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1  | INTRODUC TION

Fish are important consumers in aquatic ecosystems, in which they 
contribute to the maintenance of homeostasis by driving top-down 

forces and trophic cascades (Leray, Meyer, & Mills, 2015; Weber & 
Traunspurger, 2015). Information concerning fish dietary supplemen-
tation in the field is vital for pisciculture (Robert, Levesque, Gagne, 
& Fortier, 2011). Fish have diverse diets and occupy multiple trophic 
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Abstract
A knowledge of fish diets can contribute to revealing the trophic role and ecological 
function of species in aquatic ecosystems. At present, however, there are no efficient 
or comprehensive methods for analyzing fish diets. In this study, we investigated the 
diets of juvenile Scatophagus argus collected near a wharf in Daya Bay, China, by dis-
section and high-throughput sequencing (HTS) using the 18S rDNA V4 region. 
Microscopy disclosed large amounts of bryozoans and unrecognizable detritus. In 
contrast, HTS analysis indicated that the fish diets were considerably more diverse 
than visual inspection suggested. After eliminating fish sequences, approximately 
17,000 sequences from taxa in nine phyla (Ciliophora, Bryozoa, Annelida, 
Bacillariophyta, Chlorophyta, Arthropoda, Dinoflagellata, Tunicata, and Phaeophyta) 
were identified from the analysis of stomach contents. Twenty-one food categories 
were identified, most of which (95.2%) were benthic fouling organisms that could 
easily be collected around wharfs. These consisted of bryozoans (31.9%), ciliates 
(45.7%), polychaetes (14.6%), and green algae (3.0%). Therefore, to adapt to anthro-
pogenic habitat modification, the fish had probably shifted from planktonic to ben-
thic feeding. The prevalence of fouling organisms in the stomachs of juvenile S. argus 
indicates that the fish have responded to habitat changes by widening their food 
spectrum. This adaptation may have increased their chances of survival. The fouling 
organisms that inhabit highly perturbed coastal ecosystems could represent a food 
source for animals at higher trophic levels. Our results accordingly suggest that 
human activity might significantly influence fish feeding behavior and material 
transfer along the food chain.
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levels. They display various feeding patterns, such as planktonic and 
benthic (Gupta, 2016; Riemann et al., 2010), and can also adjust their 
feeding behaviors according to food availability in the natural envi-
ronment (Prudente, Carneiro-Marinho, Valente, & Montag, 2016). 
One such example is Serrasalmus gouldingi (Fink & Machado-Allison 
1992), which is the most abundant fish species in the Anapu River of 
the Amazon Basin (Prudente et al., 2016). The juveniles of this species 
have narrow food niches during droughts and early during periods 
when the water level rises, and at these times, they mainly consume 
other fish species. However, when the water recedes, their diet be-
comes more varied and they consume a larger proportion of indige-
nous insects and other arthropods (Prudente et al., 2016). Fish with 
such wide trophic niches and flexible feeding strategies adapt better 
to environmentally driven fluctuations in food resources (Moreno-
Valcarcel, Oliva-Paterna, Bevilacqua, Terlizzi, & Fernandez-Delgado, 
2016; Prudente et al., 2016). The diets of marine fish may reflect both 
environmental conditions and their survival status, and therefore, in 
situ fish diet studies may help us to understand their survival strate-
gies. This knowledge is particularly important for juvenile fish because 
they are critical indices of successful resource management and artifi-
cial breeding in fisheries and aquaculture (Robert et al., 2011).

Coastal ecosystems are essential to marine ecological services 
and have also been a focal point of the conflict between marine 
exploitation and environmental protection. Anthropogenic distur-
bances have replaced the natural coastal water habitats with mosaic 
landscapes, and this transformation has influenced the availability of 
food resources and material transfer along the food chain in coastal 
ecosystems (Anderson & Cabana, 2009; Huang, Zhang, & Jiang, 
2015). Consequently, native organisms may be forced to change their 
survival strategies, including their feeding habits (Quéméré et al., 
2013). In this regard, Anderson and Cabana (2009) reported that the 
slopes of the δ15N-size class relationships in the invertebrate commu-
nity changed from −1 to +2.8 as a consequence of industrial activity 
at 23 river sites. Nevertheless, it remains difficult to assess the impact 
of human activity on the trophic relationships in these ecosystems 
because accurate dietary information is often lacking. The ecological 
processes involved in these food chain shifts are also uncertain be-
cause there is typically limited information available regarding trophic 
dynamics. For these reasons, it is necessary to gain an understanding 
of the changes in food sources and feeding behaviors exhibited by 
consumers like fish in response to environmental disturbance (Leray 
et al., 2015). Although several studies have previously focused on the 
feeding behavior of larval or juvenile fish, the information derived 
from this research remains incomplete because of limitations asso-
ciated with the available sampling and analytical methods (Paradis, 
Sirois, Castonguay, & Plourde, 2012; Robert et al., 2011).

