of acylation has long been recognized for its reduction in the 

immune potency of the lipid A molecule. An interesting example is the lipid A molecule of  

Yersinia pestis, which shifts its structure at different temperatures [27]. It was shown that the lipid A 

structure when bacteria were cultured at 27 °C was a mixture of many forms, ranging from tri-acyl to 

hexa-acyl, while the lipid A structure of bacteria cultured at 37 °C lacks hexa-acylated lipid A. The 

immune potency of the lipid A was reduced 100-times by the decrease of acylation at 37 °C [27]. The 

structural switch of lipid A at different temperatures is thought to be a mechanism of immune evasion, 

where a change of host (and thereby temperature) would result in the production of lipid A molecules 

that are poorly recognized [27]. The result of deacylation was also shown for other bacterial  

pathogens, like Pseudomonas aeruginosa, Francisella tularensis, Bacteroides fragilis and Chlamydia  

trachomatis [28]. De-acylated lipid A (either penta- or tetra-acylated lipid A) was shown to need  

100-times the amount of LPS to induce the same response as the hexa-acylated structure [28].  

The reduced potency of lipid A molecules with less than six acyl chains to stimulate TLR4-MD-2 

complexes can be structurally explained. The fatty acid chains of penta- and tetra-acylated lipid A 

molecules are proposed to move further into the hydrophobic pocket of MD-2 to maximize 

hydrophobic contact. This should lead to substantially high energetic penalties when these fatty acids 

move back to the surface of MD-2 to interact with the second TLR4 molecule for dimerization [16]. 

Therefore, the dimerization reaction required for TLR4 signaling is energetically inhibited by lipid A 

molecules with five or less fatty acid chains. However, this mechanism is not true for all lipid A 

molecules with five fatty acids, like the lipid A from Bordetella pertussis, which is known to be a 

potent stimulator of TLR4 signaling [22]. 
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Not only the amount of fatty acids, but also the length of the fatty acids has been investigated [29]. 

In this study, synthetic lipid A mimetic compounds were created, which varied in their length of the 

secondary acyl chains. All compounds were hexa-acylated to mimic the most potent structure of  

lipid A. It was found that fatty acid chains with a length of eight carbon atoms were required for TLR4 

stimulation, and a length of 10 carbon atoms was optimal [29]. The switch of a fatty acid chain with a 

length of 10 carbon atoms to a chain of six carbon atoms diminished the potency of the synthetic  

lipid A mimetic compounds [29]. Interestingly, it was suggested that CD14 is able to enhance the 

responsiveness to lipid A molecules with a suboptimal length (eight, 12 and 14 carbon atoms) to create 

immune recognition of a greater variety of lipid A molecules [29]. 

7. Immune Recognition of Lipid A Structures from Marine Bacteria 

In order to evaluate marine lipid A structures for their ability to antagonize LPS signaling, the focus 

on their structure should be on both the number and length of their fatty acid chains and the presence 

of phosphate groups, since these features of the lipid A molecule seem to be most important for TLR4 

recognition. If marine lipid A molecules show low immune stimulatory effects, but are still able to 

bind MD-2 and TLR4 binding sites, they could be used to compete with normal LPS molecules that 

are the cause of sepsis. An overview of the marine lipid A structures is given in Table 1. 

Table 1. Overview of the lipid A structures from marine bacteria. 

Species No. of Acyl Chains 
No. of 

Phosphorylations 
Reference 

Pseudoalteromonas haloplanktis (TAC 125) 5 2 [30] 

Pseudoalteromonas haloplanktis (ATCC 14393) 5 2 [1] 

Alteromonas addita 5 2 [31] 

Marinomonas vaga 5 1 [32] 

Pseudoalteromonas issachenkonii 4 (5) 2 [33] 

Alteromonas macleodii 4 (5) 2 [34] 

Synechococcus strains CC9311 and WH8102 4 0 [35] 

Shewanella pacifica 6 2 [36] 

Chryseobacterium scophtalmum 2 1 [1] 

Marinomonas communis 5 1 [15] 

Marinomonas mediterranea 5 (6) 2 [15] 

