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Abstract: Herein, we demonstrate a facile methodology to synthesis a novel methacrylic phosphonic
acid (PA)-functionalized polyhedral oligomeric silsesquioxanes (POSSs) via thiol-ene click reaction
using octamercapto thiol-POSS and ethylene glycol methacrylate phosphate (EGMP) monomer. The
presence of phosphonic acid moieties and POSS-cage structure in POSS-S-PA was confirmed by
Fourier transform infrared (FT-IR) and nuclear magnetic resonance (1H, 29Si and 31P-NMR) analyses.
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrum of POSS-S-PA
acquired in a dithranol matrix, which has specifically designed for intractable polymeric materials.
The observed characterization results signposted that novel organo-inorganic hybrid POSS-S-PA
would be an efficacious material for fuel cells as a proton exchange membrane and high-temperature
applications due to its thermal stability of 380 ◦C.
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1. Introduction

In recent years, polyhedral oligomeric silsesquioxanes (POSSs), a family of nanostructured
inorganic components with size tunability and functionality, have fascinated global research
communities due to their wide range of potential applications in viscosity modifiers, catalysis,
coating, drug-delivery vehicles, electronics, and renewable energy sources [1–3]. Additionally,
it has strong attention due its unique physico-chemical properties and reactive organic terminal
functional substituents [4–8]. The three-dimensional structure of the silicon–oxygen (Si–O) core is
inevitably responsible for high thermal stability and stiffness, whereas the terminal organic reactive
functional groups can be enabled to make the covalent bond between POSSs and polymers, which
results in the solid progress of organic–inorganic hybrid materials [9,10]. POSS properties have
been tuned [11–15] by incorporating various end-group moieties (functionalities), such as acrylates,
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methacrylate, alcohols, amines, carboxylic acids, epoxides, fluoroalkyls, halides, and imides, through
self-polymerization reactions, which include self-condensing vinyl polymerization, poly-condensation
reactions, ring-opening polymerization, and “ene-click” reactions [16–18]. Methacrylate-functionalized
POSSs provide improved thermal stability and flame retardancy. Further, the incorporation of
phosphorus-, silicon-, and boron-containing compounds as POSS moieties is an effective way of
improving its physicochemical properties and stiffness [9,19–21].

In this communication, we report on the development of a novel type of methacrylic phosphonic
acid-functionalized POSSs for fuel cells. To the best of our knowledge, there is no report available based
on the synthesis and characterization of methracrylate phosphate-functionalized POSSs (POSS-S-PA).
Via thiol-ene click reaction chemistry, octamercapto thiol POSSs were functionalized with 7∼8
phosphonic acid (PA) groups, paving the way for use as a potential candidate for proton exchange
membrane fuel cells due to its anhydrous proton conduction group, high thermal, hydrolytic, and
oxidative stabilities [21,22].

2. Material Synthesis

2.1. Materials

2,2′-Azobis(isobutyronitrile) (AIBN) was purchased from Fischer, Seoul, Korea and used after
purification. 3-Mercaptopropyl trimethoxysilane (MTS, 98%), anhydrous dichloromethane (DCM),
triethyl amine (TEA), and methanol (MeOH, 99.9%) were donated by Sigma Aldrich, Yongin, Korea.
Ethylene glycol methacrylate phosphate (EGMP, 98%) was purchased from Shanghai Angewchem Co.,
Ltd. (Shanghai, China).

2.2. Synthesis of POSS-S-PA

The synthesis of POSS-S-PA involves two steps. The first step includes the synthesis of POSS-SH
from 3-mercaptopropyl trimethoxysilane by acid hydrolysis reaction [9], which is described as follows.
The schematic representation of the synthetic route is sketched in Figure S1 (ESI). Firstly, 15 mL of
stoichiometric MTS were mixed with 20 mL of concentrated HCl and 240 mL of an MeOH (anhydrous)
solution in a three-neck flask, which was fitted with a condenser, as shown in Figure S1. In order to
complete hydrosilylation reaction, the precursor solutions were subjected to acid hydrolysis followed
by condensation reactions at 90 ◦C for 48 h. After the removal of solvent under reduced pressure,
the obtained raw product was further dissolved in anhydrous dichloromethane and precipitated in
distilled water (18.3 MΩ.cm at 25 ◦C), and this procedure was repeated three times to obtain the
final product. The collected final product as a white-colored viscous liquid with a yield of 22% was
dried under vacuum at 80 ◦C for 12 h. The thiol-ene click reaction between POSS-SH and EGMP was
pictorially represented in Figure 1.