Conventional fish diet analysis is based on the morphological iden-
tification of preys in the gut contents or feces. Nevertheless, when 
using this approach, a specialized knowledge of taxonomy is required 
to enable researchers to identify prey accurately. The partial digestion 
of soft-bodied organisms makes it even more difficult to identify prey 
correctly (Deagle, Kirkwood, & Jarman, 2009; Schuckel et al., 2013). 
In addition, the presence of the indigestible remains of hard-bodied 

organisms introduces error into dietary assessments (Blankenship & 
Yayanos, 2005; Weber & Traunspurger, 2014). In contrast, molecular 
DNA-based identification methods are sensitive, rapid, and accurate 
and have been widely used in dietary analysis (King, Read, Traugott, & 
Symondson, 2008). They are particularly suitable for small predators 
like larval or juvenile fish, and the prey of which are generally very 
small and difficult to characterize (Hu et al., 2014; Maloy, Culloty, & 
Slater, 2013). High-throughput sequencing (HTS) is a powerful dietary 
study tool because it provides comprehensive sequence information 
at relatively low cost (Pompanon et al., 2012). The sequence data gen-
erated by HTS significantly expands existing knowledge on the food 
spectra of different predators because this technique can detect very 
rare prey species (Deagle et al., 2009).

In this study, HTS was applied in an in situ dietary analysis of 
juvenile Scatophagus argus(Linnaeus 1766) collected from Daya Bay, 
Guangdong, China, a region that is under severe threat from human 
activity (Huang et al., 2015). Scatophagus argus is a popular aquar-
ium fish worldwide and a commercially important aquatic species 
in south and Southeast Asia (Gupta, 2016). Previous dietary stud-
ies on S. argus have mainly been based on traditional methods (like 
morphological identification on gut remaining and feeding experi-
ment), and the precise composition of the diet of this fish has yet 
to be clarified. Most studies have reported that S. argus is omnivo-
rous but has a preference for phytoplankton (Gandhi, 2002; Sivan & 
Radhakrishnan, 2011). It has also been stated elsewhere that S. argus 
is omnivorous but displays a flexible survival strategy in its natu-
ral environment (Wongchinawit, 2007). The objectives of this study 
were to identify and characterize the food resources of juvenile 
S. argus, and to assess the changes in these resources in response 
to long-term anthropogenic disturbances in Daya Bay. Furthermore, 
we sought to provide insight into the trophic role of juvenile fish in 
coastal marine ecosystems. This information could be applied to the 
artificial breeding of this species.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

Juvenile S. argus (standard body length 15.36 ± 2.51 mm) were 
manually sampled near a wharf in Daya Bay (DYB-f: 22°33′15.45′′N, 
114°31′08.64′′E) on two consecutive nights in September 2015 
(Figure 1). The fishes were euthanized by cold shock before pre-
served in 95% v/v ethanol and stored at 4°C.

2.2 | Photography of stomach contents and 
DNA extraction

Approximately 30 juveniles of S. argus were dissected, and their 
stomach contents were carefully collected. These were photo-
graphed under a dissecting microscope fitted with a digital camera 
(Olympus U-TV0.5XC-3; Olympus Corp., Shinjuku, Tokyo, Japan) to 
validate the data obtained from HTS. The stomach contents were 
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rinsed with phosphate-buffered saline (PBS: 0.01 M, pH range 
7.2–7.6) and then macerated with ground glass. The resulting ho-
mogenates were resuspended in lysis buffer for 48 hr at 55°C. DNA 
was extracted from the homogenates following a modified cetyl tri-
methylammonium bromide (CTAB) protocol (Zhang & Lin, 2002) and 
eluted in 30 μl 10 mM Tris–HCl (pH 8.0).

