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Identifying a stochastic clock 
network with light entrainment 
for single cells of Neurospora crassa
C. Caranica1, A. Al‑Omari2, H.‑B. Schüttler3 & J. Arnold4*

Stochastic networks for the clock were identified by ensemble methods using genetic algorithms 
that captured the amplitude and period variation in single cell oscillators of Neurospora crassa. 
The genetic algorithms were at least an order of magnitude faster than ensemble methods using 
parallel tempering and appeared to provide a globally optimum solution from a random start in the 
initial guess of model parameters (i.e., rate constants and initial counts of molecules in a cell). The 
resulting goodness of fit x2 was roughly halved versus solutions produced by ensemble methods using 
parallel tempering, and the resulting x2 per data point was only χ2/n = 2,708.05/953 = 2.84. The fitted 
model ensemble was robust to variation in proxies for “cell size”. The fitted neutral models without 
cellular communication between single cells isolated by microfluidics provided evidence for only one 
Stochastic Resonance at one common level of stochastic intracellular noise across days from 6 to 36 h 
of light/dark (L/D) or in a D/D experiment. When the light-driven phase synchronization was strong 
as measured by the Kuramoto (K), there was degradation in the single cell oscillations away from the 
stochastic resonance. The rate constants for the stochastic clock network are consistent with those 
determined on a macroscopic scale of 107 cells.

One of the main challenges of systems biology is explaining the dynamic behavior of single cells with their 
stochastic intracellular variation1,2. This stochastic intracellular variation has profound consequences on the 
regulation and phenotypes of genetically identical individual cells3,4. One example is the effects of stochastic 
intracellular variation on the dynamics of genes and their products involved in the biological clock5,6. While 
populations of 107 cells/ml display highly synchronized behavior producing regular oscillations at the mac-
roscopic scale, the behavior of individual cells is quite different. There is now evidence that individual cells in 
Neurospora crassa have clocks5, but there is substantial variation in phase between the clocks in different cells. 
What mechanisms at the single cell level explain how cells oscillate, and how do these cells come to oscillate in 
phase on a macroscopic scale?

There are three hypotheses for how cells come to oscillate as they transition from the single cell level to the 
macroscopic level. One possibility is that there is some form of chemical signal shared between cells that allows 
cells with different clock phases to reinforce and synchronize each other6,7. A second possibility is that the noise 
itself can play a positive role in generating oscillations8, and the mechanism for noise producing oscillations can 
invoke a physical hypothesis for biological oscillators known as Stochastic Resonance9. A third possibility is that 
there is some cell cycle gated mechanism that imposes regular oscillations on single cells10,11.

These three mechanisms can be examined using flow focusing microfluidics12 to capture individual cells 
under particular conditions for observation and to manipulate the environment of the cell to test individually 
these hypotheses under the effects of a variety of factors, such as light6. The conditions of the experiment here 
are used to isolate and test the Stochastic Resonance Hypothesis. Single cells are isolated in different droplets 
for observation so that they cannot communicate. Also single cells are maintained in media so that they cannot 
divide6. In this way the effects of cell-to-cell communication and cell cycle-gating on the clock can be eliminated. 
Only the mechanism of Stochastic Resonance remains to be examined9.

The Stochastic Resonance Hypothesis can be viewed as a prediction of a reasonable null hypothesis or “Neutral 
Model”13 specified by a stochastic clock network (Fig. 1) that does not invoke any other mechanism to explain 
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clock-like behavior. A stochastic network has several elements: (1) the variables in the network are counts of 
molecules in a cell; (2) the counts of molecules or molecular species (typically on the order of 100–1000 s) are 
small14; (3) a network of chemical reactions connects the molecules (Fig. 1); (4) the reactions occur “randomly” 
over time15; (5) with each reaction’s occurrence the species involved are incremented or decremented. For exam-
ple the reaction A + B—> A + C would decrement the count of B by 1 and increment the count of C by 1. Since 
the counts of molecular species are small within a cell, under the neutral model a major cause of change in the 
molecular species over time is the random drift in molecular counts due to stochastic intracellular noise within 
the cell16,17. Yet under certain circumstances this simple stochastic reaction network (Fig. 1) does predict that 
circadian oscillations will arise in populations of cells (i.e., Stochastic Resonance)14. Before invoking any more 
complicated hypothesis involving, for example, communication between cells to explain the emergence of oscil-
lations in populations of cells, it is necessary to overturn this simpler model and its predictions.

These stochastic networks differ from the deterministic network models for the clock18,19 in that the molecular 
species are counts rather than concentrations14; moreover, the trajectories of molecular species are stochastic and 
unpredictable in contrast to deterministic models, in which once the initial molecular species concentrations 
are known along with the rate constants in each reaction (Fig. 1), the whole history is predictable. As the counts 
of molecular species are made large, then in the limit the deterministic models can sometimes be recovered20. 
These stochastic networks have one additional key parameter over deterministic models, the “size” of the cell, 
which determines the level of noise in the counts of molecular species. When single cell measurements are taken 
on a genetic network as here5, the simpler deterministic models are no longer appropriate (see, for example the 
single cell trajectories in Supplementary Fig. S0 from earlier work6).

In previous work the data on ~ 1591 isolated cells was used to test the adequacy of a stochastic clock network 
in the dark (D/D) to provide initial evidence for the Stochastic Resonance hypothesis14. Here we use additional 
light entrainment data on single cells to construct a stronger test of this neutral model for explaining clock-like 
properties and to explore its limitations using light entrainment of single cells under a 6 h, 12 h, and 36 h artificial 

Figure 1.   (A) The key elements of the clock stochastic network are summarized. There are both a negative 
feedback loop, in which WCC activates the gene frq encoding the oscillator protein and a positive feedback loop 
in which the FRQ protein stabilizes the wc-1r mRNA. The genes wc-1 and wc-2 are the positive elements in the 
clock, while the frq gene is the negative element in the clock. (B) The full specification of the model is given by 
the network in panel (B). Circles denote reactions, and boxes represent reactants and products in the network. 
Double arrows denote catalytic reactions. The labels on reactions do double duty as both label for the reactions 
and as rate coefficient(s) for a particular reaction. Those reactions with no resultant product constitute decay 
reactions. All proteins and mRNAs have decay reactions as examples. The red dotted boxes denote components 
of the network across which there is approximately no net flow of molecules. Typically the dotted boxes are only 
crossed by catalytic reactions. Modified from14.
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day with equal amounts of light and dark (L/D)5. In addition to providing a stronger test of the neutral model the 
light entrainment data can also be used as a stronger test of the Stochastic Resonance Hypothesis.

Examining the neutral stochastic clock network without communication and without cell cycle gating is of 
particular interest under varying light regimes. In some models and experimental systems oscillators are hypoth-
esized to have limits to their ability to entrain to an external entrainment signal—if the driving signal has a period 
sufficiently far from the intrinsic period of the cell oscillator, then entrainment fails21. These entrainment limits 
have been examined in the mammalian Suprachiasmatic Nuclei (SCN)22.

The model filamentous fungus, N. crassa, is particularly well suited to test this neutral model for the clock 
because isolated cells maintain circadian oscillations6. The N. crassa model system is then complementary to 
cells in the SCN, which cannot usually sustain oscillations when isolated23. The N. crassa system is also comple-
mentary to another major model system for the clock, the cyanobacterium, Synechoccocus elongatus, because N. 
crassa can entrain to light at the single cell level5. In contrast S. elongatus shuts down transcription in the dark, 
making it more difficult to study light entrainment24. Thus, N. crassa is particularly well suited to use both dark 
(D/D) and light entrainment experiments (L/D) to provide a strong test of the neutral hypothesis of the clock 
stochastic network and Stochastic Resonance.

There are several questions to be addressed about this neutral model: (1) is the stochastic network of the 
clock consistent with the available single cell data? (2) if not, how does the model fail? (3) Is there a limit to the 
neutral model’s ability to explain light entrainment data?21 (4) When the amount of single cell data is quadru-
pled to include light entrainment, how does support for the Stochastic Resonance Hypothesis hold up with light 
entrainment data and data in the dark?

Since the manuscript is in some places quite technical, a road map for the manuscript is now provided as 
well as a graphical abstract (Fig. 2). The end point and message for this work is the last figure, demonstrating 
a stochastic resonance in the fitted network. Below or above the stochastic resonance the circadian rhythms of 
single cells are degraded. At the beginning the model is laid out. The novel element to this stochastic network for 
single cells of N. crassa is the inclusion of light as a molecular species. The structure of this network is suggested 
by earlier deterministic models on the macroscopic scale of 107 cells/ml18. Then this stochastic network for single 
cells is fitted to the average periodogram or power spectrum using ensemble methods originally introduced by 
the authors to systems biology from statistical physics25. In the initial implementation of these ensemble methods 
for the D/D data it was found that the Metropolis–Hastings method of Markov Chain Monte Carlo (MCMC) 
was insufficient for identification of the model ensemble, but more sophisticated parallel tempering methods 
were successful in identifying the stochastic network for single cells in the dark (D/D)14. So, parallel tempering 
methods for fitting the clock stochastic network became the natural starting point for fitting model ensembles 
to L/D data here. These more complicated stochastic networks with a light response proved to be a challenge for 
parallel tempering methods. It was necessary to develop a novel approach to ensemble methods using genetic 
algorithms26. Genetic algorithms represent a very broad class of optimization methods27, and here two recently 
developed genetic algorithms28,29 were used to identify model ensembles.

Then an assessment of goodness of fit was made using the Hilbert Phase30, which is functionally independent 
of the period and amplitude captured in the average periodogram of single cells31. Consideration of the phase 
over time showed precisely where the model ensemble succeeded and where the ensemble needed improvement 
when the effects of light synchronization were weak. Stochastic networks have one additional parameter, the “size 
of a cell”, that determines the level of stochastic intracellular noise in a cell. An empirical approach was developed 
to identify the level of stochastic intracellular noise in a cell by relating the noise to the cell’s RNA/DNA and 
protein/DNA ratios. The model fitting was shown to be robust to variation in the RNA/DNA and protein/DNA 
ratios and hence in the level of stochastic intracellular noise. Having identified a promising “neutral model” 
with no other hypothesized factors affecting cellular phase synchronization, it was demonstrated that there was 
only one stochastic resonance in the fitted ensemble for a variety of L/D experiments and that as the noise was 
varied away from this stochastic resonance, circadian oscillations were degraded. These last two observations 
are the major points of the paper.

