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Intracerebral hemorrhage (ICH) is an important subtype of stroke with an unsatisfactory
prognosis of high mortality and disability. Although many pre-clinical studies and clinical
trials have been performed in the past decades, effective therapy that meaningfully
improve prognosis and outcomes of ICH patients is still lacking. An active area of
research is towards alleviating secondary brain injury after ICH through neuroprotective
pharmaceuticals and in which minocycline is a promising candidate. Here, we will first
discuss new insights into the protective mechanisms of minocycline for ICH including
reducing iron-related toxicity, maintenance of blood-brain barrier, and alleviating different
types of cell death from preclinical data, then consider its shortcomings. Finally, we will
review clinical trial perspectives for minocycline in ICH. We hope that this summary and
discussion about updated information on minocycline as a viable treatment for ICH can
facilitate further investigations.
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INTRODUCTION

Intracerebral hemorrhage (ICH) accounts for 12–20% of all types of strokes. It afflicts over 2 million
individuals worldwide annually and is associated with an unacceptably high (50%) mortality and
disability (1–3). Of the survivors, the vast majority (over 70%) are dependent on functioning aids a
year after the event (4). ICH can be induced by several varied causes such as hypertension, cerebral
amyloid angiopathy, trauma, vascular malformations, tumors, pre-mature birth, and drugs (5, 6). A
study of global disease burden showed that the number of ICH cases has increased by 47% in the
past 20 years, mostly afflicting low- and middle-income countries (7). Despite the obvious need to
improve the prognosis of ICH, effective therapies have not emerged. However, there is a strong
appreciation that ICH-induced neuroinflammation helps drive the progression of secondary brain
injury in ICH. Hence, much research has been devoted to discovering efficacious agents to curb the
neuroinflammation that promotes secondary brain injury. One such agent is minocycline.

Minocycline is a second-generation tetracycline derivative with a long history as an antibiotic since its
approval by theFDAina capsule formasminocin (8) in1971. It stands apart fromother tetracyclinesby its
high lipophilicity so that it has good penetration properties into the CNS (9). It protects against iron-
mediatedneurotoxicity in cell culturewhere other tetracyclines are ineffective (10).Minocycline has a long
track record in stroke therapeutics, as the earliest reports over 20 years ago showed that this medication is
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neuroprotective in models of focal and global ischemic stroke (11–
13).Since then,minocyclinehasdemonstratedutility inmanymodels
of neurological diseases (14), and it has efficacy in clinical trials of
patients with early multiple sclerosis (15) and traumatic spinal cord
injury (16).

Minocycline has broad-spectrum mechanisms that suggest its
potential importance in ICH (Figure 1). This review intends to
provide updated information on mechanisms of minocycline
that afford potential utility in ICH. We will first discuss new
insights into the protective mechanisms of minocycline for ICH
including reducing iron-related toxicity, maintenance of
integrity of the blood-brain barrier, and alleviating cell death.
We will then consider its shortcomings. Finally, we will review
clinical trial perspectives for minocycline in ICH.
MECHANISMS OF MINOCYCLINE IN
ALLEVIATING INJURY POST-ICH

Attenuation of Iron-Induced Neurotoxicity
and Ferroptosis
After ICH, erythrocytes in the hematoma are lysed, releasing
hemoglobin and heme into the injury site (17). These are then
Frontiers in Immunology | www.frontiersin.org 2
degraded into biliverdin, carbon monoxide, and iron. The
accumulation of intracerebral iron after ICH begins within 24 h
and peaks at 7 days (18), which can lead up to 3-fold increase of
non-heme iron in the brain of rats; this elevation persists for at
least a month after (19). Ample evidence suggests that iron
overload is a prominent factor in the secondary injury of ICH; it
promotes oxidative injury, brain atrophy, and long-term
neurological deficit (18–23). High level of serum ferritin, an iron
binding protein, is an independent risk factor related to severe
brain edema and unsatisfactory prognosis (24, 25). Iron from
hemoglobulin and heme can also be accumulated in microglia/
macrophage by phagocytosis, resulting in their further activation
and subsequent release of inflammatory mediators as well as free
iron (26, 27). Notably, excessive ferrous iron can trigger Fenton
reaction and the generation of the highly reactive radical, hydroxyl
radical, and give rise to a type of cellular iron-dependent lethal
lipid peroxidation of membrane polyunsaturated fatty acids,
ferroptosis (28). Ferroptosis is a form of non-apoptotic regulated
cell death distinguished from other types of cell death such as
apoptosis, necrosis, pyroptosis, necroptosis, parthanatos,
autophagy, Ca+ influx induced cell death (29, 30).