2.3 | Acquisition of the full-length sequence of 
S. argus 18S rDNA

The genomic DNA from juvenile S. argus muscle was extracted, and 
full-length 18S rDNA was amplified using universal primers (18S 
comF1: 5 -́GCTTGTCTCAAAGATTAAGCCATGC-3 ,́ 18S comR1: 5 -́
CACCTACGGAAACCTTGTTACGAC-3ʹ) (Zhang & Lin, 2002). PCR 
was run in a 25 μl volume consisting of 2.5 μl (2.5 μM) 10× Taq buffer, 
2 μl (2.5 μM) dNTP Mix, 1 μl genomic DNA, 1 μl (5 μM) each of univer-
sal forward and reverse primers, 0.125 μl (2.5 U/ μl) ExTaq polymerase 
(TaKaRa Ex Taq ® Hot Start Version; TaKaRa Bio Inc., Kusatsu, Shiga, 
Japan), and 17.375 μl dd H2O. The PCR conditions were as follows: an 
initial denaturation step at 94°C for 3 min; five cycles of denaturation 
at 94°C for 20 s, annealing at 52°C for 30 s, and extension at 72°C for 
1 min; 30 cycles of denaturation at 94°C for 20 s, annealing at 56°C 
for 30 s, and extension at 72°C for 1 min; and a final elongation at 
72°C for 7 min. The PCR products were examined by electrophoresis 
in 1% agarose gel, purified, and sequenced.

2.4 | PCR amplification and sequencing

To ensure data accuracy and reliability, the PCR products were assessed 
before being sequenced. In some studies, PCR has been used to am-
plify prey DNA rather than that of the predator (Hu et al., 2014; Maloy 
et al., 2013); however, this could result in the DNA of certain potential 

prey being overlooked. Therefore, in this study, whole-DNA extracts 
were amplified using the universal TAReuk454FWD1-TAReukREV3 
primer pair (TAReuk454FWD1: 5 -́CCAGCASCYGCGGTAATTCC-3 ;́ 
TAReukREV3: 5 -́CTTTCGTTCTTGATYRA-3ʹ), which targets the V4 
region (~380 bp) of the eukaryotic 18S rDNA (Stoeck et al., 2010). 
18S rDNA was selected because it has been widely used for the 
species-level identification of eukaryotic organisms (Hu et al., 2014; 
O’Rorke, Lavery, & Jeffs, 2012). PCR was carried out in a 20-μl reac-
tion volume composed of 4 μl 5× FastPfu Buffer, 2 μl 2.5 mM dNTPs, 
0.8 μl each of 5 μM universal forward and reverse primers, 0.4-μl 
FastPfu Polymerase, and 10-ng genomic DNA. The PCR conditions 
were as follows: an initial denaturation step at 95°C for 5 min; 27 cy-
cles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, and 
extension at 72°C for 45 s; and a final elongation at 72°C for 10 min. 
The PCR products were prepared for sequencing at 10°C, examined 
by electrophoresis with 2% agarose gel, and then sequenced using 
the Illumina MiSeq/HiSeq platform (Illumina, San Diego, CA, USA).

2.5 | Bioinformatics processing of raw sequences

The raw data obtained from the Illumina MiSeq/HiSeq platform 
were subjected to quality control in accordance with the Illumina 
MiSeq/HiSeq platform workflow (Pompanon et al., 2012). After 
data splitting, removing primers sequences, and splicing paired-end 
reads, the tags were filtered and intercepted. Only high-quality, long 
(>300 bp) sequences remained. Finally, effective tags were obtained 
for further analysis.

2.6 | Taxonomic assignment

To evaluate prey composition and diversity, the effective tags 
were clustered into operational taxonomic units (OTUs) with a 97% 

F IGURE  1 Sampling site (DYB-f) near a wharf in Daya Bay, Guangdong, China, close to human habitation
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threshold. Those OTUs with a frequency of <10 were removed. 
Representative OTU sequences were aligned to GenBank sequences 
with BLAST (Basic Local Alignment Search Tool). The five top-
scoring BLAST hits were returned. If any of these were uncultured 
or unannotated sequences, then the next would be selected until a 
specific sequence series was compiled. A species name was assigned 
only if a single best hit achieved 100% similarity, and all the others 
were ≤99%. A genus name was accepted only if the similarities of 
the five best hits were ≥98%. A family name was retained only if the 
similarities of all the best hits were ≥95%. Sequences with maximum 
similarities <95% were labeled “NA (No Account).” These were most 
likely the products of PCR errors, contamination, or GenBank de-
ficiency. The number of effective tags was then returned for each 
phylum. To reduce the risk of misidentification at the lower taxo-
nomic levels, a proportion of the different OTUs was returned for 
each level and those labeled “NA” were removed prior to dietary 
composition analysis.