The second step for the synthesis of POSS-S-PA from POSS-SH is explained as follows: The
methacrylic PA-terminated hybrid-network polymer POSS-S-PA was synthesized by the so-called
“thiol-ene” reaction [19,23,24] using POSS-SH and EGMP. For synthesis, 10 mL of POSS-SH (10.1800 g,
1000 mL, and 10 mM) dissolved in 30 mL of anhydrous DCM and TEA (0.24 mM) were taken in
a three-necked round bottom flask and subjected to constant stirring under an N2 atmosphere for
about 2 h at 40 ◦C. Then, freshly distilled EGMP (16.8080 g, 1000 mL, and 80 mM) was injected
into the reaction mixture to carry out the polymerization reaction for 5 h at 40 ◦C. In order to retain
the POSS-cage structure, EGMP was added slowly, dropwise, for up to 30 minutes. The obtained
product was kept in a refrigerator overnight, and white precipitate was then separated from DCM
using rotatory evaporation. The obtained white precipitate, designated as POSS-S-PA, was further
purified by dissolving in methanol and re-precipitation in diethyl ether to remove unreacted POSS-SH,
and then filtered and dried. The yield of light yellow POSS-S-PA was 64% and a schematic for the
synthetic route is shown in Figure 1. Its corresponding instrumentation details are provided in the
supplementary file.
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Figure 1. Pictorial representation of thiol-ene click reaction between POSS-SH and EGMP. 
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The 1H-NMR and 13C-NMR spectra of precursor MPTS and product POSS-SH are given in 
Figure S2 (ESI) which confirms the formation of POSS-SH from MPTS. Figure 2a,b show the 
1H-NMR spectra of POSS-SH and POSS-S-PA. From the 1H NMR spectrum of POSS-SH, three 
signals are observed at 0.72, 1.68, and 2.52 ppm due to methylene protons on the mercaptopropyl 
arm and another triplet signal is exhibited at 1.34 ppm, which is attributed to thiol proton. The peak 
analysis provides an integral of 2:2:2:1 for an eight-armed thiolated POSS peak of 1, 2, 3, and 4, 
respectively. In POSS-S-PA, the successful completion of reaction between POSS-SH and EGMP has 
been confirmed by the absence of thiol triplet peak at 1.34 ppm as well as the absence of resonance 
from the ethylene proton in the range 4.5–6.5 ppm as shown in Figure 2b. The important proton 
NMR peaks of POSS-S-PA and its assignments are as follows: 0.78 (t, Si–CH2), 1.62 (s, Si–CH2–CH2), 
2.31 (t, Si–CH2–CH2–CH2), 0.93 (m, S–CH2) 2.09 (m, S–CH2–CH–CH3) 1.83 (s, CH–CH3) 4.14 (t, CO–
CH2), 4.25 (m, –CH2–P), 2.60 (s, P–OH). 

Figure 1. Pictorial representation of thiol-ene click reaction between POSS-SH and EGMP.

3. Results and Discussions

A novel methacrylic POSS-S-PA has been synthesized using octamercapto thiol-POSS and ethylene
glycol methacrylate phosphate (EGMP) monomer via thiol-ene click reaction. Further, as-prepared
POSS-S-PA was characterized by NMR, FTIR, MALDI-TOF, TG-DTG, and SEM analyses to confirm
their hybrid structure.

The 1H-NMR and 13C-NMR spectra of precursor MPTS and product POSS-SH are given in
Figure S2 (ESI) which confirms the formation of POSS-SH from MPTS. Figure 2a,b show the 1H-NMR
spectra of POSS-SH and POSS-S-PA. From the 1H NMR spectrum of POSS-SH, three signals are
observed at 0.72, 1.68, and 2.52 ppm due to methylene protons on the mercaptopropyl arm and another
triplet signal is exhibited at 1.34 ppm, which is attributed to thiol proton. The peak analysis provides an
integral of 2:2:2:1 for an eight-armed thiolated POSS peak of 1, 2, 3, and 4, respectively. In POSS-S-PA,
the successful completion of reaction between POSS-SH and EGMP has been confirmed by the absence
of thiol triplet peak at 1.34 ppm as well as the absence of resonance from the ethylene proton in the
range 4.5–6.5 ppm as shown in Figure 2b. The important proton NMR peaks of POSS-S-PA and its
assignments are as follows: 0.78 (t, Si–CH2), 1.62 (s, Si–CH2–CH2), 2.31 (t, Si–CH2–CH2–CH2), 0.93 (m,
S–CH2) 2.09 (m, S–CH2–CH–CH3) 1.83 (s, CH–CH3) 4.14 (t, CO–CH2), 4.25 (m, –CH2–P), 2.60 (s, P–OH).
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analysis, and it is displayed in Figure 2d. It shows a sharp signal at 1.6 ppm, which arises due to the 
diacid form of the phosphonate units in POSS-S-PA. From the 29Si NMR spectrum of Figure 3a, two 
signals are exhibited in the T3 region, which confirms the presence of the POSS cage structure. The 
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silanol group signal in the 29Si NMR spectrum of POSS-S-PA confirms the stable SQ cage structure 
without any degradation during the course of reaction. 

Figure 2. (a) 1H-NMR spectrum of POSS-SH; (b) 1H-NMR spectrum of POSS-S-PA; (c) MALDI-TOF-MS
spectrum of POSS-SH and POSS-S-PA; (d) 31P-NMR spectrum of POSS-S-PA.

