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Abstract

A fundamental and recurrent question in systems neuroscience is that of assessing what

variables are encoded by a given population of neurons. Such assessments are often chal-

lenging because neurons in one brain area may encode multiple variables, and because

neuronal representations might be categorical or non-categorical. These issues are particu-

larly pertinent to the representation of decision variables in the orbitofrontal cortex (OFC)–

an area implicated in economic choices. Here we present a new algorithm to assess

whether a neuronal representation is categorical or non-categorical, and to identify the

encoded variables if the representation is indeed categorical. The algorithm is based on two

clustering procedures, one variable-independent and the other variable-based. The two par-

titions are then compared through adjusted mutual information. The present algorithm over-

comes limitations of previous approaches and is widely applicable. We tested the algorithm

on synthetic data and then used it to examine neuronal data recorded in the primate OFC

during economic decisions. Confirming previous assessments, we found the neuronal

representation in OFC to be categorical in nature. We also found that neurons in this area

encode the value of individual offers, the binary choice outcome and the chosen value. In

other words, during economic choice, neurons in the primate OFC encode decision vari-

ables in a categorical way.

Author summary

Mental functions such as sensory perception or decision making ultimately rely on the

activity of neuronal populations in different brain regions. Much research in neuroscience

is devoted to understanding how different groups of neurons support specific brain func-

tions by representing behaviorally relevant variables. In this respect, one important ques-

tion is whether neuronal populations represent discrete sets of variables (categorical

encoding) or random combinations of variables (non-categorical encoding). Here we

developed a new algorithm to assess this general issue. We then used the algorithm to

examine neurons in the orbitofrontal cortex (OFC) recorded while non-human primates

performed economic decisions. We found that the neuronal representation was categori-

cal. Specifically, neurons in the OFC encoded the value of individual offers, the binary
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choice outcome, and the chosen value. The present results support the hypothesis that

economic decisions are formed within the OFC.

Introduction

A recurrent question in systems neuroscience is that of understanding what variables are

encoded by a given population of neurons. Addressing this issue is a prerequisite to under-

stand what role neurons play in functions such as sensation or decision making. In a typical

experiment, animal subjects perform some task, behavioral conditions vary along one or more

dimensions, and the corresponding parameter(s) define variables potentially encoded by neu-

rons in some brain area. In first approximation, if firing rates vary systematically with a vari-

able, it can be said that neurons encode or represent that variable. Building on this concept,

countless studies shed light on the neural substrates of sensory, associative and motor pro-

cesses. Importantly, identifying the variables encoded by a given population can sometimes be

challenging due to the trial-by-trial variability of neuronal firing rates combined with three

other factors. First, different neurons, even in close proximity to one another, may encode dif-

ferent variables, and the number of variables encoded by a neuronal population is generally

not known. This situation may arise in any brain area but is most typical for prefrontal regions.

Second, different candidate variables potentially encoded by the neuronal population may be

substantially correlated with one another. Third, the encoding of different variables may be

categorical or non-categorical. In a categorical representation, neurons in a population encode

a discrete set of variables. Conversely, neurons in a category-free representation encode a con-

tinuum of variables [1–3]. Of course, the encoding scheme adopted by any particular popula-

tion is not known a priori.

All these issues are particularly pertinent to the representation of decision variables in the

orbitofrontal cortex (OFC)–an area implicated in economic (or value-based) decisions [4, 5].

In recent years, numerous studies have shown compelling evidence for mixed selectivity and

category-free encoding in lateral prefrontal regions [6–10], suggesting that these traits are the

hallmark of neural systems supporting complex cognitive functions [3, 11]. At the same time,

several studies argued for categorical encoding of decision variables in the OFC. Concurrent

results in this sense came from studies of economic decisions in non-human primates [12, 13]

and from studies of decision confidence in rodents [14]. In contrast with these observations, a

recent study argued for non-categorical encoding of decision variables in the primate OFC

[15] (more on this below). Importantly, the categorical nature of this representation is a key

assumption underlying current neuro-computational models of economic decisions [16–23].

Given the importance of this matter, we set up to revisit the question of categorical versus cate-

gory-free encoding in the OFC using a new and more powerful statistical approach. Our goal

was to develop a set of procedures (or algorithm) with four objectives in mind. First, the algo-

rithm should assess the categorical versus category-free nature of a neuronal representation

without committing to any particular set of variables. Second, if the encoding was indeed cate-

gorical, the algorithm should facilitate a quantitative comparison of multiple candidate vari-

ables potentially represented by the neuronal population. Third, the algorithm should operate

seamlessly in cases where different variables encoded in the neuronal population are corre-

lated. Fourth, the algorithm should be amenable to general use, for any neuronal population

and any behavioral task.