3  | RESULTS

3.1 | Microscopic identification of bryozoan-
dominated stomach contents

Prior to molecular analysis, we conducted microscopic identification 
of the stomach contents of juvenile S. argus. Despite thorough wash-
ing, the contents were still difficult to analyze because of the large 
quantity of flocculent detritus they contained (Figure 2a). For most 
of the individuals, various forms of bryozoans were the most abun-
dant organisms in the stomach contents (Figure 2b,c).

3.2 | HTS identified the predominant 
fouling organisms in S. argus juvenile stomachs

A total of 20,974 sequencing reads were returned by the Illumina 
MiSeq/HiSeq platform. These passed the stringent quality control 
requirement that neither the multiplex identifier tags (MIDs) nor 
the primers had any mismatched bases. The BLAST search showed 

high-resolution taxonomic assignments (≥98% similarity) for 95.38% 
of the effective reads (Figure 3). These reads were clustered into 
42 OTUs, including seven OTUs identified to the species level, 20 
OTUs to the genus level, seven OTUs to the family level, and three 
OTUs to higher taxonomic levels. Only five OTUs remained uniden-
tified (Table S1). The 42 OTUs spanned 11 different phyla, among 
which Ciliophora (38.31%), Bryozoa (25.77%), Vertebrata (18.07%), 
and Annelida (11.83%) were the dominant phyla in the stomach con-
tents of juvenile S. argus (Figure 3). The fish DNA sequences were re-
moved during the dietary analysis. Similarly, the unidentified OTUs, 
labeled “NA,” were removed and assigned to Labyrinthulomycetes, 
which are unlikely food sources. A total of 35 OTUs remained for 
downstream analysis (Figure 4).

Strikingly, all the dominant food items in the diet were com-
mon fouling organisms. Bowerbankia-like species (99% identity to 
Bowerbankia sp. KM373516.1) were the most abundant group, con-
sisting of 31.90% of the detected diets. Other fouling organisms 
from genus Zoothamnium, Acineta, Branchiomma, and Ulva were also 
presented in the diet.

4  | DISCUSSION

The HTS method detected and identified more fish diet components 
than gastric dissection. The data richness of the former technique is 
accordingly deemed superior to that of the latter (Pompanon et al., 
2012). Some postdigestion stomach contents that were difficult 
to distinguish microscopically could be accurately identified using 
molecular methods, which require no special skills in anatomy, mor-
phology, or taxonomy. Hu et al. (2014) identified various terrestrial 
plant species in copepod diets using DNA-based molecular meth-
ods, which could not be identified using traditional morphological 
methods. Moreover, HTS could produce a sufficient number of se-
quences for diet analysis even when it over-represented predator 
DNA. In this way, it is a very useful technique for obtaining detailed 
information on small marine organisms that are difficult to char-
acterize from stomach dissection (Pinol, San Andres, Clare, Mir, & 

F IGURE  2 Diet composition of juvenile 
Scatophagus argus based on morphological 
observations. (a) The stomach contents 
of juveniles examined under a dissecting 
microscope, 8× magnification. The 
contents were difficult to identify 
accurately without a thorough knowledge 
of taxonomy. (b) (20× magnification) and 
(c) (40× magnification). Bryozoan colonies 
in stomach contents. These were the only 
recognizable food source detectable by 
microscopy
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Symondson, 2014). The DNA recovered from feces or gut contents 
roughly reflects the proportion of dietary biomass ingested, even 
though the number of sequences may be influenced by digestive 
processes, sampling techniques, and DNA extraction (Deagle et al., 
2009; Pompanon et al., 2012). HTS has been used in the dietary 
analysis of lobster, fur seal, whale, and other marine animals (Deagle 
et al., 2009; Ford et al., 2016; O’Rorke et al., 2012). In the present 
study, a greater diversity of prey was more accurately detected and 
identified by HTS than by microscopic observations. The abundant 
bryozoans in the stomach contents of S. argus juveniles were identi-
fied by both molecular evidence and microscopy, thereby indicating 
that the results of HTS are reliable and can provide relatively quan-
titative information. Therefore, “traditional” method based on visual 
observations can provide more direct information and can also be an 
important means of verification for other new methods, just as HTS 
in our study (Pompanon et al., 2012).