Model
The neutral model for each genetically identical cell is a stochastic network displayed in Fig. 1B, and the broad 
outline of its features are given in Fig. 1A. The network of genes and their products begins with three clock 
mechanism genes in Fig. 1A: (1) the gene frequency (frq) encoding the oscillator protein FRQ; (2) one of two 
activator genes, white-collar-1 (wc-1) encoding WC-1; and (3) the second of two activator genes, white-collar-2 
(wc-2) encoding WC-2. The positive elements WC-1 and WC-2 are transcription factors that form a White-
Collar Complex (WCC)32. In Fig. 1A the WCC protein activates the oscillator gene frq, which in turn produces 
ultimately the FRQ protein, which is involved in deactivating the complex WCC. This negative feedback loop in 
part explains the origin of oscillations at the macroscopic scale18. There is also a positive feedback loop involving 
FRQ acting on the wc-1 mRNA (wc-1r) in Fig. 1A. The “stabilization” of this wc-1 mRNA by FRQ is crucial to 
explaining oscillations as well at the macroscopic scale18.

The details of how the stochastic network functions are given in Fig. 1B. A single cell is described by the 
counts of genes and their cognate messenger RNAs (mRNAs) and protein (boxes) in a cell. The molecular counts 
of species change at rates (the labels on circles) associated with the different reactions (circles) in the kinetic 
network. As examples, all clock mechanism genes (frq, wc-1, and wc-2) are transcribed at a rate Sx (e.g., S4) and 
translated at a rate Lx (e.g., L3). Messenger RNAs(mRNAs) and proteins decay at a rate Dx. The key reactions 
for oscillations at the macroscopic level are the rate of activation/deactivation (A and of 

−
A ) of the oscillator gene 

frq, the rate of deactivation P of WCC by FRQ, and the decay rate D7 of the stabilized mRNA wc-1r118. There is 
a total of 23 reaction rates and 12 initial conditions for a total of 35 parameters in this model.
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Genes under the control of the clock mechanism are called clock-controlled genes (ccg). One ccg of particular 
interest is the hypothesized gene that produces the autoinducer or quorum sensing signal Si synchronizing the 
clocks in different cells (indexed by i). Under the neutral hypothesis the rates of production of this signal are zero 
(i.e., if KS1 = 0). There is no communication hypothesized between cells in this paper in that cells are isolated in 
different droplets. Another is the recorder gene ccg-2P:mCherry in the MFNC9 strain for observing the opera-
tion of the clock (i.e., the hands on the face of the clock)33.

The one novel feature from earlier work14 is the presence of photons as a light species in Fig. 1B. This intro-
duces novel light (C3) and dark reactions (C2) for the production of WCC as in earlier work19 (see Fig. 2 of this 
earlier work). This slight extension of the model can be shown to be formally equivalent to another network with 
only one reaction ( C2 + C2ILs(t) ) producing WCC that varies with time in the following way.

A photon species named phot is introduced in Fig. 1 whose temporal trajectory is not obtained from solving 
the Master Equation by the Gillespie Algorithm34 but is given to us. The concentration [phot] is an exogenous 
variable of the form:

where IL is the light intensity and s(t) switches between “Light On” (L), with “On”-intensity IL, and “Light Off ” 
(D), after every time interval tLD, starting with “L” at time tL,0:

So, for the experiments in5, 6 as an example for the 12 h day, the specification of the switch s(t) would be:

assuming tL,0 = 0 h is the time when the L/D exposure cycles were started.
There is then one rate for a L/D experiment of the form:

Since we cannot separate the product C2LIL , we treat it as one parameter called C2IL in Fig. 1B, which has the 
same units as C2 and is defined as C2IL = C2*fIL. The parameter C2 is specified from the D/D experiments, and 
the parameter fIL affecting illumination was initially set to 2, but then was allowed to float in the fitting. The 
parameter fIL is initially taken to be constant across L/D experiments because these experiments were done on 
the same apparatus and conditions except for variation in the length of the day5.

The production of [WCC] under all light regimes can then be described by a single reaction, a reaction hav-
ing the rate given by C2 + C2fILs(t).

Results
A graphical abstract for the whole workflow in the results section is given (Fig. 2).

Single cell data used to identify the stochastic clock network.  Single cell trajectories on CCG-233 
were obtained and made publicly available5 under a variety of light conditions for cells: (1) in the dark (D/D); 
(2) under a 6 h day (L/D); (3) under a 12 h day (L/D); (4) under a 36 h day (L/D) (see “Materials and methods”). 
The fluorescence of single cells isolated in droplets were captured every 1/2 h for ~ 10 days5. An example of the 
stochastic variation in trajectories in a D/D experiment is provided (Supplementary Fig. S0) from earlier work6. 
Over 94% of the variation in these trajectories is stochastic intracellular variation6. These trajectories were then 
Rhodamine B normalized and detrended with a moving average35 for constructing periodograms and Hilbert 
Phase for fitting to a stochastic network5.

Obtaining the fitted stochastic network to the single cell data in both D/D and L/D entrain‑
ment experiments.  Ideally the fitting process would use all of the data in the trajectories (Fig S0)36–38. 
The challenge is that the individual trajectories are quite noisy and out of phase with each other6. One might 
be tempted to use the average of these trajectories (in red in Supplementary Fig. S0), but the averaging just 
removes the periodic signal. Grima has suggested a fast and tractable fitting procedure based on a meaningful 
summary of the trajectories in Supplementary Fig. S039. There are three features of a periodic process, its period, 
amplitude, and phase. The periodogram or “power spectrum” summarizes two out of three of these features. 
This statistic is what is used for fitting. First, the trajectories (Supplementary Fig. S0) are detrended, and then the 
periodogram is calculated for each single cell trajectory and averaged6. The result is a meaningful summary of 
the data because it captures the period locking of single cell trajectories reported in previous work5. Detection 
noise is removed from the periodogram (see “Materials and methods”). Then the models are fitted by Markov 

[

phot
]

= ILs(t),

s(t) = 1 for tL,n−1 ≤ t < tL,n and n = 1, 3, 5, 7, . . . (i.e., if n is odd)

s(t) = 0 for tL,n−1 ≤ t < tL,n and n = 2, 4, 6, 8, . . . (i.e., if n is even).

tL,n = tL,0 + n tLD for n = 0, 1, 2, 3, 4, . . . .

tLD = 6h, IL = 5300 lux, tL,0 = 0 h,

C2 + C2LILs(t)

Figure 2.   Single cell data are collected under a Light/Dark (L/D) regime and compared with predictions from 
a stochastic clock network. Trajectories of model (in purple) and experiment (in green) for the comparison are 
transformed into the frequency domain. Particle Swarm Optimization is used to fit the model to the single cell data in 
the frequency domain. The fitted model displays one stochastic resonance for one common level of noise and L/D and 
D/D regimes. This stochastic resonance displayed by the model is the hypothesis to be tested.

◀
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Chain Monte Carlo Methods (MCMC) to the average periodogram of cells on GPUs14 using the criterion in (2) 
in “Materials and methods”.

The equilibration process to fitting the ensemble occurred in three stages by parallel tempering (Fig. 3A) 
described in “Materials and methods”. In the first stage the grid of temperatures was allowed to grow to 17 chains 
with 15,117 updates. Beginning with an initial χ2 = 10,507, the ending achieved was χ2 = 6,371. In order to pro-
mote further communication between replicas at different temperatures, the temperature grid was expanded to 
60 chains with 10,567 updates for a final χ2 = 5,977. In the final stage the illumination parameter fIL was allowed 
to float in the fitting process from a value of 2. In the final stage the fitting improved to a χ2 = 5,410 after 8,030 
more updates with 60 chains as shown in Fig. 3A.

Figure 3.   The chi-squared goodness of fit statistic improved during a Monte Carlo simulation used for 
fitting the model ensemble in Fig. 1 to average periodograms for the D/D experiment and 3 L/D experiments 
using parallel tempering (A) or genetic algorithms (B). In every case the genetic algorithms outperformed 
parallel tempering. (A) The first stage finished after 15,117 updates. The second stage finished after 25,684 
updates. The first stage involved 17 chains; the last two stages involved 60 chains. The final third stage allowed 
the illumination parameter fIL to float as a parameter. (B) Twelve genetic algorithms in Table 1 converged 
to approximately the same solution from either a random start or Sobol space filling sequence in the 
35-dimensional parameter space40. Two poorer performing genetic algorithms in Table 1 were set aside. The 
plots were created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html
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Strong test of the Neutral Model with light entrainment data on single cells.  In previous work 
the neutral model in Fig. 1 was tested against D/D single cell fluorescent data on the MFNC9 strain with a 
CCGp:mCherry recorder alone using a periodograms (of model and data) with 256 frequencies14. The power 
of the 21 h signal in the model could be varied by changing the amount of amplification occurring during tran-
scription and translation in the network (Fig. 1B)14. With little amplification the final molecular counts in the cell 
of the CCGp:mCherry recorder would be smaller and noisier; with substantial amplification the final molecular 
counts would be larger and less noisy. In this way the strength of the circadian signal could be examined versus 
the stochastic intracellular noise inherent in a cell’s molecular counts. The model ensemble fitted to the D/D data 
alone predicted Stochastic Resonance in which the power in the periodogram spectrum associated with a 21 h 
peak varied nonlinearly with the level of stochastic intracellular noise14.

Here we constructed a much stronger test of the neutral model in Fig. 1 by introducing light entrainment 
data for days of varying length: 6 h day, 12 h day, and 36 h day. The amount of data used to identify the stochastic 
network was four times that in earlier work14. This model is neutral in the sense that there is no communication 
between cells because the cells are isolated in droplets5. We quadrupled the amount of single cell data used to 
fit the clock stochastic network in Fig. 1A to single cell data on four experiments, in which each experiment 
provided trajectories on over 1,000 cells every half hour for 10 days5. Together all four experiments produced 
953 frequencies in the power spectrum for fitting the ensemble. The data are publicly available (see “Materials 
and methods”). The data can be thought of as protein levels on a CCG protein every half hour over 10 days in 
each experiment. One further piece of information is that relaxation experiments have been constructed previ-
ously on single cells to document that the response to light is not simply that of a driven system, but involves a 
self-sustained single cell oscillator with its own intrinsic period of 21 h responding to the L/D cycle imposed5.

