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At present, the target of most of the SARS-CoV-2 (Covid-19) vaccine development worldwide is the
spike protein (S) or, more specifically, the receptor-binding domain (RBD) of the virus (1).
According to The World Health Organization, almost all of these vaccines will be delivered
parentally by intramuscular injection (2). The goal is to achieve broadly neutralizing IgG antibody
production in response to a systemic viremia and contribute to the mucosal immune defense.
However, questions remain about the relative impact that IgG makes to the mucosal response,
whether or not it can provide durable immunity, especially in the aging population, and to what
degree it contributes to the immunopathology of antibody-dependent enhancement (ADE).

Despite the reliance on the intramuscular approach, mucosal administration of vaccines has been
highly successful from ancient through modern times (3). The late Norwegian immunologist, Per
Brandtzaeg, was a strong advocate for the intranasal administration of vaccines because of the
regional effect that it has on the upper airways with the production of both systemic and mucosal
IgA and systemic IgG immunoglobulins (4). He was also highly critical of the surgical removal of the
adenoids and tonsils in children, in part, due to impaired responses to vaccines (5). Perhaps the
pediatric population is being spared the ravages of the current pandemic due to the protective
nature of the adenoids and tonsils.

The tonsils and adenoids are part of the mucosal immune system known as Waldeyer’s ring or
the nasal associated lymphoid tissue (NALT). This organized mucosal associated lymphatic tissue
lies below the lamina propria of the nasal mucosa and is the primary inductive site for the secretory
immune system (6). It is in this region where all the molecular and cellular conditions are available
for the production of secretory IgA (S-IgA) by plasma cells and memory-type IgA+ B cells
independently of the bone marrow (7).

Plasma B cells produce both monomeric (sIgA) and polymeric (pIgA) multimers, dimers, tetramers
and pentamers (8). This multivalency results in greater avidity for viral peptides than IgG (9) and
prevents the infiltration of pathogens known as immune exclusion (10). The pIgA is actively transported
across the cell membrane from the basolateral to the apical surface of the secretory epithelium by the
secretory component (SC) of polymeric-immunoglobulin receptor (pIgR) as a secretory (SIgA) complex.
As the SIgA reaches the surface of the uninfected cell, SC separates from the SIgA where both elements
diffuse into the mucus layer and provide specific protective mechanisms (11). In vitro, free SC binds to
IL-8 and inhibits IL-8-mediated recruitment of neutrophils to prevent neutrophil extracellular traps in
the airways (see below) (12, 13). If a cell has become infected by a virus, pIgA complex is absorbed
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through the basal membrane by the pIgR where it is then
internalized into the endoplasmic reticulum leading to the
intracellular neutralization of newly formed viral proteins which
are then eliminated through the apical surface into the intestinal or
airway lumen (14).

The expression of the peripheral node addressin (PNAd) by
the high-walled endothelial venules of the NALT accounts for the
trafficking of B and T lymphocytes to the salivary, parotid and
submaxillary gland lymph nodes (15, 16) where plasma B cells
then migrate to the salivary and parotid glands to express IgA
that offers protection against bacterial pathogens produced in the
oral cavity as well as inhaled airborne virions (17). The PNAd
derived from NALT also promotes a mucosal and systemic
humoral response that includes that includes the lungs (18)
and the genital mucosa (19).

Given that PNAd is expressed by the HEV in the NALT and
bronchial associated lymphatic tissues, its role in cellular
immunity in response to vaccination is paramount since up to
80% of lymphocytes in human tonsils are CD8+memory cells (20).
On the other hand, naïve T cells were excluded from the mucosal-
associated tissue in mice that were challenged with influenza virus
that suggested a mechanism of immune tolerance in the upper
airway. The activation of CD8+ cells by intranasal boosting with a
recombinant vaccinia virus encoding the spike protein of the
SARS-CoV in mice resulted in pathogen clearance from a lethal
challenge of the virus (21). However, in Covid-19 patients,
lymphopenia is the hallmark of disease progression (22) and in
particular, CD8+ and natural killer cells (NK) decreased with
progression of the disease (23). Not only does the innate immune
response fail to protect against Covid-19, but it may be the
underlying cause of the increased morbidity and mortality (24).

A large body of literature has demonstrated that protection of
the lungs is afforded by nasal administration of a variety of viral
and bacterial vaccines (25–27). While there are concerns about
the durability of IgG antibodies to Covid-19 (28), IgA antibodies
to influenza generated by the diffuse NALT lining the nasal
passages lasted for the life of the animal (29).