Most of the marine Gram-negative bacteria show lipid A molecules that have lower levels of acylation, 

like penta-acylated (Pseudoalteromonas, Alteromonas and Marinomonas strains) or tetra-acylated lipid A 

molecules (Pseudoalteromonas and Alteromonas strains). Furthermore, next to a lower degree of 

acylation, most marine bacteria contain fatty acid chains that are also relatively short compared to 

terrestrial bacteria. Finally, the degree of phosphorylation is also lower in some marine lipid A 

structures, with some species containing only one phosphorylation and others even none at all  

(e.g., Marinomonas and Synechococcus strains). The most unusual lipid A molecule discovered is that 

of Chryseobacterium scophtalmum. This lipid A molecule was found to be a monosaccharide,  

mono-phosphorylated, with two fatty acid chains of 15 and 17 carbon atoms long [1]. This molecule 

showed resemblance to the precursor of E coli lipid A, which is called lipid X [1].  
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Some of these marine lipid A molecules have been tested for their ability to stimulate TLR4 

signaling. For example, the toxicity of the Marinomonas vaga lipid A molecule was tested in sensitized 

mice, and it was found that the lethal dose of this lipid A molecule was more than 20-times higher than the 

lipid A from Yersinia pseudotuberculosis, thus showing a lower immune potency [32]. The marine  

lipid A molecules from Marinomonas communis, Marinomonas mediterranea and Chryseobacterium 

scophtalmum were also tested for their ability to stimulate TLR4 signaling [15]. All LPS molecules 

showed a lower toxicity in sensitized mice compared to E coli and Yersinia pseudotuberculosis  

(hexa-acylated) LPS [15]. All of the LPS molecules studied were weak stimulators of immune cells, 

leading to less release of inflammatory cytokines, like TNF-α [15]. One of the lipid A molecules, from 

Marinomonas communis, was also shown to inhibit the cytokine induction by E. coli LPS, showing its 

antagonistic potential by competing for LPS binding sites [15]. More recently, lipid A molecules from 

several Pseudoalteromonas strains were tested for their antagonistic properties [37]. These lipid A 

molecules were also shown to have low immune stimulatory potential, as 100-times more was needed 

to stimulate immune cells, and still, the same concentrations of IL-6 and TNF-α as E. coli LPS could not be 

induced [37]. Furthermore, lipid A molecules from these marine bacteria were able to dose-dependently 

inhibit the stimulation of immune cells by E. coli by blocking TLR4 activation, showing their 

antagonistic potential, as well [37]. Interestingly, this inhibition was not visible when looking at  

TNF-α induction, leaving the authors to speculate that E. coli can induce the expression of TNF-α via 

pathways other than TLR4 [37]. 

8. Main Differences between Marine and Terrestrial Lipid A Structures 

Together, these data show that lipid A molecules from marine bacteria show distinct structures from 

terrestrial bacteria. Overall, lipid A molecules from marine bacteria show a lower degree of acylation 

and phosphorylation, which are properties known to affect TLR4 recognition [16]. Due to these chemical 

differences, the lipid A molecules show reduced immune stimulatory potential and toxicity [32] and 

even the ability to antagonize potent lipid A molecules in vitro, like those from E. coli [15,37]. Lipid A 

from marine bacteria has the ability to antagonize potent lipid A molecules from bacteria that are the 

causative agents of sepsis and septic shock, which make them potential targets to use for therapies 

against these syndromes, therapies that are, to date, still not present [5].  

9. Why Do Marine Bacteria Have Different Lipid A? 

Changes in temperature affect membrane fluidity; at lower temperatures, the membrane is less  

fluid [38]. It was shown for E. coli that it rapidly modifies its LPS when it is transferred from normal 

growing temperatures (>30 °C) to 12 °C [39]. To have optimal outer membrane fluidity, marine 

bacteria, especially of colder seas, are likely to have adapted their LPS to these conditions. Especially 

low acylation is a distinctive feature of bacteria growing in cold environments [40]. Not only 

temperature, but also pressure and salt concentrations found in the marine habitat differ from that of 

most terrestrial niches. Adaptations of the outer membrane will shield the cells from these natural 

stress factors [1]. 

The adaptations in the lipid A of marine bacteria are relevant for survival in the marine 

environment. Pathogenic bacteria infecting humans do not face the low temperature and high pressures 
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of the ocean, but specifically adapt their membrane composition to evade the host immune system. 