Parallel tempering was used to fit the stochastic network in Fig. 1B to the experimental periodograms on 
the four experiments. In the accumulation run the final chi-squared statistic (see “Materials and methods”) was 
χ2 = 6,496.55 with n = 240 + 256 + 201 + 256 = 953 frequencies in the periodograms computed from the best of 
three independent Monte Carlo runs reaching finishing stage 1 (Fig. 3A). The number of unknown parameters 
in Fig. 1B was 34. The contribution of each data point in the periodogram was then χ2/n =6.82. This fit was 
inadequate as detailed in the supplement, and a new approach was developed using genetic algorithms27.

The steps leading up to the successful use of genetic algorithms can be found in the supplement. In a genetic 
algorithm 20–80 particles (i.e., models) were created in 5, 10, or 20 swarms to live on the 35 dimensional 
parameter space (with the illumination parameter fIL being fitted as well)28,29. The swarms of particles moved 
stochastically in the parameter space as specified by equations (3–4) or (3–5) in “Materials and methods” during 
a generation. The best particle at the end of 600 or 1,000 generations (Table 1) was used to initiate a Metropo-
lis–Hastings Monte Carlo accumulation run14. A distinct genetic algorithm was also tried in Table 1 with different 
dynamics in (3–5) and no recombination. The genetic algorithms were implemented on GPUs.

A total of 14 such independent runs of the genetic algorithms was conducted with 5, 10, or 20 swarms, and 
4 particles in a swarm to examine the impact of genetic algorithm and swarm number, for example, on calcula-
tion time and finding the optimum to (2). There was no significant difference in the final chi-squared statistics 
between the two types of genetic algorithms in Table 1 by a Wilcoxon Rank Sum Test at the 0.0541.

In the first run, the chi-squared statistic was reduced by almost half from the best parallel tempering run with 
χ2 = 5,410 in Fig. 3A to χ2 = 2,708.05 by the best genetic algorithm (in bold in Table 1). All genetic algorithms, 

Table 1.   Genetic algorithms with characteristics below were used to optimize the likelihood function in (2) 
and produce an ensemble of models. Each run was initialized with θ-parameters either initially positioned 
on a space-filling Sobol sequence40 or randomly within the 35-dimensional parameter space including the 
illumination parameter fIL (see “Materials and methods”). All genetic algorithms were run for 600–1,000 
generations to equilibrate the search for an optimum to Eq. (2). *These two algorithms had only 20 particles 
and were eliminated from further consideration.

Method No. of swarms M Particles per swarm N Initialization of particles
Number of generations 
(iter) Final χ2

DMS-PSO-CLS29 5 4 Sobol 1,000 4,607.65*

DMS-PSO-CLS 20 4 Sobol 1,000 2,773.07

DMS-PSO-CLS 10 4 Sobol 1,000 2,781.44

DMS-PSO-CLS 10 4 Random 1,000 3,703.9

DMS-PSO-CLS 10 4 Random 600 2,743.5

PSO-DLS28 10 4 Random 600 2,933.5

PSO-DLS 5 4 Sobol 1,000 2,708.05

PSO-DLS 20 4 Sobol 1,000 2,797.88

PSO-DLS 10 4 Sobol 1,000 3,436.22

PSO-DLS 10 4 Random 1,000 2,772.33

PSO-DLS 10 4 Random 1,000 2,880.11

PSO-DLS 10 4 Random 1,000 2,941.89

PSO-DLS 5 4 Random 1,000 6,702.86*

PSO-DLS 20 4 Random 1,000 2,768.15
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using a random start on the parameter space, outperformed parallel tempering (Table 1). The chi-squared sta-
tistic per data point was then χ2/n = 2,708.05/953 = 2.84, which is better than other published ensemble fits by 
deterministic models on the macroscopic scale19 as well as ensemble fits by stochastic models to the D/D data 
alone14. The longest time for an equilibration run with a genetic algorithm for an 80 particle swarm was 25 h. 
This is an order of magnitude faster than the equilibration run using parallel tempering in Fig. 3A. Two 20 
particle algorithms were eliminated from the competition for poorer optimization results (Table 1), leaving 12 
competing genetic algorithms.

To capture the behavior of the cellular clocks under the model ensemble derived from the best genetic algo-
rithm, the four periodograms were plotted as a function of period (i.e., the inverse of the sample frequency fl ) in 
Fig. 4 rather than the index of the frequency as in Supplementary Fig. S1. As can be seen, the fit is extraordinarily 
good. For example, the model and experimental periodograms are hard to distinguish in Fig. 4B. In Fig. 4B,C the 
model tracked quite well to the 6 h and 12 period, respectively. The model succeeded completely in tracking to the 
period at the driving frequency of the light signal. Over the range of a 6 h day to 36 h day there was no observed 
limitation to the ability of the model to produce a population of oscillators that tracked to the day experienced, 
unlike the limit to entrainment for cells in the SCN21. In conclusion, the introduction of genetic algorithms 
appeared to support the hypothesis that the limits of entrainment seen in cell tracking in Supplementary Fig. S1 
to the driving light signal, using parallel tempering, is an artifact of not finding the maximum to Eq. (2).

One further test was conducted using the remaining 12 independent runs of genetic algorithms to ascertain 
whether the optimum in Eq. (2) was local or global. As can be seen in Fig. 3B, all runs converged approximately 
to the same chi-squared statistic, strongly suggesting a global optimum of the ensemble had been achieved. Each 
of the 12 independent runs in Table 1 was then used to construct an accumulation run of 14,000 updates with 
Metropolis–Hastings Monte Carlo14 and combined to produce a final reconstruction of the likelihood in (2) 
together with its summary of the parameter distribution in Table 2 (as described in “Materials and methods”). 
The best model in the accumulation run had a χ2 = 2,671.95 (Supplementary Table S1).

Figure 4.   The average periodograms for single cells as a function of period for four experiments (D/D, 
L/D with 6 h day, L/D with 12 h day, and L/D with 36 h day) were fitted very well by the model ensemble 
( χ2

= 2708.05) . (A) D/D experiment; (B) L/D with 6 h day; (C) L/D with 12 h day; (D) L/D with 36 h day. 
Models fitted were obtained by a genetic algorithm (using 10 swarms and 20 particles) described in “Materials 
and methods”, and data are the same as in Fig. 3, but power is presented as a function of period in each 
periodogram. The period is the inverse of the sampled frequency, namely 1fl , l = 1, . . . , [L/2] . The plots were 
created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15168  | https://doi.org/10.1038/s41598-020-72213-1

www.nature.com/scientificreports/

One standard control for MCMC experiments is to plot the parameter values in an accumulation run versus 
sweep (i.e., the time taken on average to visit once to each parameter in the model) (Supplementary Fig. S2). 
If the accumulation run were not complete, there would be trends in some parameters with sweep. All of the 
plots showed little trend, indicating that the accumulation run was successful. The plots also display which 
parameters are well specified in the ensemble. For example, the wc-1 stabilized mRNA decay rate (D7) and the 
protein–protein interaction (C1) are tightly specified, while other parameters, such as the FRQ protein decay 

Table 2.   Ensemble means and standard errors indicate that the parameters in stochastic network for single 
cells are tightly specified by Markov Chain Monte Carlo using genetic algorithms with the D/D experiment 
and three L/D experiments. The parameters including the initial numbers of molecules and the rate constants 
in Fig. 1 are labeled in the first column. In the second column are the parameter values from a deterministic 
model ensemble18 on a macroscopic scale, in which WC-2 is constant over time. In the third column the 
parameters from the deterministic model ensemble are reported in units appropriate for the stochastic network 
as molecular counts. The last four columns are the ensemble means and standard errors (across the ensemble) 
generated by parallel tempering (see “Materials and methods”) for a single cell experiment with 1,591 single 
cells in a D/D experiment14 or from four experiments by genetic algorithms (D/D + 3 L/D experiments).

Parameter

Initial Parameter 
values from MCMC 
Deterministic model 
ensemble (Yu et al.18)

Initial Parameter 
values from published 
ensemble (column 2) in 
molecular number units 
of stochastic network 
from D/D experiment14 
(column 3)

Mean parameter values 
from model ensemble 
computed by Parallel 
tempering for D/D 
experiment

Standard error (SE) of 
parameter value across 
ensemble computed by 
parallel tempering for 
D/D experiment

Mean parameter values 
from model ensemble 
computed by genetic 
algorithms for D/D 
and L/D experiments 
in Metropolis–Hastings 
accumulation run

Standard error (SE) 
of parameter value 
across ensemble 
computed by genetic 
algorithms for D/D 
and L/D experiments 
in Metropolis–Hastings 
accumulation run

Number of cells – 1591 (D/D only) 1591 (D/D only) 1591 (D/D only) 4 experiments (D/D + 3 
L/D)