Neuronal and glial cells can be very sensitive to ferroptosis
and glutamate-induced excitotoxicity after ICH (29, 31, 32),
FIGURE 1 | Preclinical studies have observed that minocycline can function at multiple steps of ICH induced secondary brain injury to produce neuroprotection.
Minocycline inhibits HO-1 activity, chelates iron, alleviates oxidative stress, reduces various types of cell death, preserves BBB integrity, regulates leukocyte function,
and inhibits proinflammatory microglia while promoting its regulatory phenotype.
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they literally work together in different steps of oxidative injury.
The excess extracellular glutamate causes imbalanced gradient
of concentration between different sides of cytomembrane in
the ICH brain, which hampers the function of cystine/
glutamate antiporter system X−

c , leading to scarcity of
intracellular cysteine and decreased synthesis of glutathione,
an important substrate of glutathione peroxidase to generate
antioxidative reaction (33–36). Reduced cleaners (glutathione)
need to cope with increasing burden (Fe2+ induced peroxide),
which leads to devastating membrane peroxidation, or so called
ferroptosis. Minocycline has been observed to alleviate
glutamate-induced excitotoxicity, calcium influx and enhance
cell survival in cultured neurons, but specific mechanism is not
elucidated yet (37).

Things are clearer for iron, data show that applying iron
chelators such as deferoxamine, or using specific inhibitors of
ferroptosis such as ferrostatin-1 and N-acetylcysteine, improve
neuron survival in vitro and vivo, reduce brain injury and
improve rehabilitation of neurological functions in animal
models of ICH (19, 30, 32, 38–40). But such compounds may
have less prospect for clinical translation as they have unclear
capacity to cross the blood-brain barrier and have scarce clinical
safety data compared with minocycline. On the contrary, also as
an iron chelator, minocycline can pass BBB easily and had well
documented safety record (41).

Minocycline’s iron chelator properties (42) might be inferred
from clinical work at the beginning, where the absorption of
minocycline is significantly reduced with simultaneous
administration of iron (43); also, skin hyperpigmentation
occurs in patients taken long-term minocycline which is a
precipitation of minocycline-iron complex (44). Chen-Roetling
et al. firstly reported that minocycline has the capacity to
attenuate iron-induced neurotoxicity in cortical cell cultures
(45). They demonstrate that minocycline has better iron-
chelation ability than deferoxamine under concentrations of
100 mM in vitro (45). Moreover, minocycline reduces lipid
peroxidation as determined by low malondialdehyde (MDA)
level and elevates ferritin level to assist in iron clearance while
deferoxamine cannot (45).

Other research supports the mitigation of lipid peroxidation
by minocycline, such as in rodent models of spinal cord injury
and traumatic brain injury (46, 47). The results show that
minocycline mitigates ferroptosis directly through antioxidative
effects besides iron chelation. Zhao et al. tested minocycline on
iron overload in the autologous blood model of ICH. Their
results show that minocycline reduces serum total iron and brain
non-heme iron as well as levels of ferritin, transferrin, transferrin
receptor, and ceruloplasmin on day 3 and 7 after ICH (48). The
ferritin data seems contradictory to the results in vitromentioned
above. But such divergence may be caused by different testing
timepoints and environments of brain tissue and cell culture.
More importantly, minocycline prevents cell death from ICH
injury on day 3 and 7 post ICH injury, and promotes neuronal
survival and BBB integrity at 24 hours after ferrous iron injection
(48). They also report that minocycline reduces heme oxygenase-
1 (HO-1) expression and alleviates brain edema 3 days after
Frontiers in Immunology | www.frontiersin.org 3
ferrous iron injection (49). HO-1 contributes to the increase of
iron concentration after ICH for it degrades heme into biliverdin,
carbon monoxide, and iron, which may exacerbate brain
injury (50).