Although lipid A from marine bacteria can be a potent antagonist of TLR4 signaling, this effect will be 

coincidental, as no selective pressure has shaped these interactions. It is more likely that lipid A 

molecules from Gram-negative human pathogens have evolved these properties. However, as we will 

discuss below, these pathogen-specific lipid A molecules are modified sufficiently to reduce or prevent 

in vivo immune activation, but are still too potent to be effective systemic anti-sepsis agents.  

10. Drugs Based on Modified LPS in Sepsis Therapy Have Limited Success 

The potential of TLR4 antagonists for sepsis therapy has long been recognized. Therefore, several 

potential drugs have entered clinical trials to test their efficacy against sepsis. One of these was a lipid A 

analogue, called Eritoran (E5564), which entered a Phase III clinical trial. The structure of Eritoran is 

based on the lipid A molecule of Rhodobacter sphaeroides, which is a non-pathogenic lipid A [41,42].  

It was shown that Eritoran was able to block responses by human monocytes to LPS, even in nanomolar 

concentrations, making it a powerful antagonist with high potential to be used for therapy [43]. Later, it 

was shown that Eritoran binds the hydrophobic pocket of MD-2, without any interaction with TLR4. 

Therefore, Eritoran could compete with LPS for the binding site of MD-2 without leading to TLR4 

dimerization, and consequently, Eritoran inhibited TLR4 activation [42]. Because of these promising 

features, Eritoran entered clinical trials. However, the Phase III clinical trial was halted, due to a lack 

of significant results for Eritoran administration in 2000 sepsis patients [44]. Although this was in 

contrast with the results of earlier trials, the trial showed that Eritoran treatment had no significant 

benefit for sepsis patients [44].  

Another TLR4 antagonist that entered clinical trials is TAK-242. This chemical compound binds 

the intracellular domain of TLR4 and is, thus, not a real LPS antagonist [45]. However, TAK-242 was 

able to inhibit the production of TNF-α, IL-1β and IL-6 in mice, even if these cytokine levels were 

already high when TAK-242 was administered [45]. Again, just like Eritoran, the Phase III clinical 

trial of TAK-242 was halted, because the compound was unable to suppress cytokine levels in patients 

with severe sepsis [41]. 

11. Bacterial TLR4 Inhibitors as Therapeutics against Sepsis 

In spite of the potential of these and other LPS and/or TLR4 antagonists in vitro and in Phase I and 

II clinical trials, none of them have been shown to be effective for sepsis therapy, and new strategies 

should be evaluated. In the search for new potential drug agents for sepsis therapy, we propose to 

search in a so-far under-explored place: the pathogenic bacteria itself. Bacteria are known to produce 

many immune evasion molecules that act on different parts of the innate immune system, like the 

complement system, antimicrobial peptides and TLRs [46,47]. For example, Pseudomonas aeruginosa 

was shown to produce a protease that cleaves monomeric flagellin, the ligand for TLR5 [48]. The 

destruction of the TLR5 ligand leads to the inhibition of TLR5 signaling and, therefore, results in 

immune evasion. The same protease was also able to cleave C2 and, therefore, block complement 

activation [49]. Another example comes from Staphylococcus aureus, which produces an immune 

evasion protein, called SSL3, which specifically inhibits TLR2, likely by competing for ligand  

binding [50]. The advantage of using proteins from bacteria is that these proteins are shaped through 
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natural selection for a specific goal; the species that produces proteins with the highest inhibitory 

effect has a greater chance of surviving within its host. Furthermore, immune evasion by bacteria does 

not rely on one single point of action. For example, Staphylococcus aureus has been shown to inhibit 

the complement cascade at almost every step required for complement activation [46,47]. The same 

principle could be true for TLR4 signaling. Every signaling molecule active in the TLR4 signaling 

pathway (Figure 2) can be targeted by bacteria to abrogate the signal. In the search of new drug agents, 

we suggest to also look further down the pathway of TLR4 signaling than just the interaction with the 

receptor. Compounds that target other signaling proteins may be more potent inhibitors. Since  

Gram-positive bacteria do not contain LPS, they are unlikely to be the best candidates to look for 

antagonists of the TLR4 signaling. Therefore, to identify these antagonist, one should turn to the  

Gram-negative bacteria, preferably human pathogens.  

12. Compounds that Target the TLR4 Signaling Pathway 

Recently, several chemical compounds have been tested for their ability to inhibit TLR4 signaling 

without directly interacting with the TLR4 receptor. One of these is an antibody, called WN1 222-5. 