4 experiments (D/D + 3 
L/D)

u_r0 3.99924 113 2,156.705728 68.14603254 249 1.94493283

u_r1 0.442441 18 22.46137677 0.872953544 266.5025 1.24742302

u_p 4.24E−07 459 2,144.149238 68.74768856 267.75 1.41999973

f_0 0.356365 1 0.465055176 0.01143672 033,333,333 0.00785783

f_1 0.0824576 0 0.534944824 0.01143672 0.6666667 0.00785783

f_r 4.90E−06 31 59.15869679 2.637452857 263.66667 1.53551295

f_p 3.0804 345 2,534.336311 77.72114325 258.83333 0.96610217

w 9.24126 101 55.40042039 1.674320488 280.11306 1.34419102

g_0 0.0066195 1 0.71623752 0.010337149 0.5 0.00833449

g_1 2.59E−06 0 0.28376248 0.010337149 0.5 0.00833449

g_r 1.17E−06 26 35.67840252 1.030258983 234.41667 1.45223506

g_p 1.37E−05 102 59.19075145 4.920903774 283.93833 1.01849186

A 0.000658482 6.06E−13 2.56E−10 7.31E−12 2.24E−10 1.10E−11

Abar 0.546986 0.546986 1.589532708 0.035661845 0.6046986 0.01326434

S1 0.061594783 83.70771546 80.12566921 0.302471515 82.372323 1.03259487

S3 0.00146575 3.569116497 0.400641074 0.036565894 13.491623 0.42722599

S4 2.2396 5,453.449297 8,316.020583 100.2852188 77.524423 1.13421469

D1 0.723678 0.723678 1.294999006 0.030289616 71.2760416 2.63473865

D3 0.299703 0.299703 4.382612039 0.181101578 6.16109147 0.17691415

C1 0.0428595 4.81E−05 0.000932789 2.47E−05 9.22E−05 4.25E−06

L1 31.7758 4.244678204 4.777735371 0.106626479 2.60684774 0.04948995

L3 3.02387 0.485087349 0.665600817 0.011127036 0.09315913 0.00269597

D4 0.00323262 0.00323262 0.08474029 0.004700587 0.05674687 0.00194278

D6 0.15183 0.15183 0.193685712 0.002236097 12.0326238 0.28052851

D7 0.138387 0.138387 2.130911791 0.090030385 0.11260178 0.00432734

D8 0.00248668 0.00248668 0.007744621 0.000182717 0.00014153 3.61E−06

C2 0.162687246 0.162687246 1.515554675 0.077548547 95.9668318 3.1203002

P 19.5648 3.12E−11 2.72E−09 4.83E−11 3.46E−08 6.82E−10

Ac 4.06813 7.82E−09 1.86E−08 2.55E−09 3.44E−05 1.89E−06

Bc 2.52197 2.52197 2.581096866 0.040197442 0.88230334 0.0199371

Sc 1.01E−06 73.80414613 61.51499414 1.109629713 11.0853255 0.25892314

Lc 1.15E−08 2.231095711 1.61524392 0.017335914 0.01161864 0.00012954

Dcr 0.219758 0.219758 0.150810052 0.00291715 0.27129774 0.00638981

Dcp 0.696903 0.696903 0.54063952 0.006141903 0.0224811 0.00035852

fIL – – 16.4900328 0.38777036
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rate (D6), are not tightly specified. The horizontal lines in Fig S2 represent MCMC accumulation runs of differ-
ent genetic algorithms in Table 1.

What are the kinetic rules for the clock at the single cell level and how do they compare with 
the rules at the macroscopic level?  The series of 3 light entrainment experiments with the D/D experi-
ment with 953 frequencies in the 4 periodograms in Fig. 4 provided a strong test of the clock network in a single 
cell, but they also provided precise estimates of the rate constants and initial gene and cognate mRNA and pro-
tein counts in a cell as well (see standard errors in last column of Table 2). These parameter estimates (i.e., rate 
constants and initial conditions for molecular counts of species) provided a means to determine if single cells 
play by the same or different rules than cells in aggregate at the macroscopic level19.

A comparison was made between a published ensemble only derived from the D/D data using an accumula-
tion run from parallel tempering, in which an adequate fit was obtained14, with an ensemble (Table 2) derived 
from D/D data together with the L/D data using an accumulation run from genetic algorithms that also provided 
a remarkably good fit to the combined data set (Fig. 4). Parallel tempering required an informed initial guess to 
the parameters (column 2) from fitting the network on the macroscopic scale18. This initialization needed to be 
converted to molecular counts as described in “Materials and methods” (column 3) to provide an initial guess for 
parallel tempering. The results of parallel tempering are shown (columns 4 and 5). These “best practice” results 
are then compared with the results from genetic algorithms (columns 6 and 7). In comparing these two model 
ensembles (columns 4 vs. 6) there was remarkable agreement in the specification of the genetic network, but 
there are several changes in the rate constants from the estimates based only on the D/D experiment in Table 2. 
For example, the translation rates (L1, L3, and Lc) were lower on the clock mechanism genes based on the 4 
experiments vs. the one D/D experiment with 1,591 cells.

The biggest surprise is in the mRNA stability of wc-1. In the fitting of the model to all 4 single cell experi-
ments the derivative mRNA wc-1r1 was more stable as measured by the decay rate D7 than in the D/D single 
cell experiment alone. Having a stable wc-1r1 mRNA has been argued to be essential for oscillations at the 
macroscopic scale18. In the network fitted to all of the single cell data the modified wc-1 mRNA, wc-1r1, is stable. 
For example, the decay rate D7 = 0.11 ± 0.0043 under all 4 experiments with a long lifetime of 1/D7 = 8.88 h as 
measured macroscopically18 versus D7 = 2.13 ± 0.09 in the D/D experiment alone. The single cell data in the D/D 
experiment alone was not sufficient to confirm this result found macroscopically. For models fitted to the D/D 
experiment alone, the decay rate (D7) was found to be D7 = 2.13 ± 0.0914. Evidence against the parallel temper-
ing method being the cause of the discrepancy in the decay rate (D7) comes from the fact that fitted ensemble 
achieved by parallel tempering was an adequate fit to the average periodogram of the D/D data. As a caveat, if 
we had implemented a longer equilibration run with parallel tempering, we might have achieved the results of 
MCMC runs using genetic algorithms reported here. When the lines of different genetic algorithm accumulation 
runs are close together, as for the translation rate (Lc) for ccg-2P:mCherry (Fig S2), that is indicative that different 
MCMC runs converged to the same optimizing parameter value. For instance, in the case of the translation rate 
the ensemble covers the values from 0.002 to 0.02.

Also a comparison was made between the ensembles computed here using parallel tempering (Fig. 3) and with 
those using the genetic algorithms (Table 1) with respect to the illumination parameter ( fIL) on a common data 
set (D/D + 3 L/D experiments). In allowing the illumination parameter to float, the final value of fIL achieved a 
much larger value of 16.49 ± 0.39 than that derived under the use of parallel tempering, namely fIL = 2.

There are two sources of variation captured in the standard errors in Table 2 on these parameters. There is 
variation in the standard errors across models, and there is also variation in the parameters estimates due to 
stochastic intracellular noise. Both sources of error are reflected in the standard errors. In addition to the standard 
errors in Table 2, there are histograms of the rate constants (Supplementary Fig. S3). Some parameters, such as 
the decay rate of the stabilized wc-1 mRNA (D7), are quite tightly specified, while other parameters such as the 
transcription rate of frq (S4), have considerable variation.

Generally in comparing the rate constants obtained from all four experiments (column 6) to those derived 
from macroscopic experiments (column 2)18 using Euclidean distance on the parameters in common, the agree-
ment was much better than just based on the D/D experiment alone (column 4)14. The only rate constant out of 
line with the macroscopic limit appeared to be the decay rate D6 of FRQ18. There is also considerable variation 
in the estimates of this decay rate (Supplementary Fig. S3). The conclusion is single cells appear to play by similar 
rules as aggregates of 107 cells.

The stochastic intracellular noise level (i.e., the size of the cell) can be experimentally deter‑
mined as a parameter in the model.  In previous work evidence was presented that the RNA/DNA and 
protein/DNA ratios for ccg-2P:mCherry strain set the levels of stochastic intracellular noise in a cell, and hence 
these ratios were measured14. They continue to serve a similar role in a system with light entrainment (Fig. 5). As 
the RNA/DNA and protein/DNA ratios are increased, leading to larger amplification in RNA counts and protein 
counts, there was a general decrease in the noise in the system (Fig. 5). Imagine the red dot as a ball; from most 
places on the surface the ball rolls to the lowest point in the front left corner of Fig. 5. The only caveat is a shallow 
ridge at low protein/DNA ratios. The relationship between the stochastic intracellular noise and the RNA/DNA 
and protein/DNA ratios is not in and of itself surprising16,20; however, exploiting this relationship to determine 
“size of the cell” appears to be new14. This ability to determine empirically the “size of the cell” is why the rela-
tion in Fig. 5 is presented. In this way these ratios can be used to manipulate the level of stochastic intracellular 
variation. These ratios were experimentally determined (red dot) previously to set the level of noise in each cell14.
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The phase variation over time between cells provides an independent test of the goodness 
of fit to that predicted by the best model.  There are three ways to characterize periodic processes, 
by their period, amplitude, and phase6. The period and amplitude are captured in the periodogram or power 
spectrum (e.g., Fig. 4), which was used to fit the model ensemble in Eq. (2). The remaining measure, phase, is 
functionally independent of the periodogram and was not used to fit the stochastic network to the single cell 
data and hence is available to test goodness of fit of the stochastic network14.

There are a variety of ways to measure phase, as described in an accessible introduction to phase measures31. 
In addition to its independence from the periodogram, the phase measure used here and elsewhere was used to 
assess whether or not synchronization is taking place between single cells experiencing a common driving light 
signal5,30,42–45 (see “Materials and methods” for a definition of phase).

To provide an independent test of the stochastic network in Fig. 1, the average phase with percentiles was 
computed over time for cells in all four experiments both for the data and for the model (using 1,024 generated 
single cell Gillespie trajectories) (Fig. 6). For the D/D and 6 h day L/D experiments the goodness of fit failed at 
the 75 h and 125 h mark, as the data (in red) drifted beyond the percentile bands of the model (blue). In contrast, 
the percentiles of phase for model and data remained overlapping for the 12 h day and 36 h day L/D experiments.

The phase plots also provided information about the cellular clocks in single cells. Phase plots for both the 
model and data in the 12 h day and 36 h day L/D experiments were bent and hence demonstrated synchroniza-
tion to the driving light signal. Also, all plots showed increased variation in phase over time, capturing the tug 
of war between stochastic intracellular noise generating phase variation and light producing changes in phase 
synchronization and hence the phase mean. The degree of linearity of the D/D and 6 h day L/D experiment 
(r = 0.9995 and r = 0.9998, P < 0.0001) would also suggest that a sinusoidal approximation would be a good one31. 
The fact that the D/D and 6 h day L/D experiments did not demonstrate a nonlinear response in time and hence 
synchronization was consistent with the synchronization measures for the D/D (Kuramoto K = 0.08 ± 0.0026) and 
6 h day L/D (K. = 0.30 ± 0.0066) experiments being smaller than those for the 12 h day L/D (K = 0.42 ± 0.0076) 
and 36 h day L/D (K = 0.33 ± 0.0069) experiments5. For example, the maximum in light synchronization was 
measured to take place with a 12 h day, which also show a nonlinear response in the phase curve over time5. This 
phase synchronization becomes even more pronounced when the number of cells is scaled up to over 40,000 
cells and when the cells are allowed to communicate5.