But other research proposes that HO-1 can be protective
especially in the long term (51–53). The role of HO-1 in ICH still
remains to be resolved, but inhibitors of HO-1 in the acute phase
should be beneficial from the results we can gather (50, 53).
Using magnetic resonance imaging (MRI), specifically T2-
weighted, T2* gradient-echo combined with R2* mapping in
ICH rats, Cao et al. quantified iron deposition and found that
minocycline reduced ICH induced iron overload as well as
decreased lesion volume and improved neurological functions
in 18 month-old aged rats at 7 and 28 days post injury (54–56).
But such a technique has restrictions on determining iron
content at certain phases of ICH (57). Recently, Yang et al.
used quantitative susceptibility mapping (QSM) of MRI
combined with diffusion tensor imaging (DTI) and concluded
that minocycline reduced iron overload and white matter injury
on day 28 in a minipig ICHmodel, correspondent with decreased
brain edema, prevention of ventricle enlargement and improved
functional prognosis (58).

Overall, minocycline alleviates iron-related brain injury
through iron chelation, ferroptosis antagonism and HO-1
inhibition in different ICH models including that caused by
direct iron injection (Figure 2).
Stabilization of Blood-Brain Barrier
The blood-brain barrier composed of capillary endothelial
cells, capillary basement membrane, pericyte, and astrocyte
end-feet is a highly selective semipermeable structure that
maintains homeostasis and normal brain function (59, 60).
This crucial structure is disrupted severely after ICH through
multiple mechanisms of secondary injury. Following
collagenase induced ICH of rats, BBB breakdown happens
rapidly in 30 minutes and this status of hyperpermeability
remains 5 hours to a lower but still disrupted level at 7 days
(61). As for the autologous blood ICH model in rats, there is
no BBB disruption detected in the first 4 hours while
progressive damage shows up from 12 to 48 hours (62). In
pigs, BBB disruption is also not observed in the early phase
(1 to 8 hours after autologous injection) but evident by 24
hours (63–65). In ICH patients, data shows that some of them
suffer continuous extravasation of contrast agents during the
first 24 hours after onset (66, 67); there is also delayed
exudation which may share the same condition of BBB
disruption as animal models (68, 69). Such results indicate
that BBB disruption could be a major cause of brain edema
and hematoma expansion which can lead to the devastating
consequence of midline shift and hernia. The disruption of
BBB also leads to more leukocyte infiltration which
exacerbates inflammation and brain injury undoubtedly.

Minocycline can attenuate ICH induced secondary BBB
disruption through different pathways. Firstly, the matrix
metalloproteinase (MMP) family including MMP-2, -3, -7, -9,
March 2022 | Volume 13 | Article 844163
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and especially MMP-12 significantly increase after collagenase
induced ICH which leads to the degradation of the extracellular
matrix and capillary endothelial basal membrane of BBB (70–
73). Xue et al. showed that increased gelatinolytic activity (likely
of matrix metalloproteinase-2 and -9) was observed after 6 and
24 hours in the autologous blood-induced ICH mice associated
with disruption of BBB (74). MMPs may also directly destroy the
proteins of endothelial tight junction such as claudin-5 and
occludin according to research in other neurological conditions
(75, 76).