To achieve our stated objectives, we considered the high-dimensional space defined by all

the behavioral conditions occurring in the task (referred to as "trial types"). We noted that
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each neuronal response corresponds to one point in this space. Furthermore, after normaliza-

tion, each response corresponds to one point on the hyper-spherical surface of unitary radius.

Cast in this terms, the problem of assessing whether a neuronal representation is categorical in

nature maps onto a clustering problem defined on a high-dimensional hyper-spherical surface,

which we resolve using a spherical k-means approach [24]. In our algorithm, the categorical or

non-categorical nature of the representation is assessed before defining any behavioral vari-

able. The spherical k-means returns a number of clusters and their locations in the space of

possible responses (i.e., the hyper-spherical surface). Furthermore, any variable possibly

encoded in the neuronal population (i.e., any quantity systematically varied across behavioral

conditions) also corresponds to a point on the hyper-spherical surface. Casting a wide net, we

can generate a large number of variables potentially encoded by the neuronal population and

thus identify the subset of variables that minimizes the total distance from the clusters. Impor-

tantly, these procedures are completely general and do not depend on the specifics of the

behavioral task, except for the definition of candidate variables potentially encoded by the neu-

ronal population.

The Results are organized as follows. The first section describes the juice choice experi-

ments conducted in monkeys, the neuronal data set collected in OFC, and previous analyses of

these data. The second section introduces the new algorithm. The third section demonstrates

how the criteria previously used to assess the categorical nature of the neuronal representation

in OFC [12] can, in some cases, lead to erroneous conclusions. The fourth section describes

the results obtained by testing the new algorithm on a set of synthetic data. In the following

section, we describe the results obtained by analyzing the actual OFC data with the new proce-

dures [25]. In a nutshell, the results corroborate previous findings [13]. In the Discussion, we

compare the present algorithm to other approaches proposed in the literature. We also empha-

size that procedures presented here provide a general and powerful method to analyze hetero-

geneous populations of neurons.

Results

Data set and previous analysis

In the experiments, two rhesus monkeys performed an economic choice task [13, 25]. In each

session, the animal chose between two juices offered in variable amounts. The preferred and

non-preferred juices were labeled juice A and juice B, respectively. A "trial type" was defined

by two offers and a choice (e.g., [1A:3B, B]). The number of trial types varied from session to

session (because we varied offer types and because of variability in choices), and each session

typically included 5–20 trials per trial type. Our data set included 1008 neurons. Neuronal

spiking activity was recorded and processed with standard techniques (see Methods). For the

analysis of how firing rates depended on the task variables, we defined several time windows

aligned with respect to different behavioral events. For each trial type and each time window,

firing rates were averaged across trials. A "neuronal response" was defined as the activity of

one cell in one time window as a function of the trial type.

Our previous analyses proceeded as follows [13, 25]. First, each neuronal response was

tested with an ANOVA (factor trial type). Responses that passed a statistical criterion

(p<0.001) were considered task-related and analyzed further. Our data set included 2047 task-

related responses. Second, we defined a large number of variables potentially encoded by this

population. We performed a linear regression of each response on each variable, from which

we obtained the regression slope and the R2. If the regression slope was significantly different

from zero (p<0.05), the variable was said to "explain" the response. Third, two procedures–

stepwise and best subset–were used to identify a small set of variables that best explained the

Categorical encoding of decision variables in orbitofrontal cortex
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neuronal population. In a first study [13], both procedures identified variables offer value A,

offer value B, chosen value and chosen juice. This result was replicated several times, including

in the data set examined here [25] (Fig 1). Finally, each neuronal response was assigned to the

selected variable that provided the highest R2. Two additional analyses were conducted to

address the issue of categorical versus non-categorical encoding. First, for each neuronal

response it was assessed whether adding a second variable to the regression (through a bi-lin-

ear regression) would significantly improve the fit. This analysis found that this was the case

for only a small fraction of responses [13]. A second analysis quantified for each neuronal

response and for each pair of selected variables the difference in the corresponding R2 (ΔR2),

and examined the distributions of ΔR2 across the neuronal population. In general, these distri-

butions presented a significant dip close to zero, indicating that variables were encoded in a

categorical way [12].