Stochastic networks have one other dimension to goodness of fit absent in deterministic network models. 
Having determined what the “size of a cell” is by measuring the RNA/DNA and protein/DNA ratios in Fig. 5, 
it is natural to ask how these ratios affected the goodness of fit of the model periodograms to the average of the 
observed single cell periodograms. These ratios were varied substantially about their measured values to see the 
effect on goodness of fit (Fig. 7). The fitting of the D/D data would leave us to hypothesize that the goodness of 
fit would be robust to variation in the level of stochastic intracellular noise captured by these ratios14.

Figure 5.   Stochastic noise in CCG-2 usually decreases with increases in hypothesized ratios of RNA/DNA 
and Protein/DNA within a single cell. The total stochastic noise σ 2

f  averaged over frequencies (f) in CCG-2 
expression is computed from 1,024 Gillespie trajectories from the best model in S Table 1 with a χ2 = 2,671.95. 
The best model selected was one with minimum chi-squared statistic based on the Likelihood in Eq. (2) for 
the D/D and 3 L/D experiments from an accumulation run based on 12 genetic algorithms in Table 1. The red 
dot denotes the experimentally determined ratios previously14 and corresponds to RNA/DNA and protein/
DNA ratios of 128.7 and 412, respectively. The model with the best chi-squared statistic in the accumulation 
run was modified to different RNA/DNA and Protein/DNA ratios for each point on the grid above. A total 
of 1,024 Gillespie trajectories were generated for each model on the grid. The variance in the 1,024 resulting 
periodogram height was computed for each sample frequency fl . These variances were summed over all 
frequencies to produce the noise on the z-axis. The plot was created in MATLAB_R2018B (https​://www.mathw​
orks.com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:15168  | https://doi.org/10.1038/s41598-020-72213-1

www.nature.com/scientificreports/

We found the distribution across the fitted model ensemble was quite robust to variation in these ratios 
(Fig. 7). This robustness property can be predicted from the Chemical Langevin Equations that approximate 
the stochastic network in Fig. 114.

The robustness of the goodness fit plots as assessed by the phase plots (Fig. 6) was also examined for several 
values of the RNA/DNA and protein/DNA ratios (Fig. 6, Supplementary Figs. S4–S5) that increased the stochastic 
intracellular noise without substantial alteration in fit to the periodogram. By increasing the noise with ratios 
of 60 and 300 or 100 and 380 for the RNA/DNA and protein/DNA ratios without changing the rate constants 
(see “Materials and methods”), the phase plots of the models could be aligned better with the experimental 
phase plots (Supplementary Figs. S4, S5) than with using the experimental ratios of 128.07 and 412. These new 

Figure 6.   The phase plots as a function of time indicated that there are limitations on goodness of fit for the 
D/D experiment and 6 h day L/D experiment. The 95th percentile, the mean, and the 5th percentile of the 
phase for all cells are graphed for each experiment (red) and the model (blue) computed from 1,024 Gillespie 
Trajectories from the best model in Supplementary Table S1. Single cell trajectories for data and model are 
summarized under the: (A) D/D experiment; (B) 6 h day L/D experiment; (C)12 h day L/D experiment; (D) 
36 h day L/D experiment. The plots were created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/
matla​b.html).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15168  | https://doi.org/10.1038/s41598-020-72213-1

www.nature.com/scientificreports/

ratios left the goodness of fit to the periodogram intact (Fig. 6C), but the phase plots were a little noisier (Sup-
plementary Figs. S4–S5).

Is there one intermediate optimum in the oscillatory signal as a function of the stochastic 
intracellular noise?  The heart of the experiments and calculations in this paper is to examine whether or 
not the working model in Fig. 1 displays Stochastic Resonance, i.e., a nonlinear relation between the signal/noise 
ratio captured in the power spectra and the stochastic intracellular noise in the system9. The noise is varied by 
altering the RNA/DNA and protein/DNA ratios in the cell about the measured values. High values of the ratios 
imply low noise while low ratios imply high noise in Fig. 5.

The results of this experiment are shown in Supplementary Fig. S6. Reducing the ratios by a constant factor 
generally decreases the power at the intrinsic frequency (Fig. 8a) or at the driving frequency (Fig. 8b–d). In 
contrast as the ratios are increased, there is a spike in the signal at the resonance, which then fades away as the 
ratios are increased further. These changes in the ratios were done to preserve the rates constants at the best 
fitting model in Supplementary Table S2 while varying the stochastic intracellular noise14. For the 36 h day the 
ratios had to be increased further to see the signal to noise ratio diminish in Supplementary Fig. S6.

The results are more easily summarized in Fig. 8. The ratios in Fig. 5 are varied from low (high noise) to high 
(low noise), and the power in each experiment is presented at the intrinsic frequency of the cellular oscillators 
(~ 21 h) or at the driving frequency (~ 6 h, ~ 12 h, or ~ 36 h, depending on the L/D experiment). There is a clear 
nonlinear relation for each day that peaks at the same ratio of 15 X the original ratios (128.07 for RNA/DNA and 
412 for protein/DNA). The intrinsic frequency is plotted as a control (in red) for the L/D experiments.

The effects of stochastic intracellular noise on the average Gillespie trajectory are shown for a 12 h L/D cycle 
(Fig. 9). As can be seen, away from the Stochastic Resonance there is a degradation in the circadian signal, and 

Figure 7.   The goodness of fit as measured by the chi-squared statistic in (2) is robust to variation in the ratios 
of RNA/DNA and protein/DNA and hence the stochastic intracellular noise from Fig. 5. Histograms of the 
chi-squared statistics of 1,200 models in the accumulation run for determining the chi-squared empirical 
distribution are shown. The ratios of RNA/DNA and protein/DNA used in each of the 1,200 models was, 
respectively: (A) 128.07 and 412; (B) 170 and 480; (C) 100 and 380; (D) 150 and 450. A description of how the 
ratios are varied without altering the rate constants is shown in the “Materials and methods”. The plots were 
created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html
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at the stochastic resonance there is an amplification of the circadian signal. In fact the light and the stochastic 
intracellular noise lead to highly synchronized behavior at the resonance to reinforce the oscillations (see video). 
As a consequence at the resonance a high Kuramoto K order parameter is achieved. This is a classic example of 
stochastic resonance in a biological system9. These striking differences in the circadian oscillations arise between 
cells that are genetically identical!

Discussion
There are three hypotheses about how oscillations arise at the single cell level. One hypothesis is that stochas-
tic noise contributes to the oscillations, a theory known as Stochastic Resonance9. Two teams indicated how 
Stochastic Resonance could serve as a mechanism to generate such oscillations46,47 and possibly to synchronize 
cellular oscillators48. A second hypothesis is that there is a chemical signal through quorum sensing by cellular 
clocks that is involved in synchronization of single cell oscillators5,7, thus explaining circadian rhythms on the 
macroscopic scale of 107 cells. A third possibility is cell cycle gating of the single cell oscillators to reinforce the 
oscillations10,11. Under this third possibility there may be no specific genes that induce coordination between 
different single cell oscillators as for example, in a quorum sensing hypothesis of cell-to-cell communication. 
The advantages of this study using the model system, N. crassa, is that the single cell environment can be set 
up to test each of these hypotheses individually using microfluidics12. Here a flow focusing, droplet generat-
ing microfluidics device was used to isolate N. crassa cellular oscillators for testing Stochastic Resonance5. The 
microfluidics device isolated cells in droplets to prevent any form of chemical communication, as under a quorum 
sensing hypothesis5. The media were selected as well so that there was no cell division to eliminate cell cycle 
gating as a hypothesis6. The model system was exploited in such a way as to be able to take advantage of light 
entrainment of isolated N. crassa single cell oscillators5, an advantage not present in other model clock systems, 
such as mammalian22 or Cyanobacterial21 model clock systems. While we have provided evidence that Stochastic 
Resonance may be operating by itself, that does not rule out the possibility of cell cycle gating or quorum sens-
ing operating in conjunction with Stochastic Resonance. Under other experimental settings, such as when cells 

Figure 8.   The power at the driving frequency or intrinsic frequency for a cellular oscillator is a nonlinear 
function of the stochastic intracellular noise and take a maximum at a ratio of 15 for RNA/DNA and protein/
DNA for all four independently conducted experiments. The stochastic intracellular noise was varied by 
multiplying the RNA/DNA and protein/DNA ratios observed in such a way as not to change the rate constants 
by a ratio of: 1/7, 1/10, 1/12, 1/40, 1/100, 1/170, 4, 8, 12, 15, 30, or 50. (A) D/D experiment; (B) L/D 6 h day; (C) 
L/D 12 h day; (D) L/D 36 h day. The model used to generate the power values above is the best fitting model in 
Supplementary Table S1. The power values are derived from the periodograms in Supplementary Fig. S6. For the 
L/D experiments the power at the intrinsic frequency of a cellular oscillator is added as a control. The plots were 
created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html


15

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15168  | https://doi.org/10.1038/s41598-020-72213-1

www.nature.com/scientificreports/

can communicate within droplets6, it will be interesting to study the joint effects of Stochastic Resonance with 
these other mechanisms.

It was possible to demonstrate here strong support for a neutral model without any cellular communication 
using both light entrainment experiments and D/D experiments to specify a model ensemble in Fig. 1 describ-
ing cellular clocks (Fig. 4). In four independent light entrainment experiments the model ensemble was able to 
capture the period and amplitude behavior of the single cell oscillators from a 6 h L/D cycle to a 36 h L/D cycle at 
the single cell level (Fig. 4). The highly successful fitting was robust to variation in “cell size” present in stochastic 
networks, as captured in the proxies for cell size, the measured RNA/DNA and protein/DNA ratios (Fig. 8). The 
fitted model ensemble displayed the same stochastic resonance across all four D/D and L/D experiments as the 
stochastic intracellular noise was varied through the RNA/DNA and protein/DNA ratios (Fig. 8). This neutral 
model with Stochastic Resonance then is a promising framework for testing whether or not Stochastic Resonance 
can explain by itself the origin of circadian rhythms on a macroscopic scale from the cellular clocks operating 
on a microscopic scale.