Several studies demonstrate that MMP-9 level is related to
hematoma expansion, perihematomal edema, and neurological
deterioration (77) and the association has been found that
increased plasma MMP-3 and MMP-9 levels may be responsible
for worse outcome and prognosis (78). Wasserman et al. reported
that intraperitoneal injection of minocycline with a dosage of 45
mg/kg at 6 hours, 1 and 2 days after collagenase induced ICH in
rats dramatically decreased the expression of MMP-12, TNF-a,
and neutrophil infiltration as well as reduced BBB permeability on
day 3 after modeling (79). Other scholars also suggest that
minocycline has the ability to reduce MMP-2 and -9 (80, 81).
An upstream activator of MMPs, named extracellular matrix
metalloproteinase inducer (EMMPRIN), minocycline suppressed
its function in the early phase of collagenase injection, which
might be responsible for the downstream reduction in levels of
MMPs and maintenance of blood brain barrier obtained with
minocycline treatment (82). Such an inhibitory effect of
minocycline may also contribute to prevent demyelination,
decrease MMP-activated inflammation, and reduce cell death
related molecules apart from the drug maintaining BBB integrity
and reducing leukocyte infiltration (71).

Vascular endothelial growth factor (VEGF) increases sharply in
many ICH models at the acute phase which can result in BBB
Frontiers in Immunology | www.frontiersin.org 4
destruction (83–85). Although VEGF may be beneficial in the
recovery phase, the rapid upregulation of VEGF can be associated
with brain injury and elevated MMPs levels in several hemorrhagic
diseases (86–89). VEGF can even induce bleeding and hemoglobin
extravasation in some animal models (90, 91). Lee et al. discovered
that minocycline can mitigate VEGF transfection induced ICH
through downregulation of MMP-9 expression in mice 48 hours
after adenovirus injection (91); while Shi et al. demonstrated
minocycline to reduce VEGF expression, preserve BBB integrity,
and increase nerve growth factor (NGF) and heat shock protein
(HSP) 70-positive cells from day 1 to day 14 in rat collagenase
model (85). At almost the same time, Wu et al. reported that brain
edema is reduced by minocycline at day 3 in autologous blood
induced ICH model, and improved functional recovery was
observed from day 1 to day 28 (92). Recently, Wang et al.
reported that BBB disruption peaked at day 3 after collagenase
induced ICH and such pathology was alleviated by minocycline
administration, synchronized with decreased neurological deficits in
behavioral tests (93). Moreover, their results also indicate that BBB
protective character of minocycline was partly attributed to
increasing occludin level and inhibiting TNF, IL-6, and MMP-9
production through DKK1-Wnt1/b-catenin signaling pathway (93).

To sum up, minocycline is an effective compound to reduce ICH
mediated BBB disruption. The therapeutic outcome of minocycline
is reduced brain edema, lower hematoma enlargement, and
decreased brain atrophy. There is improved functional
rehabilitation through multiple and integrated mechanisms.

Attenuation of Apoptosis, Autophagy
and Pyroptosis
Apoptosis contributes to various diseases in the nervous system
and has been studied for many years. The classical process of
apoptosis can be summarized into two inter-related pathways,
FIGURE 2 | The neuroprotective effects of minocycline in experimental ICH could be attributed to multiple divergent mechanisms.
March 2022 | Volume 13 | Article 844163
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extrinsic and intrinsic. The extrinsic apoptotic way begins with
the combination of specific immune mediators such as tumor
necrosis factor (TNF), FasL, tumor necrosis factor related
apoptosis-induced ligand (TRAIL), and different death
receptors on the cytomembrane; these lead to the formation of
death-inducing signaling complex (DISC) that activates caspase-
8 and finally caspase-3, the executioner of apoptosis (94–97).
Such apoptosis-related immune mediators can be secreted in
large amounts in the condition of ICH. In addition, oxidative
stress damage of DNA, mitochondrial membrane and protein,
mediated by free radicals generated during ICH, ignites intrinsic
apoptotic pathways. The change of mitochondrial membrane
leads to translocation of a series of apoptotic factors including
cytochrome C, SMAC/DIABLO (Second Mitochondria-derived
Activator of Caspases/Direct IAP-Binding protein with Low PI)
and others from mitochondria to the cytoplasm which then
activate caspase-9 and -3 successively (98, 99). Moreover, the
caspase-8 produced in the extrinsic way and calcium overload in
ICH can also initiate the intrinsic pathway by cleaving Bid into
tBid and activate caspase-12, respectively (100–103). Apoptotic
cells after autologous induced ICH are numerous as detected by
TUNEL (104, 105). Felberg et al. also provided evidence for
apoptosis by visualizing cytochrome c leakage within neurons
after ICH in rats (106).