However, many other prey taxa that were overlooked by mi-
croscopic observation were detected through HTS. These included 
ciliates, polychaetas, and green algae, which were either too small 
to be detected or too difficult to accurately identify microscopically 

F IGURE  3 Number and composition of similar sequences 
assigned to each phylum. High similarity indicated that most food 
sources could be identified accurately

F IGURE  4 Dietary partitioning 
and composition of Scatophagus argus 
juveniles. The left part of the figure shows 
a maximum-likelihood tree of the 18S 
rDNA sequence based on high-throughput 
sequencing. The 35 operational taxonomic 
units used in the dietary analysis are 
shown in the center of the figure. 
Ciliophora was the most diverse food 
taxon. The right part of the figure shows 
the identity of the dietary composition at 
the order level. Matching colors indicate 
that the same phyla (Ciliophora, Bryozoa, 
and Annelida) were the most abundant 
food sources
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after digestion. The soft bodied organisms will have a rapidly diges-
tion process with no visible gut remains, so this type of food sources 
was often neglected by microscopic observation while hard bodied 
organisms such as copepods with their exoskeleton are often re-
mained identifiable in the gut even after several hours’ ingestion 
(Scholz, Matthews, & Feller, 1991; Weber & Traunspurger, 2014). As 
a result, the degeneration of soft bodied prey DNA might be more 
rapidly than hard bodied prey in digestive process, such as nema-
todes, which was numerically dominated in benthic meiofaunal com-
munity and often was ingested by fish (Schuckel et al., 2013; Weber 
& Traunspurger, 2015) were rarely founded in our results by HTS 
detection. While considering the presence of algae and free-living 
ciliates in our results, which are typically smaller than nematodes, 
we assumed that the fish might have the anatomical features to eat 
soft-bodied animals. Both methods, especially for more sensitive 
HTS, might not recovery the complete food sources of S. argus due 
to the rapidly digestive preys with soft bodies. Nevertheless, HTS 
provides us a more comprehensive perspective and more details on 
the food sources of fish than traditional morphological identifica-
tion. The complex composition of the juvenile S. argus diet suggests 
that these fish are omnivorous. This conclusion is consistent with 
the findings of most previous studies that have used morphological 
gut content identification and culture observation for their analy-
ses (Gupta, 2016; Sivan & Radhakrishnan, 2011; Wongchinawit 
& Paphavasit, 2009). In most cases, where many different food 
sources are available and abundant in the natural environment, ju-
venile fish of S. argus show a preference for planktonic unicellular 
algae (Gandhi, 2002). Wongchinawit (2007) reported that there is an 
ontogenic shift in the diet of S. argus from microphytoplankton and 
protozoa in the larval stage to benthic organisms in the adult stage. 
In addition, the oral anatomy of the juvenile fish (body length range: 
1–2 cm) is best suited for the ingestion of microphytoplankton in the 
water column, their prey size is limited by the mouth gape, which 
varies from 0.11 to 0.28 cm, villiform type teeth and short gill rakers 
also limited their ability to catch and chew larger prey (Wongchinawit 
& Paphavasit, 2009). Nevertheless, the predominant prey species of 
the juvenile S. argus examined in the present study were bryozoans, 
ciliates, polychaetae, and green algae, all of which are common ben-
thic or sessile fouling organisms (Beech & Landers, 2002; Marroig & 
Reis, 2011; Tovar-Hernandez, Mendez, & Villalobos-Guerrero, 2009; 
Watson, Scardino, Zalizniak, & Shimeta, 2015). Therefore, as an ad-
aptation to anthropogenic habitat modification, it is assumed that 
the juvenile fish have shifted from planktonic to benthic feeding.