There were some limitations to the neutral model supporting Stochastic Resonance. The periodograms 
(Fig. 4) used to fit the stochastic network in Fig. 1 captured the amplitude and period variation in cellular clocks 
remarkably well ( χ2 = 2,671.95 across 953 frequencies from four periodograms and with 35 model parameters 
with a chi-squared statistic per data point of χ

2

n = 2.80 ), but the periodograms are functionally independent of 
the phase variation6,31, when measured by Hilbert Phase30. The phase measure used here and derived from the 
Hilbert Phase30, by virtue of its functional independence of the periodogram31, was used to test goodness of fit 
to the single cell experiments (Fig. 6). The results were that for the L/D 12 h and 36 h day the phase of the model 
ensemble and single cell data over time were consistent with each other (Fig. 6C,D); however, there were some 

Figure 9.   The effects of stochastic intracellular variation at the resonance was to amplify the circadian signal, 
but away from the resonance the signal was degraded. These FRQ trajectories are averages over 1,024 Gillespie 
trajectories at the best model (Supplementary Table S1). The y-axis is the predicted number of the FRQ 
oscillator protein over time. The RNA/DNA and protein/DNA ratios are at ×1, ×15, and ×30 of their measured 
values of 128.7 and 412, respectively. The stochastic intracellular noise was varied by changing the initial 
molecular counts as in Fig. 8. The plots were created in MATLAB_R2018B (https​://www.mathw​orks.com/produ​
cts/matla​b.html).

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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departures from model ensemble predictions of phase over time after 75 h (Fig. 6A) for a D/D experiment or 
125 h for the single cell data (Fig. 6B) for 6 h L/D experiment. As can be seen in the fan shape of the percentile 
bands for phase over time (Fig. 6), there is a tug of war between the substantial role of stochastic intracellular 
noise generating phase variation between cells and the effect of the light signal on the mean phase of the cellular 
clocks. One possible explanation for the departure may be that stochastic intracellular variation is winning the 
war as the system evolves in time, causing the phase of single cells to drift outside the percentile bands of the 
model ensemble when the synchronization with the light signal is weaker5 in Fig. 6A,B. The fit could be improved 
by using RNA/DNA and protein/DNA ratios that were smaller than measured (Supplementary Figs. S4–S5) with 
the result that the additional stochastic intracellular noise aligned the phase plots of the models better (Sup-
plementary Fig. S4–S5) with the observed phase plots.

The fact that noise plays such a significant role in generating phase variation raised the possibility that the 
behavior of cellular clocks may be fundamentally different from the rules of clocks at the macroscopic scale of 
107 cells/ml18. We tested this possibility by examining the fitted rate constants derived from single cell data. The 
result was excellent agreement with the characterized dynamics on the macroscopic scale18,19 in Table 2. For 
example, the prediction that the lifetime of the wc-1 mRNA being long as measured18 on a macroscopic scale, held 
up on a microscopic scale when light entrainment data for single cells were added (Table 2). At this stage there 
was little evidence for cellular clocks playing by different rules than those at the macroscopic scale of 107 cells.

There are a variety of kinds of resonances that could be at play in the circadian system of single cells of N. 
crassa5. For example, the resonance could be due to noise acting near a single excitation state in the model49, as in 
the phase resetting of cyanobacterial cells24 or alternatively, due to noise moving the system from one equilibrium 
point to another as in a bistable switch49. One characteristic of a stochastic resonance, whether it be introduced 
as in a signal processing tool or naturally occurring, is the presence of at least one stochastic switch50. Sriram and 
Gopinothan51 were among the first to hypothesize such a stochastic resonance in the N. crassa circadian system. 
The basis for such a stochastic switch in Fig. 1 lies in the stochastic switching on or off of the oscillator gene frq 
or the ccg gene5. The one or few copies of genes themselves in Fig. 1 provide the basis of the stochastic switching 
mechanism. Further experimental and theoretical studies of the model (Fig. 1) are required to characterize the 
resonance. For example, N. crassa single cell behavior through microfluidic experiments to examine transcrip-
tional bursting52,53 and calculations of the mean amplitude, period, and phase of the model54 will be needed to 
arrive at details of the resonance mechanism. Some of this work has already begun on single cell measurements 
of the mammalian SCN in a phenomenological way by fitting simplified damped or self-sustained oscillators to 
single cell data on circadian rhythms of the SCN55.

Another major limitation of the work here is the focus on single conidial cells; however, the predominant 
life stage of N. crassa is the filament or hyphae in which cell nuclei share a common synctitium that is constantly 
expanding as the hyphae grow56. Much of the work on the clock in N. crassa focuses on this life stage in “race 
tubes”57,58. This shared cytoplasm between nuclei in hyphae raises the interesting possibility of other new forms of 
communication between nuclei as they move down a race tube, such as through transvection and intra-filament 
diffusion of signaling molecules56. New kinds of microfluidic devices will be required to study how these com-
munication mechanisms synchronize nuclei in hyphae59,60.

There are other features of the genetic network (Fig. 1) that are hypothesized to mediate the effects of sto-
chastic intracellular noise other than through a resonance16. Andreas Wagner61 has demonstrated simple two-
gene circadian oscillators with interlocking regulatory connections are more likely to be robust in period by an 
MCMC analysis. Liu et al. provided experimental evidence on a macroscopic scale that the positive feedback 
loop by FRQ on wc-1 mRNA involving (C1)62 in Fig. 1 functions to provide stability and robustness to the clock. 
It would be interesting to know what effect stochastic intracellular noise has on single cell circadian oscillations 
when the positive feedback loop in Fig. 1 is removed.

Yu et al.18 reviewed experimental evidence for each reaction in the topology in Fig. 1 on a macroscopic 
scale. As more data are gathered, it may be necessary to alter the topology of the network in Fig. 1 as another 
parameter in the model. Al-Omari et al.63 developed ensemble methods to identify the topology of the network 
using the supernet. It may be possible to extend these supernet methods to the single cell level using single cell 
sequencing64, allowing a reassessment of the topology in Fig. 1 at the single cell level.”

What made the results here possible was the development of new fitting methods for stochastic networks14 
in particular and for ensemble methods in general25. A longstanding problem (20 years) for ensemble methods 
applied to oscillatory systems has been the inability to generate successfully a fitted model ensemble without 
an initially informed guess as to the rate constants and initial species concentrations25. We were so limited in 
the development of finding an ensemble of stochastic networks in Fig. 1 using existing ensemble methods with 
parallel tempering in Fig. 314. Here by the introduction of genetic algorithms into the equilibration phase of a 
Markov Chain Monte Carlo reconstruction of the likelihood for a stochastic network in Equation (2), a random 
initialization of genetic algorithms (Table 1) outperformed existing parallel tempering methods starting with 
an informed guess as to model parameters14. These genetic algorithms also yielded solutions in less time by an 
order of magnitude (Fig. 3). As a result the speedup of the genetic algorithms could be used to generate evidence 
that a global optimum in the fit of the model ensemble was achieved (Fig. 3B).

The ability to fit stochastic networks to single cell data quickly and efficiently suggests new microfluidics 
experiments to test the physical hypothesis of Stochastic Resonance in biological systems. The prediction of only 
one stochastic resonance across light entrainment experiments in single cells provides a unique opportunity to 
test the Theory of Stochastic Resonance in a biological system9.
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Conclusions
We have developed an ensemble method for stochastic networks using a particular class of genetic algorithms 
called Particle Swarm Optimization methods that is successful in fitting a stochastic clock network ensemble to 
single cell data on Neurospora crassa under a variety of Light/Dark conditions along with the Dark (D/D) condi-
tion. The model fitted only displays one stochastic resonance (at one ratio of the RNA/DNA and protein/DNA) 
for a variety of light regimes. That is, as the stochastic intracellular noise is varied there is a unique optimum 
in the signal to noise ratio in the circadian rhythm. When there is a departure from this resonance, there is a 
dramatic degradation in the circadian rhythm even though all cells are genetically identical. The right level of 
stochastic intracellular noise is essential for strong circadian rhythms.

Materials and methods
Single cell data of N. crassa.  The single cell data from four experiments are used to evaluate the stochastic 
clock network in Fig. 1. The cells in these experiments are equipped with an mCherry recorder under the control 
of a clock-controlled gene-2 promoter (ccg-2P)33. This fluorescent mCherry strain is referred to as MFNC933. Each 
of the four experiments involved isolating over 1,000 cells in individual droplets, synchronizing cells initially 
with 26 h of light, and then observing their fluorescence every half hour for at least 10 days6. Four experiments 
were conducted, one in the dark (D/D) and three under 6 h, 12 h, or 36 h L/D regime with equal amounts of light 
and dark6. The D/D data are available14, and the L/D entrainment data are available at the IEEE Dataport, https​
://ieee-datap​ort.org/docum​ents/singl​e-cells​-neuro​spora​-crass​a-show-circa​dian-oscil​latio​ns-light​-entra​inmen​
t-tempe​ratur​e.

Rescaling from deterministic model units to stochastic molecular number units.  A method for 
rescaling initial concentrations and reaction rates of a deterministic network to molecular counts and reaction 
rates of a stochastic network was described previously17.

The network is divided into small subnetworks called “boxes” such that there is usually no net flow of mol-
ecules between different boxes in Fig. 1B. Then the concentration of each species in a box is scaled by a certain 
factor. The reaction rates are then scaled so that the network dynamics are not changed.