Minocycline can alleviate apoptotic cell death after ICH
through both the extrinsic and intrinsic pathways. Minocycline
inhibits caspase-3 directly (107, 108). Minocycline also maintains
the proper permeability of mitochondrial membranes and limits
the release of cytochrome C, apoptosis-inducing factor (AIF),
and SMAC/DIABLO that contribute to apoptosis (107, 109, 110).
Minocycline elevates Bcl-2 which is a protective anti-apoptotic
molecule; the inhibition of Bcl-2 expression impairs such
protection of minocycline (111).

Evidence also supports that as a calcium chelator,
minocycline suppresses calcium-dependent apoptosis through
the calpain-caspase -12 pathway (112, 113). Moreover, due to the
ability to inhibit microglia/macrophage activation and reducing
leukocyte infiltration by preserve BBB stability as mentioned
above, minocycline can mitigate apoptosis by reducing TNF and
other apoptosis-related cytokines from the source. Wu et al.
found that minocycline inhibits apoptosis in the autologous
blood ICH model in rats by observing decreased levels of
caspase-3 and -8 as well as reduced TUNEL positive cell
counts on day 1, 3 and 7 (114). As for the collagenase model,
there were fewer Fluoro-Jade C and TUNEL positive cells on day
3 after minocycline treatment comparing to controls, indicating
ameliorated apoptosis and neurodegeneration (115).

Autophagy is a process where a cell degrades its proteins or
deficient organelles in the autophagic vacuole of its cytoplasm
(116, 117). Such a process preserves cellular functions in normal
physiological conditions. But excessive autophagy can also
contribute to cell death. In the process of ICH, autophagy can
be induced by several ways including oxidative stress,
inflammation, and accumulation of free iron (118). He et al. first
discovered the existence of autophagy after ICH by observing
dramatically increased cathepsin D and microtubule-associated
Frontiers in Immunology | www.frontiersin.org 5
protein light chain 3 (LC3) II/I ratio, which are considered as
biomarkers of autophagy (119–122). Moreover, they discovered
autophagic vacuoles containing parts of membrane and
cytoplasm, which provided visual evidence directly of autophagy
in ICH (119, 123). It is plausible that minocycline has the
capability of inhibiting ICH-induced autophagy by its ability to
reduce free radicals and inflammation, and by iron chelation. Wu
et al. demonstrated that minocycline reduces Beclin-1 and LC3B
II/I ratio on 1 day post injury thereby mitigating autophagy in a rat
model of autologous blood induced ICH. But in their results,
Cathepsin D level does not differ between treatment and control
(114). In some other pathological conditions, minocycline shows
the potential of facilitating autophagy which could be beneficial
(124–127). Thus, more study is essential for exploring the specific
relationship and mechanism between minocycline and post-
ICH autophagy.

Pyroptosis, another form of caspase-1 dependent programmed
cell death proposed recently, is involved in the pathology of
secondary brain injury after ICH. Pyroptosis ignites when
pathogen-associated molecular pattern (PAMPs) or danger-
associated molecular pattern (DAMP) bond with nucleotide-
binding oligomerization domain-like receptors (NLRs) (128, 129).
Such a combination happens in the condition of cellular damage or
infection, which initiates the generation of NLR-based multiprotein
complex, as known as the inflammasome. NLR pyrin domain
containing 3 (NLRP3) is the most typical inflammasome studied
in various neurodegenerative conditions (130–134). In such
pathological environments, NLRP3 is observed initially to
accumulate in microglia and may contribute to microglial
activation, leading to expression of caspase-1 and downstream
activation of interleukin (IL) -1b and 18 (135, 136). These
cytokines can result in cellular pore formation, osmotic welling,
loss of membrane integrity, which in turn give rise to the release of
cell lysis and pro-inflammatory molecules into the extracellular
matrix; this exacerbates inflammation and injury (137, 138). Wu
et al. relate pyroptosis in post-ICH brain injury through reduced
IL-1b, MMP-9 levels, and improved BBB integrity and neurological
functions by inhibiting caspase-1 in ICH model (139). Feng et al.
demonstrated that the collagenase-induced ICH model has
significantly more caspase-1 production compared to the sham
group as well as elevated NLRP3 levels (140). Ma et al. also
published similar results and additionally that inhibition of
NLRP3 expression reduced caspase-1 and IL-1b production (141).