The Covid-19 infection epitomizes a mucosal disease process.
Close contact, aerosol droplets, and fomites facilitate the
transmission of the virus where it comes into contact with the
oronasal and conjunctival mucosa. Here, the spike protein of the
virus binds to the angiotensin-converting enzyme-2 (ACE2)
receptor of the target cells capable of replicating the virus (30).
The nasal epithelium has the highest concentration of ACE2, and
the alveoli have the lowest (31). These findings reflect that the most
robust replication of the virus likely takes place in the nose and little
or none in the alveoli (32). Furthermore, the epithelial cells lining
the salivary gland ducts that are rich in the expression of ACE2
actively produce virions (33) that are spread through aerosol
droplets (34) that may be inhaled or aspirated into the lung. (31,
35) However, since IgA seroconversion occurs two days after the
onset of infection, and is detected earlier than IgM or IgG in Covid-
19 patients (36), its presence in the saliva not only provides the basis
for point-of-care diagnostic testing (37) but further supports the use
of the intranasal administration of a vaccine in order to neutralize
the virus at its source—the upper airway.
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However, despite the presence of antigen presenting cells in
the nasal and oral mucosa, SARS-CoV-1 was able to evade this
innate immune response in Rhesus macaques (RM), and within
two days post infection (dpi) had breached the upper respiratory
epithelium where it infected the underlying mucosal dendritic
cells and macrophages that subsequently migrated from
Waldeyer’s ring to draining lymph nodes and into the lungs
where they formed dense clusters around the alveoli (38). The
sequestration of virus in intracellular vesicles of the macrophages
demonstrates the critical role that these antigen presenting cells
(APC) play in the dissemination of the virus to the lung and
systemic compartment especially since viral shedding of Covid-
19 in the pharynx precedes viral replication in the lungs (39).

While pre-existing immunity is considered beneficial, there is
great concern that the accelerated pace to develop a vaccine against
SARS-CoV-2 will result in a detrimental immune response, i.e., an
antibody-dependent enhancement (ADE) of the infection (40).
Particularly disturbing is the fact that as a result of prior exposure
to the “common cold coronavirus” (CCC), T cell reactivity to
SARS-CoV-2 antigen peptide pools is in the 20–50% range in
unexposed blood donors from across the globe (41). In fact, one
study showed that 90% of the human race tested positive for three
of the four CCCs (42). A recent study showed that 35% of
seronegative Covid-19 healthy donors had cross-reactive CD4+
T cells to the S protein probably acquired from previous infections
with human coronaviruses (43). The presence of durable cross-
reactive T cell memory responses would play a role in amplifying
an anamnestic B cell response against those common antigens (44,
45). Thus, prior sensitization to conserved epitopes could lead to
the production of non- neutralizing or sub-neutralizing binding
antibodies, principally of the IgG isotype, and form antigen-
antibody complexes. These immune complexes (IC) act as
molecular bridges between a virus and immune cells (46)
expressing either a complement receptor, IgG Fc receptor (FcgR)
on the surface and neonatal Fc receptor (FcRn) (47) intracellularly.
The FcgR can function as a mimic for the ACE2 receptor that is
not expressed on all immune cells and allows for neutralizing
antibodies to gain access to the reproductive machinery of those
cells (48). Ultimately, the ratio of activating versus inhibitory
FcgRs will determine the severity of the disease based on the
subtype of IgG that it binds and the subsequent signaling cascades
it produces (49). When the IC binds to an activating FcgR on
APCs it also results in the production of proinflammatory
cytokines and chemokines that lead to lung and other organ
injury (50, 51). This hypercytokinemia causes an increased
transudate and production of hyaluronan in the alveoli that
absorbs up to 1,000 times its molecular weight with water
resulting in the severe acute respiratory syndrome (SARS) and
death (52). Even though ADE is primarily associated with IgG
antibodies, the phenomenon has also been observed with IgA
antibodies in HIV infection (53, 54). However, other than HIV,
IgA has not been identified with ADE in any other viral infection.

Two recent studies confirmed that fully neutralizing IgG
antibodies led to disease enhancement. One study showed that
monoclonal antibodies targeting the MERS-CoV RBD caused a
conformational change in the spike protein that blocked viral
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entry into cells expressing its cognate receptor, dipeptidyl
peptidase 4 and directed its entry into FcgR expressing cells
(55). In the second study, an IM vaccination that produced an
anti-spike IgG (S-IgG) and an intravenous administration of S-
IgG monoclonal antibodies correlated with acute lung injury
during a SARS-CoV infection of RM (56). Although the anti-S-
IgG reduced the expression of viral RNA in the lungs, it led to a
massive accumulation of monocyte/macrophages within 2 dpi that
caused significant diffuse alveolar damage. An antibody directed
against the FcgR reduced the production of IL-8 and MCP1 by
wound-healing macrophages suggesting that the mechanism of
acute lung injury was mediated by the anti-S-IgG antibody.