Rescaling with the RNA/DNA and protein/DNA ratios without changing the network dynam‑
ics.  The model above specifies the Master Equation, which describes how the counts of molecular species in 
Fig. 1B change over time15. The Master Equation can be approximated by the Chemical Langevin equation20, 
which consists of two components, a deterministic term and a noise term. The deterministic term corresponds 
to a system of ordinary differential equations. The first term is required to be invariant under rescaling by the 
RNA/DNA and protein/DNA ratios to leave the network dynamics invariant. Consider one component of the 
deterministic term, namely the L3 and D6 reactions in dotted box d of Fig. 1B:

The contribution to the dynamics of FRQ by this reaction is:

The ratios of RNA/DNA ( RRNA:DNA ) and protein/DNA ( RProt:DNA ) are measured experimentally or changed 
to vary the stochastic intracellular noise. If the ratios are changed, then the scales of RNA and protein counts 
change as well so that:

This becomes:

One way that the dynamics remain unchanged is if:

In this way by stepping through all of the dotted boxes in Fig. 1, all 23 reaction rates can be rescaled to pre-
serve the original dynamics when the RNA/DNA and protein/DNA ratios are changed to vary the noise in the 
stochastic network. The rescaling for some other dotted boxes is illustrated in an earlier work14.

Stochastic simulation algorithm‑direct method.  Gillespie developed several methods for simulating 
exactly and approximately the trajectory of a stochastic network6,15,65. Here we describe his exact direct method 
implemented previously and currently on Graphical Processing Units or GPUs14. The use of GPUs has been criti-
cal to implementing the ensemble methods at the single cell level and macroscopic level63,66. Under the direct 
method Gillespie demonstrated that knowing the current state of the network at time t, the distribution of times 
of the next reaction at time t + τ and the probability of each reaction can be computed by simulation. The result 

frqr1 ⇒
L3

FRQ + frqr1, FRQ ⇒
D6

⊘

d[FRQ]
dt

= L3
[

frqr1
]

− D6[FRQ]

dRProt:DNA[FRQ]

dt
= L3newRRNA:DNA

[

frqr1
]

− D6newRProt:DNA2[FRQ]

d[FRQ]

dt
= L3new

RRNA:DNA
RProt:DNA

[
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]

− D6new
RProt:DNA
RProt:DNA

[FRQ]

L3 = L3new
RRNA:DNA
RProt:DNA

or L3new = L3
RProt:DNA
RRNA:DNA

and D6new = D6.

https://ieee-dataport.org/documents/single-cells-neurospora-crassa-show-circadian-oscillations-light-entrainment-temperature
https://ieee-dataport.org/documents/single-cells-neurospora-crassa-show-circadian-oscillations-light-entrainment-temperature
https://ieee-dataport.org/documents/single-cells-neurospora-crassa-show-circadian-oscillations-light-entrainment-temperature
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of the direct method is to know the distribution of states of the network at time t + τ . If this procedure is applied 
sequentially in time, then a whole stochastic trajectory of the system is constructed. Each of the trajectories is 
called a Gillespie Trajectory and represents the history of a single cell.

Here is how the direct method provides the computation of the state probabilities from the N (= 12) initial con-
ditions Xi for the ith molecular species in the network and the M (= 23) rate constants ki in the network. All of the 
parameters in the stochastic model are listed in a θ-vector defined by � = {X1(0),X2(0), . . . ,XN (0), k1, . . . , kM} . 
Thus, we obtain an exact distribution of the state of the network at time t + τ . Given the model parameters � 
and a final time T , the following iterative loop is performed to generate a Gillespie trajectory for a single cell:

1)	 The system is initialized by setting t = 0 and X = x = {x1(0), x2(0), . . . , xN (0)}.
2)	 The propensities of a reaction, aj(x), j = 1, ...M , and their sum a0 =

∑M
j=1 aj(x) are calculated. The propensi-

ties are: given the current state x of the system at time, the propensity is the probability of reaction j in an 
infinitesimal time interval t + dt15.

3)	 A random time step value to the next reaction, τ , is drawn from an exponential random variable with mean 
1/a0(x) . The type of the next reaction, jnext , is randomly drawn with probabilities aj(x)a0(x)

, j = 1, . . .M..

4)	 The state X is updated assuming reaction Rjnext took place. the time, t = t + τ , is updated as well.
5)	 If t < T return to step 2; else, stop.

For example, the propensity of the reaction to form WCC at time t is proportional to:

In that the number of WC-2 molecules ( xWC−2 ) is kept constant, it was absorbed into C2. The factor s(t) is 
changing exogenously to the Master Equation. Only the first term is present in the dark, and the second term is 
added in each light window.

The Direct method yields a Gillespie trajectory of network states {x(t0), x(t1), . . . x(tk)} in the time interval 
[0,T] . The Gillespie trajectory describes the state of a cell over the time interval [0,T] . It is understood that the 
temporal sequence satisfies 0 = t0 < t1 < · · · < tk < T with ti,i = 1,…,k, being the reaction times of the reac-
tions that fire before T . Such a trajectory completely identifies the network state of a single cell at any time in 
the interval [0,T].

A bias‑corrected periodogram averaged over cells is the model‑fitting criterion.  Detector noise 
has been argued to be an important consideration in network reconstruction67. In previous work it was found 
that separating the detector noise in measuring fluorescence of single cells of MFNC9 from the stochastic intra-
cellular noise was essential for fitting the clock stochastic network to the D/D single cell data because the detec-
tor noise introduced substantial bias into the periodogram14. It was possible to separate the detector noise from 
the stochastic intracellular noise by replacing living cells by doped beads in the same microfluidics experiments6. 
A model was developed to measure the detector noise from the doped bead experiments. The assumptions of the 
model were that: (1) the total noise in fluorescence of an individual MFNC9 cell could be decomposed additively 
into detector noise and stochastic intracellular noise; (2) the two noise components were statistically independ-
ent; and (3) the noise in the denominator of the Rhodamine-B normalized time series could be neglected (see 
denominator in Equation S11 of the supplement6). Under these assumptions it was possible to calculate the bias 
in the periodogram by a propagation of errors calculation from the detector noise6.

The fluorescent observations on single cells of the mCherry strain MFNC933 were made on an equally spaced 
time grid of L observations every half hour for all four experiments from time 0 to time T, the duration of the 
experiment. What varied from experiment to experiment was the number of time points L on K cells. For 
example, for the L/D entrainment experiment with a 6 h day, L = 512. The observation time of the jth observa-
tion along the grid for each of these four experiments is tj =

(

j − 1
)

T
L . These L time points of fluorescence were 

Rhodamine B normalized to remove uncontrolled biases, detrended with a moving average35 to filter out high 
frequency noise, and then transformed into the frequency domain using a Fast Fourier Transform68 to evaluate 
the significant frequencies (such as one that might correspond to a circadian rhythm) in the fluorescent trajec-
tory. The uncorrected periodogram Q

(

fl
)

 of each cell derived from the Fast Fourier Transform is the power as a 
function of the sample frequencies fl = l

T  , l = 0,…, [L/2]. The detector noise contribution to the periodogram 
at frequency fl was then shown previously to be6:

Brackets are used to denote expectations over the whole population of single cells. For example, 〈Q
(

fl
)

〉 and 
〈R
(

fl
)

〉 are the population means of the average periodogram and average squared Fourier transform of the 
observed Rhodamine B-normalized, detrended fluorescence time series, respectively. By varying the light inten-
sity in a series of microfluidic experiments the variance in fluorescence of the beads was then used to estimate 
the variance of the fluorescence signal σ 2

ε  due to the detector noise averaged over all cells and time points. This 
variance was determined experimentally by varying the incident light intensity and measuring the resultant vari-
ance in fluorescence of fluorescent beads replacing cells in a microfluidics experiment identical to that used for 
cells6. The functions γQ(l) and βQ(l) are determined by weights used in the moving-average detrending process35, 
a standard for the literature. The functions γQ(l) and βQ(l) do not depend of the observed fluorescence signals.
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The detection noise created bias in the observed periodogram in (1) and was removed from the raw peri-
odogram by subtracting.

The model generated periodogram (computed by simulating a 1,024 Gillespie trajectories and their associated 
average periodogram) was fitted to the bias corrected periodogram �Q

(

fl
)

− Qbias
(

fl
)

�39. The quantity 〈Q
(

fl
)

〉 
is the average periodogram over K cells calculated at frequency fl and 〈Qmodel

(

fl
)

〉, the average periodogram of 
1,024 Gillespie trajectories calculated at fl .

The criterion used to select the ensemble fitting the single cell trajectories was then

with 
(

σ c
fl

)2

= σ 2
fl
−

(

σ e
fl

)2

 . The quantity T is temperature and is set during a Markov Chain Monte Carlo 
Procedure called parallel tempering described below to recover the ensemble from the single cell data; in other 
Monte Carlo methods it may be set to 1. The ensemble in (2) in this case is the bias-free distribution of the peri-
odogram averaged over more than 1,000 single cells. The justification of the normal distribution assumption 
about the average periodogram computed over > 1,000 single cells in (2) is the Central Limit Theorem69. See6 for 
details. Since the experiments were done independently, the ensemble for all four experiments simultaneously 
can be obtained by multiplying the expressions (2) for each experiment to obtain the joint ensemble for all 4 
experiments.

Calculation of phase
MATLAB scripts are available in GitHub to examine the phase measures below31. Consider a fluorescent series of 
measurements on MFNC933 denoted by x(t) . We can imagine a fluorescent series 

∼
x (t) , 90 degrees out of phase 

with the original measurements x(t) . This replica is known as the Hilbert Transform30 and can be computed 
under very general conditions for a periodic process31. Viewing the doublet ( x(t),

∼
x (t)) living on the complex 

plane, the Hilbert Phase FH (t) is defined as the angle between x(t) and 
∼
x (t):

The Hilbert phase is continuized because of discontinuities at − π and π in tan−1 and denoted by FC(t)31. In 
that the experiments here were designed to synchronize the cellular oscillators at time 0 by placing all cells in 
the light for 26 h initially, the Hilbert Phase is shifted to pass through the origin in Fig. 6 and divided by 2 π to 
measure phase MC(t1, t0 ) in cycles completed from time t0 to time t1:

This phase measure increases linearly with time for a sinusoidal process, but for a process experiencing 
synchronization the phase curve is nonlinear5—the phases of cellular clocks change towards each other as they 
synchronize.