The NLR activation and inflammasome formation in ICH are
considered stimulated by oxidative free radicals and erythrocyte
lysis products including hemoglobin and hemin (142–145).
Moreover, the production of NLRP3 may also involve N-
methyl-D-aspartic acid receptor 1 (NMDAR1) activation by
hemin (146). Thus, pyroptosis contributes to post-ICH brain
injury in animal models. In recent, researchers reported that
minocycline attenuates pyroptosis in monosodium glutamate-
induced depressive rats by detecting decreased caspase-1, NLRP3
inflammasome, IL-1b, and IL-18 levels in minocycline-
administrated animals (147). More in-depth research is needed
on the effects of minocycline in the process of pyroptosis
after ICH.
March 2022 | Volume 13 | Article 844163
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Inhibition of Microglial Activation
Microglia constitute 5–10% of the cellular population within the
normal brain, and they are the first and main line of defense to
pathological conditions of the central nervous system (148). In
response to threat signals, microglia can change morphologically
and functionally, and migrate towards the lesion field. Unless
specifically differentiated by lineage markers, microglia cannot be
distinguished with monocyte-derived macrophages infiltrated
into the injured brain parenchyma (149). Hence, they are also
referred to as microglia/macrophages (M/M). The activation of
M/M plays a very crucial role in post-ICH secondary brain
injury, which is also known as a double-edged sword. M/M
activation contributes to the scavenging of hematoma and
cellular debris in the subacute phase; homoeostatic/regulatory
(M2-like) M/M activity also promotes neurogenesis,
remyelination and angiogenesis in the chronic phase (150–
152). On the contrary, the activation of pro-inflammatory
(M1-like) M/M phenotype triggered by ICH-primary injury
dominates in the early acute phase, which can lead to the
release of a series of inflammatory cytokines, chemokines,
MMPs, free radicals, and other molecules that exacerbate
neuroinflammation and enhance secondary brain injury
(153–155).

Minocycline is considered as a typically microglial activation
inhibitor as first reported by Yrjanheikki and colleagues in a
forebrain ischemia model in gerbils (11). The direct inhibition of
microglial activation by minocycline was later shown in tissue
culture (156, 157). Moreover, Kobayashi et al. reported that
minocycline did not restrain regulatory microglia while it
inhibited the pro-inflammatory phenotype (158). The
microglial inhibition by minocycline ameliorates M/M
activation related brain injury, and improves functional
outcome through divergent pathways, which has been
substantiated by many pre-clinical studies in different ICH
animal models (48, 70, 93, 159, 160).

Other Mechanisms of Minocycline Related
to Post-ICH Neuroprotection
Poly (ADP-ribose) polymerase-1 (PARP-1) activation promotes
DNA repair under normal cellular homeostasis. However,
overwhelming activation of PARP-1 in the condition of
oxidative stress leads to cell death and inflammation. PARP-1
expression is also the requirement of parthanatos, a newly
defined type of cell death. Although there is scarce information
on parthanatos in ICH, the expression of PARP-1 is associated
with ICH (161, 162). Minocycline directly inhibits PARP-1 and
confers beneficial effects apart from anti-oxidation in animal
models of other diseases (163–167). The same mechanism may
apply to ICH-induced secondary brain injury and more
exploration is needed.