This antibody has been shown to inhibit the inflammatory response in vivo and in vitro, showing a 

potential use in future sepsis therapies [51]. It was shown that this antibody does not bind the lipid A 

moiety of LPS, but it binds to the inner core of the LPS molecule [51]. Interestingly, it was shown that 

the binding of LPS by WN1 222-5 mimics the binding of LPS by TLR4 [51]. Two compounds have 

been reported to interfere TLR4 signaling by targeting MD-2. One is an arylidene malonate derivative, 

which was able to block LPS-induced cytokine production [52]. The predicted binding site of this 

compound was inside the LPS binding site of the TLR4-MD-2 complex, making it able to disrupt 

protein-protein interactions between TLR4 and MD-2 (the actual structure of binding has not been 

determined) [52]. Another compound shown to be able to bind MD-2 is paclitaxel, an anticancer drug 

that induces cell cycle arrest and cell death in cancer [53]. Paclitaxel was shown to improve animal 

survival after admission of a lethal dose of LPS, to reduce cytokine levels in LPS-treated mice and to 

reduce NF-κB activation [53]. The mechanism of action was shown to be binding to MD-2, which 

reduced interaction with TLR4 [53]. A different strategy was used by another research group, which used 

TRAM-derived decoy peptides [54]. Two of these peptides were shown to inhibit TLR4 signaling by 

blocking the recruitment of adapter proteins to the cytoplasmic domain of TLR4 [54]. These peptides 

were also shown to be able to block TLR4 signaling in vivo, showing the potential to be used in future 

therapies against sepsis [54]. Arsenic trioxide was found to block TLR4 signaling via the  

TRIF-dependent pathway only, although a clear mechanism of action has not been determined [55]. 

13. Future Inhibitors of the TLR4 Signaling Pathway 

The examples above show that TLR4 signaling can be inhibited in several different ways, using 

different kinds of molecules. Since clinical trials using lipid A analogues have not been successful, we 

propose that it is time to focus on different aspects of the TLR4 signaling pathway. This will bring 

more potential therapeutic targets for therapy and, with that, the ability to use more strategies to find 

drugs that are effective in sepsis therapy.  
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14. Concluding Remarks 

Lipid A structures from marine bacteria show differences from terrestrial bacteria, most noteworthy 

a decrease in acylation and shorter fatty acid chains. These features make marine lipid A molecules 

less potent inducers of TLR4 signaling and even give them the potential to antagonize immune 

stimulatory lipid A molecules. However, the use of modified LPS antagonists in sepsis therapy has so 

far been unsuccessful. An explanation for this lack of in vivo efficacy may lie in the concentration 

needed for effective antagonistic effects at the infection site. There is a clear difference between 

evasion of recognition, as is used by many pathogens, and antagonistic activity against other more 

potent lipid A molecules. Modified lipid A with a 100-fold lower stimulatory capacity will still cause 

the same inflammation when administered at a 100-times higher concentration. For effective 

antagonism to be achieved at the site of infection, the dose that has to be administered systemically to 

the sepsis patient has to be much higher than 100× the concentration present at the infective site. A 

dose that is not lethal to the patient is unlikely to sufficiently inhibit the LPS present in the body of  

the patient.  

Many marine bacteria contain LPS, which differs from the E. coli prototype, since the marine 

environment forces bacteria to have altered outer membranes. Therefore, exploring marine bacteria 

will be an obvious choice to screen for lipid A with properties attractive for developing anti-sepsis 

treatment. However, for these molecules to be successful as antagonists, their antagonistic potency 

needs to be at least one order of magnitude better compared to the best ones identified so far. Still, a 

good place to look for these would be in a cold and deep marine environment. 

We also put forward that bacteria are likely to produce other products that inhibit TLR4 signaling. 

In the context of TLR4 signaling, these immune evasion molecules are likely to be found in  

Gram-negative pathogens. Additionally, since many Gram-negative pathogens are able to also directly 

inject proteins inside the cytosol of host cells using type III secretion systems [56], also immune evasion 

processes targeting the intracellular part of this pathway are not to be ignored. The successful 

identification of such proteins will provide a broader range of targets to inhibit uncontrolled immune 

activation during sepsis. 
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