Besides, the MALDI-TOF MS spectrum shows two strong signals at 1018 and 2474 m/z for
POSS-SH and POSS-S-PA, respectively, as displayed in Figure 2c. These peaks represent the mass of
silsesquioxanes (SQ) cage with octamers like eight propyl and EGMP groups, respectively. For the
same, the calculated values are 1017 and 2474 m/z. In addition, some other unassigned signals are
observed along with main peaks, but the ultimate product for a building block of the octamer SQ cage
is confirmed by elemental and NMR analyses. The unassigned peaks observed may be due to the
hexamer and heptamer of the SQ cage, which could not be isolated selectively during the synthesis.
The elemental analysis data of both POSS-SH and POSS-S-PA are as follows: POSS-SH: Calculated—C
47.9, H 9.39 and S 42.67; found—C 47.82, H 10.20 and S 42.60%; POSS-S-PA: Calculated—C 45.35,
H 6.82, O 33.80 and S 14.03; found—C 45.12, H 6.82, O 33.98 and S 14.08%. These observations are
strongly consistent with earlier results [25,26].

The presence of PA terminal groups in the synthesized sample is further confirmed by 31P-NMR
analysis, and it is displayed in Figure 2d. It shows a sharp signal at 1.6 ppm, which arises due to the
diacid form of the phosphonate units in POSS-S-PA. From the 29Si NMR spectrum of Figure 3a, two
signals are exhibited in the T3 region, which confirms the presence of the POSS cage structure. The
main signals are observed from −66.10 to −66.38 ppm and from −66.40 to −66.70 ppm and assigned
to the cage-like octamer (T8) and the cage-like decamer (T10), respectively. Moreover, the absence of a
silanol group signal in the 29Si NMR spectrum of POSS-S-PA confirms the stable SQ cage structure
without any degradation during the course of reaction.

FTIR spectroscopy analysis is performed to confirm the various structural organization
in POSS-S-PA functional groups as well as to distinguish thiol and double bonds conversion
individually [27,28]. Figure 3b represents the attenuated total reflection (ATR)–FT-IR spectra of
POSS-SH and POSS-S-PA hybrids. The observed peaks are at 1100–1080 and 2626 cm−1 attributed
to characteristic Si–O–Si stretching and S–H stretching vibrations of POSS-SH, respectively [29,30].
The thiol-ene click reaction formed POSS-S-PA is confirmed by the presence of C=O, C–H stretching
and P–OH peaks are at 1732, 2850–3050, and 3600 cm−1, respectively, as well as the absence of an
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S–H peak in the region of 2620 cm−1. The observed FTIR peaks and its corresponding assignments
of POSS-SH and POSS-S-PA are tabulated in Table 1. The observed results are highly consistent with
earlier literature based on the thiol-methacrylate system [31,32].Polymers 2017, 9, 192  5 of 8 
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Figure 3. (a) 29Si-NMR spectrum of POSS-S-PA; (b) FT-IR spectra of POSS-SH and POSS-S-PA;
(c) TG-DTA thermogram of POSS-SH and POSS-S-PA.

Table 1. Peak positions and its corresponding assignments of POSS-SH and POSS-S-PA.

FTIR Frequency Wavenumber (cm−1) Assignments
POSS-SH POSS-S-PA

1095–1056 1096–1058 Si–O–Si
- 990, 950 P–O stretching & P–C stretching
- 1736 C=O

2690 - S–H
3100–2880 3050–2850 C–H stretching

- 3200–3600 P–OH stretching

TG-DTA curves of POSS-SH and POSS-S-PA hybrids are provided in Figure 3c. From the curves,
the weight loss is observed for less than 5% up to 120 ◦C, which may be due to the volatilization of free
and hydrogen bonded water; thereafter, the continuous weight loss is observed until 434 ◦C, attributed
to the decomposition of terminal groups in the POSS core and the complete decomposition of POSS
backbones. The related DTA curve with respect to heat flow also shows a similar type of thermal
variation during the entire weight loss curve, which is given in inset of Figure 3c. The morphological
properties of POSS-SH and POSS-S-PA hybrids were investigated by FE-SEM analysis (Figure 4a,b). It



Polymers 2017, 9, 192 6 of 8

can be seen from the SEM micrograph that POSS-SH consists of a 3D-skeletal like morphology, with a
combination of spherical and hexagonal shaped grains. For POSS-S-PA (Figure 4b), the SEM image
consists of larger-sized grains due to the agglomeration.
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4. Conclusions

In summary, a novel strategy of a PA-functionalized SQ cage was successfully prepared with
high yields by a rapid one-pot synthesis via thiol-ene click reaction. The excellent purity of the
as-prepared POSS-S-PA framework was confirmed by NMR, FTIR, and MALDI spectral analyses.
Our hybrid structure of POSS-S-PA possessed good thermal stability, which was exposed by TG-DTA.
From the observed results, POSS-S-PA would be an excellent inorganic–organic hybrid material for
high-temperature applications and as a proton exchange membrane in fuel cells to help to increase the
protonic transport, which in turn improves its protonic conductivity and cell performance.
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Figure S1: Schematic diagram for acid hydrolysis of 3-mercaptopropyl trimethoxysilane; Figure S2: 1H and
13C- NMR spectra of of 3-mercaptopropyl trimethoxysilane and POSS-SH.
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