Besides inhibiting MMPs and maintain BBB integrity to
reduce leukocyte infiltration, minocycline may affect leukocytes
directly. Parenti et al. reported that minocycline inhibited
respiratory burst and transendothelial migration of isolated
human polymorphonuclear cells (168). Kloppenburg et al.
reported that minocycline inhibited proliferation and reduced
Frontiers in Immunology | www.frontiersin.org 6
production of pro-inflammatory cytokines including IL-2,
interferon (IFN) -g and TNF-a from T cells of patients with
rheumatoid arthritis (RA) (169).

Moreover, minocycline was observed to alleviate white matter
injury and improve neurological deficits after autologous blood
or iron intra-caudate injection on day 7 (170). Yang et al.
confirmed the effect of minocycline on mitigating post-ICH
white matter injury through elevated myelin basic protein
(MBP) levels on day 14 as well as reduced IL-1b, induced
nitric oxide synthase (iNOS) and TNF-a production on day 3
in blood induced piglet ICH; these researchers also implicated
the minocycline related protection of white matter could be
attributed to transforming growth factor‐b (TGF‐b)/mitogen‐
activated protein kinase (MAPK) signaling pathway (160).
Previous studies have also reported the MAPK inhibition by
minocycline (156, 171).

Hsp70s act as cellular sentinel chaperones, protecting cells
from multiple deleterious proteotoxic stresses; while NGF, one of
the first growth factors isolated, involves the neuronal
proliferation, maintenance and survival (172, 173).
Minocycline has been found to increase the number of cells
expressing NGF and HSP70 7 days after collagenase induced
ICH, which might contribute to neuroprotection and tissue
regeneration (174). More importantly, minocycline may
potentiate neurogenesis after ICH since increased DCX
(marker of neuronal precursor cells) and Tuj-1 (marker of
neural stem cells and mature neurons) positive cells were
observed in treatment group 24 hours after autologous blood
injection (175).

As for immunomodulation, minocycline is well documented
as a microglial activation inhibitor that reduces the generation of
pro-inflammatory microglia. However, a recent study showed
that minocycline can even promote the polarization of regulatory
microglia on 3 days post injury as well as the generation of brain-
derived neurotrophic factors (BDNF) and neuronal progenitor
cells via TrkB/BDNF pathway in the rat ICH model of
autologous blood injection (176).
LIMITATIONS OF MINOCYCLINE

The neuroprotective effects of minocycline are mainly attributed
to its property of anti-inflammation and reducing inflammation-
related brain injury as described above. Inflammation is involved
in promoting various neurological pathology. However, recent
studies indicate that neuroinflammation can also be beneficial
especially in the phase of recovery through promoting
remyelination, axonal generation, neurogenesis, and
angiogenesis, which are all essential for neurofunctional
rehabilitation in later phase of ICH (177). For instance,
antagonizing toll-like receptor 4 (TLR-4), an inflammation
associated pattern recognition receptor, results in reduced
neurogenesis, angiogenesis, and functional recovery in a rat
model of ICH by 14 days (178). In addition, the microglial
phagocytosis is crucial for the clearance of hematoma, myeline
and cellular debris in order to ignite repair process in later phase
March 2022 | Volume 13 | Article 844163
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of ICH (175, 179). But the microglia inhibition including some
phagocytotic phenotypes by minocycline may barricade recovery
when treated too long (180, 181). Hence, long-term
administration of minocycline after ICH may inhibit the
benefits of inflammation.

In many ICH-related preclinical studies that demonstrated
the effectiveness of minocycline treatment, the first
administration is very early, within 2 hours or simultaneously
with the injury (48, 54, 58, 92, 170). Minocycline showed no
effects on reducing lesion volume, neural death, neurological
deficits when the first dose was given 3 hours after onset in the
collagenase-induced ICH model in rats, although minocycline
was found to still reduce microglial activation, neutrophil
infiltration, MMP-12, and TNF-a levels (182–184). The crucial
time period of initiating minocycline would need more
investigation as this is important for the practicability of
clinical translation. On the other hand, animals have a much
higher metabolic rate (half life of drugs tend to be shorter than in
humans) and ICH models cannot replicate all features of human
ICH, or the integrated therapies received by patients. More
clinical trials are necessary to determine the real therapeutic
promise of minocycline.
CLINICAL TRIALS AND THE FUTURE

Thefirst clinical trial related tominocyclineandICHblendedpatients
with acute ischemia stroke (AIS) and ICH. Only 11 actual ICH
patients were included, with 100 mg intravenous administration of
minocyclinewithin 24hours of stroke onset, whichwas continued 12
hourly for a total of 5doses; the regimen seems safebutnot efficacious
from this pilot study of small sample (185).