The approach for data analysis summarized above has the advantage that it allows to exam-

ine a large number of variables in parallel without biasing the conclusions, and that it with-

stands situations in which candidate variables are highly correlated with one another [13]. At

the same time, this approach presents two limitations. First, the analyses require to first define

candidate variables, then identify the most explanatory ones, and finally assess whether the

encoding is categorical. In contrast, it would be preferable to assess whether the encoding is

categorical without committing to any particular variable or set of variables, and only later

define variables that best capture each category of responses. Second, there are situations in

which the argument for categorical encoding based on the distribution of ΔR2 is not valid

(more on this below). The algorithm presented in this study addresses these limitations.

Detection of categorical encoding using spherical clustering

The algorithm used to assess categorical encoding was applied to task-related responses (i.e.,

responses that passed the ANOVA criterion; see above). To detect categorical encoding, we

devised an algorithm that combines a clustering procedure partitioning neural responses

based only on their spatial configuration with one that starts from a particular set of variables.

In essence, the idea is to select a set of variables that best represents the spatial configuration of

neural responses in the high-dimensional space of trial types.

Fig 2 illustrates the algorithm for a 3-dimensional space (i.e., 3 trial types). Each data point

represents a neuronal response (i.e., the activity of one cell, in one time window, averaged

across trials for each trial type). Neuronal responses are first centered and normalized. This

transformation places neuronal responses on a spherical surface of unitary radius. This data

set undergoes two separate procedures for spherical clustering. First, data are examined with

spherical k-means procedure, which does not assume any particular variable and yields a parti-

tion of the neural activity points based solely on the configuration of points in the high-dimen-

sional space of trial types. For any number of clusters, this procedure alone reveals the

categorical or non-categorical nature of the neuronal representation. Second, we perform a

variable-centroid clustering, which starts from a particular subset of variables (iteratively cho-

sen from a large set of candidate variables; see Table 1). Notably, each variable corresponds to

a point on the spherical surface. Thus the subset of variables defines a corresponding number

of cluster centroids, and we assign each neural response to the closest centroid. Each of these

two clustering procedures (spherical k-means and variable centroid clustering) returns a parti-

tion of the population of neural responses. Importantly, the number of clusters is not known a

priori. Furthermore, for any such number, there are many possible subsets of variables. We

thus want to identify the subset of variables that best describes the neuronal data. As a measure

of similarity between the two partitions, we use the adjusted mutual information [26]. Thus,

Categorical encoding of decision variables in orbitofrontal cortex
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we repeat the spherical k-means and the variable centroid clustering procedures for various

number clusters and subset of variables. The variables that best match the non-committed

spherical k-means partition are identified as encoded by the neuronal population.

Limits of previous approaches

In previous work, the categorical nature of the neuronal representation in OFC was assessed

through the analysis of the distribution of ΔR2 [12]. As explained above in Section “Data set

and previous analysis”, ΔR2 quantifies the difference between the R2 values obtained from the

linear regressions onto a pair of selected variables. Intuitively, clusters of neural responses

around variables should be discernible as peaks in the distribution of ΔR2 values across the

neuronal population. A dip in this distribution was thus interpreted as evidence for categorical

encoding whereas a distributions without a dip was interpreted as evidence against categorical

encoding [12]. We will now demonstrate that this criterion can sometimes lead to erroneous

conclusions. To do so, we construct two synthetic data sets and we show that the ΔR2 analysis

fails while the spherical k-means algorithm reveals the true nature of the data. Again, each

Fig 1. Task design and cell types. (A) Task design. In the experiments, monkeys chose between different juices offered in variable

amounts. The two juices were labeled A and B, with A preferred. Offers were presented as visual stimuli on a computer monitor.

Different juice types were associated with different colors, and the number of squares represented the juice quantity. After a randomly

variable delay, the animal indicated its choice with an eye movement. (B) Example offer value A response. In this panel, the x-axis

represents different offer types ranked by the ratio qB/qA, where qJ is the quantity of juice J offered. For each offer type, a black dot

indicates the percent of trials in which the animal chose juice B (y-axis on the right). The relative value of the two juices (ρ) was

obtained from a logistic fit. For this session, we measured ρ = 1.9. Red symbols illustrate one neuronal response. Diamonds and circle

refer to trials in which the animal chose juice A and juice B, respectively. Vertical error bars indicate SEM. The activity of this cell

increased almost linearly with the quantity of juice A offered, and did not depend on the quantity of juice B offered. (C) Example offer

value B response. In this case, the response increased with the quantity of juice B offered, independently of juice A. (D) Example chosen

juice B response. This response was nearly binary–high when the animal chose juice B and low when the animal chose juice A,

independently of the quantity. (E) Example chosen value response. This response increased with the value of the chosen option,

independently of the chosen juice. For chosen juice response, negative encoding for one juice is indistinguishable from positive

encoding of the other juice (with this task design). Conventions in panels (C)-(E) are as in panel (B).