Scatophagus argus is an omnivorous and opportunistic feeder, 
and therefore, the variation in its dietary composition is related to 
the abundance of prey in addition to its oral anatomy (Gandhi, 2002). 
The fish select prey according to food availability and seek a balance 
between feeding effort and energy gain (Gupta, 2016). Among the 
major fouling organisms in Daya Bay (Fang & Yan, 2004), bryozo-
ans such as Bowerbankia grow copiously on the surfaces of wharfs 
and buoys and can be readily consumed by fish and other predators 
through scraping (Marchini, Cunha, & Occhipinti-Ambrogi, 2007; 
Yan & Huang, 1990). Few studies, however, have demonstrated that 

juvenile fish, particularly S. argus, select bryozoans as their main 
energy source. Juvenile S. argus live mainly in the surface layers 
and are poor swimmers compared to the adult fish. In our study, 
bryozoans predominated in the stomach contents of the juveniles, 
and Bowerbankia constituted a high proportion of all prey DNA se-
quences detected. Because they are so abundant, bryozoans might 
be important supplementary food sources for juvenile fish. In this 
study, it was determined that the main ciliates ingested by S. argus 
were Zoothamnium and Acineta. Wongchinawit and Paphavasit 
(2009) reported that the diet of adult S. argus during the low-salinity 
period consisted mainly of Zoothamnium. Certain Zoothamnium spe-
cies are free-living and grow attached to aquatic plants or inanimate 
substrates. Others are symbionts on the surfaces of many different 
animals (Clamp & Williams, 2006). Acineta are also common benthic 
ciliates in the coastal area of the South China Sea (Tan et al., 2010). 
Therefore, the Zoothamnium and Acineta in the stomach contents of 
juvenile S. argus may have been derived from (a) active ingestion of 
the hosts of these ciliates, such as bryozoans, copepods, and poly-
chaetae, along with the ciliates, and/or (b) incidental intake along 
with the hosts. The role of occasional feeding in the food webs and 
energy pathways in marine ecosystems thus merits further investi-
gation. Branchiomma and Ulva were identified as the two other main 
food sources for the juvenile fish in this study. Branchiomma are 
annelids that are widely distributed globally, particularly in coastal 
lagoons, rocky shores, marinas, piers, and harbors (Bastida-Zavala, 
Buelna, De Leon-Gonzalez, Camacho-Cruz, & Carmona, 2016). 
Species of Ulva, which are chlorophyte green algae, are also common 
benthic organisms in Daya Bay (Qiu, 2015). Both Branchiomma and 
Ulva are readily obtained by predators and herbivores. In this study, 
with the exception of some diatoms (1.77%) and dinoflagellates 
(0.53%), few unicellular algae were detected in the dietary compo-
sition of S. argus juveniles. Changes in dietary composition could 
therefore be the result of variations in food availability in the wharf. 
In unfavorable environments, organisms might expand their feeding 
range and select alternative food sources (Quéméré et al., 2013).

The feeding shifts of S. argus juveniles may therefore be a re-
sponse to environmental changes. The original community at the 
sampling site was destroyed by wharf construction. Subsequently, 
bryozoans and other fouling organisms superseded and prevailed 
there and have become more readily accessible to juvenile S. argus 
than unicellular algae. Although S. argus requires more plant than 
animal protein (Song, Su, Liu, & Zhang, 2012), the juveniles prefer 
as their main food source whatever prey is most available around 
the wharf, such as sessile bryozoans and other fouling organisms. 
Our study indicates that S. argus responds to the changes in its en-
vironment by adopting a flexible feeding strategy. This behavior 
increases its survival capacity when challenged by anthropogenic 
disturbances.

Scatophagus argus frequently appears near estuaries, mangrove 
wetlands, beaches, and harbors (Gupta, 2016). For this reason, fu-
ture research should focus on the impact that S. argus has on the 
abundance and diversity of its prey in these areas. The dietary 
shifts of S. argus suggest that the predation pressure of juvenile 
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fish has switched from plankton to benthic fouling organisms in an 
artificial environment. This transformation will affect the energy 
and matter pathways within this coastal region. With continuing 
expansions in development and exploration, human disturbances 
will occur more frequently in marine ecosystems, making this shift 
in predation more common in the future. Our study indicates that 
changes in the biodiversity and dietary compositions of native an-
imals are effective ways of assessing the impact of anthropogenic 
disturbances on marine ecosystems. These indices might serve as 
signals of ecological alteration. Nevertheless, given that our sam-
pling time was very short (two nights), it remains to be determined 
whether the benthic feeding habit of S. argus juveniles will con-
tinue over the long term. More extensive and longer studies are 
thus warranted to determine the far-reaching impact of human 
activity on the feeding behavior of fish in this and other marine 
ecosystems.
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