Fouda et al. performed the well-known MACH (Minocycline
in Acute Cerebral Hemorrhage) trial which included 16
consecutive eligible patients. Eight of the patients received
400mg of intravenous minocycline within 24 hours after onset,
followed by 400 mg oral daily for 4 days. Pharmacokinetic data
found that such a dose regimen produced a concentration
suitable for neuroprotection demonstrated in a previous study
in AIS rats (186). However, the MACH trial did not find any
difference in 90-days modified Rankin Scale (mRS), MMP-9, IL-
6, iron, ferritin, total iron-binding capacity, lesion volume, and
perihematomal edema (187, 188).

Chang et al. also presented their results of a pilot study of 20
ICH patients in total. Ten randomly selected patients were
treated with a relatively high dose (10 mg/kg) of intravenous
minocycline within 12h from onset of symptoms and daily for
the next 5 days. There were no differences in clinical and
radiological outcomes, but serum MMP-9 levels seem to be
reduced by minocycline administration (189).

All three above studies demonstrated the safety of minocycline
in treating ICH, but no effectiveness was elucidated. Malhotra et al.
conducted a meta-analysis of randomized clinical trials on
minocycline treatment for acute stroke. In the subgroup analysis,
treatment for AIS displayed much more positive results than
ICH (190).
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Altogether, whether minocycline should be pursued further in
ICH is unresolved, as the sample size of all three trials is small and
not enough to be representative. Moreover, patients may get better
outcomes if they received minocycline earlier, within 3 hours of
onset from pre-clinical data mentioned above, and with more
frequent administration of a higher dose (191). The experience in
clinical trial of spinal cord injury can be used for reference: a dosing
of 800 mg intravenous minocycline was given within 12 h of injury,
subsequent doses were gradually lowered down by 100 mg every 12
h until 400 mg and then the dosage is maintained for 7 days in total;
CSF concentrations were kept between 2–3 mg/mL in this case,
which are neuroprotective concentrations tested in vitro (14, 16).
The functional recovery was improved in patients received
minocycline over 1 year of follow-up comparing to placebo, and
the dose regimen was well tolerated (16). In addition, it is worth
noting that all the patients included in previous clinical trials did not
receive any form of hematoma evacuation surgery or had bleeding
volume under 30 ml, which is not the indication of traditional
hematoma removal surgery. Thus, the combination of surgical
process with concurrent minocycline may show some benefits in
coming clinical trials. Luo et al. provided pre-clinical proof for
probability of such combined treatment in the rat model of
autologous blood injection induced ICH. They began to remove
the hematoma 4 hours after onset by aspiration surgery and then
injected within 5 hours minocycline-loaded human hair keratose
hydrogel into the center of lesion. The gel was a newly synthesized
material that released minocycline slowly and also absorbed iron.
The minocycline load was at the microgram level to reduce the
possibility of adverse reactions and its combination with hematoma
evacuation produced the best outcome in reducing brain damage
and improving neurological functions across the groups
tested (192).
CONCLUSION

Although an old drug, minocycline continues to be promising for
ICH. Studies in preclinical models affirm its capacity to reduce
ICH neuropathology. This is attributed to its mechanisms that
counter the injurious events of ICH as detailed above, and to its
rapid initiation of treatment after ICH in models. We contend
that a large scale clinical trial of minocycline in ICH, using high
concentration and rapid initiation of treatment, and combined
with hematoma extraction, is still promising for the unmet need
of recovery from disastrous ICH.
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