https://doi.org/10.1371/journal.pcbi.1006667.g001

Fig 2. Illustration of the procedure for category discovery. For the original rates (left), each axis of the space denotes the firing rate of the cells in the various trial

types. Each data point in this space represents a cell. For illustration, we present only 3 of the 9 dimensions. The original rates are then centered and normalized to unit

length. The normalization effectively moves the points to the surface of a hyper-sphere. The points are then clustered using spherical k-means for a given number of

clusters and centroid clustering for given variables. In the illustration, variables are represented as larger points. The resulting partitions are compared using the

adjusted mutual information measure as a function of the number of clusters and number of variables (right).

https://doi.org/10.1371/journal.pcbi.1006667.g002
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neural response is a point on the hyper-spherical surface of a high-dimensional space defined

by the trial types, and variables correspond to points on this surface.

To simulate different neuronal populations, we generated distributions of points on the

hyper-spherical surface.

Fig 3A illustrates the first example. Here data points form two clusters: a circular cluster

close to the spherical pole and a banana-like cluster along the equator. Importantly, the distri-

bution used to generate the banana cluster was uniform on a banana domain (no intrinsic

dip). We now examine the situation in which the analyst identified the wrong variables, shown

as large circles in Fig 3A. We assume that the analyst correctly identified the pole variable, but

erroneously selected two variables located at the opposite tips of the banana cluster. As illus-

trated in Fig 3B, the distribution of ΔR2 between the two banana variables has a significant dip

around zero (Hartigan’s dip test, p<0.001) suggesting that the two variables are categorically

distinct. However, this suggestion is at odds with the ground truth. The dip in the distribution

of ΔR2 is due to the presence of the third cluster, because some of the data points in the banana

are closer to the pole variable than to either of the banana variables. Hence, a dip in the distri-

bution of ΔR2 does not necessarily imply that the corresponding variables are encoded by cate-

gorically distinct groups of neurons. Importantly, the spherical k-means clustering correctly

identifies the presence of two clusters (colors illustrate the k-means partitioning).

The second example makes the converse point, namely that a unimodal or uniform distri-

bution of ΔR2 does not necessarily imply a non-categorical representation. One obvious reason

why this is the case is that absence of evidence is not evidence of absence; here we illustrate a

subtler issue. We consider the same clusters defined above. In this case, we assume that the

analyst correctly identified two variables, one in the pole cluster and one in the banana cluster.

However, we assume that the variable in the banana cluster is off center (Fig 3C). As illustrated

in Fig 3D, the resulting ΔR2 histogram does not present a dip (Hartigan’s dip test, p = 0.313),

even though the two clusters are categorically separated. Importantly, the spherical k-means

clustering correctly identifies the two clusters.

In conclusion, a dip in the distribution of ΔR2 is neither sufficient nor necessary to assess

the categorical nature of a neuronal representation. In general, such assessment requires the

examination of the spatial distribution of data points in a high-dimensional space, using an

approach such as the spherical k-means clustering.

Analysis of synthetic data

We considered several clustering procedures, and wanted to validate our algorithm to assess

the categorical versus non-categorical nature of a neuronal representation on data for which

Table 1. Considered list of variables that are potentially encoded by the population.

No Variable Name Description

1 offer value A Value of juice A offered

2 offer value B Value of juice B offered

3 chosen value Value of the chosen juice

4 chosen value A Value of juice A chosen

5 chosen value B Value of juice B chosen

6 other value Value of the non-chosen juice

7 value difference chosen value—other value
8 value ratio other value / chosen value
9 chosen number Chosen number

10 chosen juice 1 if A chosen, 0 if B chosen

https://doi.org/10.1371/journal.pcbi.1006667.t001
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Fig 3. Two examples of how the ΔR2 metrics can fail. (A,B) A dip in the distribution of ΔR2 does not necessarily imply categorical encoding. The clustering

algorithm yields two clusters. However, the analyst might have erroneously concluded that there are three variables, including two variables located in the tips of the

banana cloud (red and black). The dip in the ΔR2 histogram suggests that these two variables are encoded by categorically distinct populations, but this is in fact not

the case. (C,D) Categorical encoding does not always result in a dip in the distribution of ΔR2. In this case, we assume that the analyst correctly concluded that there

are two variables, but might have defined these variables such that one is on the north pole (gray) and the other is on the east end of the banana cluster (black).