It is not known if the expression of neonatal Fc receptor
(FcRn) in the endothelial, airway and gastrointestinal tissues (57)
plays a role in IgG mediated enhancement of SARS-CoV-2.
Coronaviruses as well as other viruses that form immune
complexes with IgG antibodies are transcytosed through the
plasma membrane and transported intracellularly by the FcRn
into the endosomal system (58). Both the IgG antibody (59) and
the mouse hepatitis virus, a prototypic member of the CoV
family (60), depend on the same Rab GTPases in the endosomal
system for the recycling of IgG and for the proteolytic processing
of their fusion proteins respectively. This escorted means of
endocytosis of the virus could be the underlying mechanism of
the endovascular events observed late in the infection (61).
Of particular note, 82% of the cases of Kawasaki-like disease in
children in France had IgG antibodies for SARS-CoV-2 (62).

Although the induction of a mucosal response by systemic
immunization remains poorly understood (63), the use of an
appropriate adjuvant could change the outcome and lead to the
expression of IgA (64). Nevertheless, the intranasal administration
of a vaccine is inherently associated with an IgA response. An
additional benefit of IgA is based on its non-inflammatory effects
since neither the secreted, monomeric form (sIgA) found in serum
nor the secretory, polymeric form (S-IgA) found in mucosal
secretions activate any of the three complement pathways (65,
66). And, when bound to the antigen, IgA blocks the binding of
IgG and IgM and thus prevents the complement-mediated
inflammatory effects associated with these isotypes (67).
Furthermore, all forms of the IgA antibody, serum and secretory,
monoclonal and polyclonal, interfered with complement-dependent
phagocytosis by neutrophils mediated by IgG antibodies (66). This
would be beneficial in limiting the recruitment of neutrophils to the
lungs and the inflammasomes associated with viral infections (68).

In the context of a coronavirus vaccine, two separate studies
compared the efficacy of an intramuscular versus a mucosal route.
The first study used a recombinant adeno-associated virus
(rAAV)-based RBD (RBD-rAAV) vaccine to the SARS-CoV
spike protein (69) and the second studied three adenovirus-
based vaccine candidates against MERS-CoV (70). In both
studies, the intranasal route was superior to the IM route in
terms of a systemic and local humoral response, and both had a
stronger systemic and pulmonary CTL response. However, neither
the IM nor intranasal administration of the SARS-CoV RBD-
Frontiers in Immunology | www.frontiersin.org 3
rAAV vaccine produced any ADE which the authors attributed to
the properties of the adenovirus vector and its specificity for the
particular epitope within the RBD. But perhaps most importantly,
only the intranasal and subligual administration of the MERS-
CoV full-length spike protein induced IgA antibodies that were
found in the broncholaveolar lavage fluid. Thus far, only one paper
has clearly substantiated the validity of previous articles that
support the nasal administration of a Covid-19 vaccine (71)
although a number of academic and biopharma entities have
announced their successes with press releases.

While IgA is the most highly expressed antibody in the body,
its production by the mucosal-associated lymphatic tissue declines
with age. This decline is one aspect of a condition known as
immunosenescence that is particularly relevant in the current
pandemic caused by Covid-19 in which the elderly are the most
vulnerable population. However, a study in mice showed that the
aging process affects the NALT to a lesser degree than the
gastrointestinal associated lymphatic tissue (72). This suggests
that all of the necessary immunocompetent cells are maintained
in the nasal mucosa to mount an effective immune response.
However, the need still remains to determine an appropriate
adjuvant for mucosal administration (73) of a Covid-19 vaccine
especially one that would avoid a Th17 response that contributes
to the eosinophilic infiltration in the lungs (74).

If seen only from an immunological perspective, the IM
administration of a vaccine is not without its drawbacks (75).
There is a significant concern about the lack of availability of vials,
needles, and syringes to meet the global demand. Then, there is the
need for trained personnel to administer the vaccine intramuscularly
that can result in as many as five needle-stick injuries per 100
injections worldwide (76). Also, there may be poor compliance due
to the anticipated pain at the injection site and concerns about the
arms racementality thatmayhaveflattened the traditional trajectory
required for a safe and effective vaccine. And, lastly, there is a
significant concern for the reuse of needles and syringes in
developing countries that can lead to blood-borne viral infections
and for the proper disposal of this medical waste in these countries.

Regulatory agencies worldwide should require a comparison of
the parenteral administration with mucosal delivery and accelerate
the approval of the appropriate adjuvants, particularly for the aging
population. If successful, mucosal delivery will play a protective role
in preventing the invasion of the virus early in the infectious process
and prevent the viremia to which an IgG response is also generated.
Mucosal delivery also represents a more cost-effective and efficient
means of delivering a vaccine in the time of a pandemic. And
ultimately, there is less likelihood of an immunopathological
immune response known as ADE that is invariably associated
with IgG.
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