The ensemble for the clock stochastic network is determined by parallel tempering.  In order 
to escape local optima in (2) searching for the ensemble distribution, K replicas of the original system in (2) 
are created on the computer in parallel tempering. Each replica has its own temperature in (2). Those replicas 
with a higher temperature have a flatter surface in (2) as a function of the parameters � . Those replicas with a 
lower temperature have a more peaked surface as function of the parameters. The higher temperature replicas 
are free to explore more of the parameter space than lower temperature replicas. Each replica is allowed to 
engage in its own Markov Chain Monte Carlo (MCMC) search for good � ’s as defined by (2) using previous 
defined methods18 called in-chain iterations, but also each replica communicates its �-vector with swaps with 
the neighboring temperature. Higher temperature replicas find promising solutions, which are then communi-
cated to lower temperature replicas. The combination of MCMC in-chain search by replicas with swaps between 
replicas allows the escape of local optima14. The lowest temperature replica then yields the final solution to the 
problem and is called the target replica. It has been our experience that more standard MCMC methods, such as 
Metropolis–Hastings, were not sufficient for the identification of stochastic networks14.

To setup a parallel tempering run a temperature grid T1 < T2 < · · · < TK is constructed with T1 = 1 cor-
responding to our target replica (our solution to the problem). Swaps are defined between temperatures Ti and 
Tj by an acceptance probability:
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The vector x(i) are the parameters of the ith replica. As swaps are made, interesting solutions at high tempera-
tures can move to colder temperatures and ultimately may be incorporated into the target solution at T1 = 1 . 
Solutions move through the temperature grid, and an effective temperature grid has substantial communication 
between neighbors. No temperatures become isolated.

Choosing the grid (K) and temperatures in parallel tempering..  The temperature grid 
T1 < T2 < · · · < TK was chosen as described previously70. The number of replicas was initialized by K =

√
D , 

where D = 35 is the number of parameters in θ . Using the initial guess θ0 for the parameters, the largest tempera-
ture was set to TK = χ2(θ0)

30
.

The in-chain updates (i.e., Metropolis–Hastings updates) were run for 200 iterations14. If the acceptance 
rate for in-chain updates fell within (0.6, 0.75), the temperature was accepted; otherwise, the temperature TK 
was changed. Then another 200 iterations were tried. If the acceptance rate for in chain updates fell within (0.6, 
0.75), then the new temperature was accepted; otherwise, the cycle was repeated until the trial temperature fell 
within (0.6, 0.75). In this way the goal is to add temperatures so that the exchange rate between temperatures 
remains constant and nonzero.

A linear grid with K temperatures was established by the following protocol using a target swap rate of 0.4 
for neighboring replicas:

1.	 perform an update of parameters θ for each replica.
2.	 propose swaps between neighboring replicas 1 and 2, 3 and 4, 5 and 6,…
3.	 also propose swaps between neighboring replicas 2 and 3, 4 and 5, 6 and 7,…
4.	 repeat steps 1), 2) and 3), 200 times.

For each pair of neighboring replicas (i, i + 1) the following quantity was calculated:

The quantity N (i,i+1)
swap  is the number of proposed swaps between replicas i and i + 1, and ρ l

i,i+1 is the acceptance 
probability of the ltℎ proposal for swapping i and i + 1.

If Ri,i+1 =
[

√

Qi,i+1

ln(0.4)

]

> 0 , then a grid Ri,i+1 temperature is added , evenly spaced between Ti and Ti+1.

This temperature grid creation process was performed 3 times to make sure there were enough temperatures 
on the grid to prevent isolation of replicas on the grid.

Temperatures between T1 and Tk were added as follows.

1.	 Perform parallel tempering using the above steps 1), 2) and 3) 350 times. with the new temperature set .
2.	 For each temperature Ti calculate the flow fraction

where nup(Ti) and ndown(Ti) are the total number of replicas that were drifting upward and downward, respec-
tively when they visited Ti.

3.	 Linearly interpolate f between temperatures.
4.	 Calculate the inverse function g of f.
5.	 Change the temperature values from Ti to Tnew

i = g
(

1− i−1
K−1

)

.

This process of shifting the intermediate temperatures was repeated 3 times.
The shifting of temperatures was done to optimize the flow of replicas through the temperature grid so that 

no temperature becomes isolated and unable to swap with other temperatures.
After the steps above to choose the temperature grid, the parallel tempering algorithm was performed for 

about 30,000 Monte Carlo updates in Fig. 3A, where by update we mean the steps 1), 2) and 3) described in the 
add-temperature process. In implementing this temperature grid above, three initial conditions for the param-
eters were tried, and in one of the MCMC runs the target replica at temperature T1 stopped swapping with the 
neighboring temperature late in equilibration. To eliminate this problem the linear temperature grid was allowed 
to increase again to include 60 temperatures during equilibration in Fig. 3A.

The ensemble for the clock stochastic network is determined by genetic algorithms supple‑
mented by Metropolis–Hastings Monte Carlo.  Two genetic algorithms were employed here28,29. The 
two algorithms used in the simulations are part of the family of genetic algorithms known as Particle Swarm 
Optimization (PSO) algorithms. PSO algorithms try to optimize a function f defined on a domain D by dividing 
a population of particles xi in D, i = 1,2,…,sz, into groups called swarms and letting these swarms look for regions 
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in the parameter space that could contain the optimum value of f. To make the exploration of the parameter 
space more effective, the swarms are encouraged to share information among themselves. Usually, 90% of the 
total number of generations are used to explore the parameter space to find promising region(s) that could con-
tain optimum values of f. The exploration phase is followed by exploitation, whereby the algorithm speeds up 
the convergence of particles to an optimum value of f. In the following, we assume that we want to minimize the 
function f, e.g., the χ2, in Eq. (2), so f(x1) < f(x2) means x1 is better than x2.

The Dynamic Multi-Swarm Particle Swarm Optimizer with Cooperative Learning Strategy (DMS-PSO-CLS) 
genetic algorithm is now briefly described29. It has three features for optimization: (1) swarms of particles, mov-
ing in the parameter space with the best particle of a swarm being denoted by pbest; (2) a culling/recombination 
stage at the end of a generation where each parameter of the two worst particles in each swarm is replaced by 
the corresponding parameter of one of the pbest particles; (3) a regrouping between particles (or migration 
between swarms) every RR generations Then the process is repeated in each succeeding generation, 600 to 1,000 
generations.

Swarm movement.  Each of sz particles with NN = 4 particles per swarm in MM swarms has an inertia of 
w, which decreases linearly with generation, the initial value being w1 and the final value being w2. The accel-
eration constants c1 and c2 determine in part the genetic algorithms in Table 1. Each particle i has a position 
component xdi  and velocity component vdi  on parameter d in the D-dimensional parameter space, d = 1,2,…,D. 
The dimension D is 35 here. All parameters in the model are rescaled to the unit cube [0, 1]35. Initial conditions 
were chosen as part of a Sobol space-filling sequence in the parameter space71 or randomly from within the unit 
cube40. Equations of motion of the swarm are given by29:

for the exploration phase and by

For the exploitation phase.
The vector pbesti is a particle’s historically best position in the parameter space according to (2). The vector 

lbesti is the historically best position in an ith particle’s swarm. The vector gbest represents the position of the 
globally best solution, i.e., the best particle in the whole population. Note that when lbest and gbest are calculated, 
the historically best solution of all particles in a swarm and historically best of particles in the whole population 
are being recorded, respectively. The quantities rand1di  and rand2di  are uniform random numbers drawn from 
[0,1] that vary with each update to the velocity of a particle.

Culling and recombination.  The genetic algorithm in row 2 (Table 1) with χ2 = 2773.07 is used to illus-
trate culling and recombination. For each dimension d, there is a random draw of size 2 from the 80/4 = 20 pbest 
particles moving on the parameter space. For each dimension d of the parameter space, 2 of the pbest particles 
are randomly chosen, and the best one of them will donate parameter d to one of the worst particles. The method 
is repeated for second worst particles. Since this random draw of 2 best particles is redone for each dimension, 
it is possible that the 2 worst particles will have contributions from more than 2 of the best particles. In other 
words, there is recombination between all of the best particles in culling the 2 worst particles from each swarm.

Regrouping (or migration).  Particles are randomly regrouped every RR generations. The constants used 
were: (1) w1 = 0.9; (2) w2 = 0.4; (3) c1 = 1.49445; (4) c2 = 1.49445; (5) vmax = 0.2; (6) vmin = − 0.2 (7) RR = 529; (8) 
w3 = 0.229; (9) T = 1 in Eq. (2). Inertia weight w was decreased linearly from w1 to w2 during exploration phase 
and was kept constant at w3 during the exploitation phase. See29.

An alternative genetic algorithm named Particle Swarm Optimization with Dynamic Learning Strategy (PSO-
DLS)28 was also tried (Table 1). There were only two stages, swarm movement and migration. With probability 
1-p, a particle does not communicate with other swarms, and its movement is described by (3). With probability 
p a particle does communicate with other swarms, and its movement is described by (5):

Equation (4) is used during the exploitation phase.
This is sometimes referred to as the admixture model of migration with p as the migration rate72. The same 

acceleration constants, c1 and c2 , were used and set to 1.49445. This admixture parameter linearly increases with 
generation t according to p = t/iter, where iter is the total number of exploration generations (in our case 540 or 
900 in Table 1). There is pseudocode available28.

Metropolis–Hastings accumulation followed equilibration using the 12 best solutions in Table 1 and were 
combined at the end to produce a reconstruction of the likelihood in (2). A total of 14,000 total updates were 

(3)
vdi ← wvdi + c1 · rand1di

(

pbestdi − xdi

)

+ c2 · rand2di
(

lbestdi − xdi

)

xdi ← xdi + vdi

(4)
vdi ← wvdi + c1 · rand1di

(

pbestdi − xdi

)

+ c2 · rand2di
(

gbestd − xdi

)

xdi ← xdi + vdi

(5)
vdi ← wvdi + c1 · rand1di

(

pbestdi − xdi

)

+ c2 · rand2di

(

1

MM

MM
∑

m=1

lbestdm − xdi

)

xdi ← xdi + vdi
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performed for each of the 12 chains. The first 3,500 updates were used to adjust the parameter step widths in the 
Metropolis–Hastings algorithm and were discarded73. From the remaining 10,500 updates, every 35th model 
was sampled for a total of 300 samples from each of the 12 chains. The final sample for the accumulation run 
consisted of 12 × 300 = 3,600 models. Summary statistics on each model parameter for the fitted ensemble are 
given in Table 1.
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