Inspection of the ΔR2 histogram does not reveal any dip. The reason is that data points on the west end of the banana cluster are equally far from the two variables.

https://doi.org/10.1371/journal.pcbi.1006667.g003
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we could control the ground truth. Thus, we generated synthetic populations of neural

responses with and without specific categorical structure, and applied clustering algorithms to

these synthetic data.

For the real data, the experiments included 9 or 10 trial types, resulting in 9- or 10-dimen-

sional neuronal responses, represented as points on the unitary hyper-sphere in 9 or 10 dimen-

sions. (see section Data set and previous analysis). To generate synthetic neuronal responses

with categorical nature, we randomly generated 9-dimensional points on the hyper-spherical

surface clustered in the vicinity of selected variables (see Methods). We then analyzed these

synthetic data sets with a wide range of clustering algorithms, including centroid-based clus-

tering methods (mini-batch k-means, spherical k-means), hierarchical clustering methods

(Ward, agglomerative clustering, Birch), and a graph-based clustering method (spectral clus-

tering) [27–32]. To estimate the performance of these algorithms, we used silhouette plots,

which are a common method to assess the goodness of clustering partitions [33]. For each data

point X (here X is a normalized neuronal response), the silhouette value quantifies the mean

distance between X and other data points in the same cluster, and compares it to the mean dis-

tance between X and data points in the nearest other cluster. The greater the silhouette value,

the better the clustering. A negative silhouette value indicates that X was assigned to the wrong

cluster, since X is closer to the nearest other cluster.

Fig 4 shows the silhouette plots obtained for the various clustering algorithms. We found

that the hierarchical clustering methods (Ward, Agglomerative, Birch) produced the greatest

number of negative silhouette values. Spectral clustering produced slightly less negative silhou-

ette values than Ward as the best hierarchical clustering method. The centroid-based methods

had no (spherical k-means) or very few (mini-batch k-means) negative silhouette values and

many large silhouette values, suggesting that these methods found the most consistent cluster-

ing partitions. The silhouette analysis further suggests that the spherical k-means clustering is

best suited for categorical data lying on a hyper-sphere. We also compared the silhouette plots

on real data recorded from OFC. We found that spherical k-means had the smallest number of

negative silhouette values, confirming the results from synthetic data. Of note, the superior

performance of spherical k-means might be due to the fact that this algorithm explicitly con-

siders the hyper-spherical structure of the data. Hence, we used spherical k-means for cluster-

ing in the remainder of this study.

We next compared the spherical k-means silhouette plots for categorical synthetic data

with those for non-categorical data (Fig 5). To simulate neural responses without specific

Fig 4. Silhouette comparison of clustering algorithms on synthetic categorical data. Synthetic data consist of firing rates from a total of 400 simulated cells

representing the variables chosen value, offer value A, offer value B and chosen juice (100 cells each). Independent Gaussian noise with a standard deviation of 0.25 and a

mean given by the variable rates was used to simulate the activity of a cell. Each color corresponds to one cluster. Clustering algorithms were Mini-Batch k-means (A),

Spectral Clustering (B), Ward (C), Agglomerative Clustering (D), Birch (E) and Spherical k-means (F).The number of clusters was fixed to 4.

https://doi.org/10.1371/journal.pcbi.1006667.g004

Categorical encoding of decision variables in orbitofrontal cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006667 October 14, 2019 9 / 27

https://doi.org/10.1371/journal.pcbi.1006667.g004
https://doi.org/10.1371/journal.pcbi.1006667


categorical structure, we generated points uniformly on the hyper-spherical surface. We then

varied the number of clusters between 2 and 7. We did not expect to find negative silhouette

values for these data, because negative values indicate data point assignments to wrong clus-

ters. Such mis-assignments cannot occur without any cluster structure in the data. Indeed, we

did not find any negative silhouette values, neither for categorical data (Fig 5A–5F) nor for

non-categorical data (Fig 5G–5L). However, while for categorical data the silhouette values in

each cluster were dominated by large values yielding convex plots, the silhouette values for

non-categorical data were dominated by small positive values yielding concave plots. Such

concavity clearly indicates lack of cluster structure and allow to discriminate between categori-

cal data and non-categorical data [33].

While the silhouette analysis provides a simple way to evaluate the assignments of data

points to clusters, it does not immediately associate particular variables with clusters. To estab-

lish this relation, we devised a comparative clustering method. In addition to spherical k-

means, we performed a centroid-based clustering where the centroids were defined by a par-

ticular set of variables. We refer to this procedure as "variable-centroid clustering". We

assigned each data point to the nearest centroid on the sphere (see Methods). We then com-

pared the clusters obtained from spherical k-means to the clusters obtained from variable-cen-

troid clustering, and quantified their similarity for different sets of variables.

Quantifying the similarity of two clustering partitions is non-trivial because similarity

should be invariant for cluster relabeling. Many measures of similarity have been proposed

[26, 34, 35]. Here we tested three measures of similarity based on mutual information, which

are founded on information theory and naturally satisfy our desiderata. Specifically, we tested

mutual information (MI), normalized mutual information (NMI) and adjusted mutual infor-

mation (AMI). MI quantifies the information one clustering partition provides about another

clustering partition; NMI normalizes MI yielding values between 0 and 1; AMI additionally

Fig 5. Silhouette comparison of spherical k-means clustering for different numbers of clusters on synthetic data. Synthetic data were either categorical (top row)

simulated like in Fig 3 or non-categorical consisting of 400 samples uniformly distributed over the unit hyper-sphere (bottom row). For each data set, the number of

clusters was varied between 2 and 8 (A-G) and (H-N) respectively. Each color corresponds to one cluster.

https://doi.org/10.1371/journal.pcbi.1006667.g005
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corrects for the agreement expected by chance. We compared the performance of these candi-

date measures of similarity using our synthetic categorical and non-categorical data sets. Fig 6

shows the results obtained for each measure as a function of the number of clusters specified

in the spherical k-means algorithm and the number of variables defined in the variable-cen-

troid clustering. For each number n = 1, 2, . . . of variables, we tested all of the possible sets of n
variables, and we identified the set providing the maximum similarity. We used exhaustive

search for this purpose (see Methods).

For both categorical and non-categorical data, MI tended to increase with the number of

clusters and variables (Fig 6A and 6D). This was expected since additional clusters and vari-

ables can convey more information about each other. Importantly, MI increased to ~0.5 bits

even for non-categorical data, highlighting the necessity for normalization. The additional

normalization in NMI yielded clear peaks for categorical data and mostly flat values for non-

categorical data. This made it easy to discriminate between categorical and non-categorical

data based on NMI. Additionally, the peaks indicated corresponding numbers of clusters and

variables where n variables correspond to 2n clusters. This was because the reflection of data

points on the hyper-sphere (see Methods) produced twice the number of clusters. This reflec-

tion also facilitated the separation of the data points into two clusters for both one and two var-

iables. For this reason, the very strong peaks for two clusters should be ignored. The results

Fig 6. Comparison of different cluster similarity measures for spherical k-means partitions on synthetic data. Data were either categorical (top row) or non-

categorical (bottom row) and simulated like in Figs 3 and 4. The similarity measure was either mutual information (A, D), normalized mutual information (B, E) or

adjusted mutual information (C, F). The gray scale indicates the strength of similarity for given number of clusters and number of variables. Corresponding numbers

of clusters and numbers of variables are marked in red.

https://doi.org/10.1371/journal.pcbi.1006667.g006
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obtained for AMI (Fig 6C and 6F) were very similar to those for NMI. The peaks for corre-

sponding cluster numbers and variable numbers were slightly sharper for AMI. For this rea-

son, we selected AMI as our similarity measure for the analysis of real neural data recorded

from OFC.

In conclusion, the analysis of synthetic data with known ground truth showed that a combi-

nation of spherical k-means clustering and variable-centroid clustering compared with AMI

provided the most powerful approach to assess the categorical nature of neuronal representa-

tions and to identify the encoded variables.

Analysis of neuronal data

We analyzed neuronal activity recorded from OFC during experiments in which monkeys

chose between different juice types (see section Data set and previous analysis). In total, we

analyzed 9 neuronal pools, each including 139–536 neuronal responses (see Methods), where

the ranges of relative juice offer values were similar within each pool (S1 Fig). Applying to

each pool the same comparative clustering procedure with spherical k-means and AMI used

for synthetic data, we obtained silhouette plots and a similarity profile for the neuronal data.

We varied the number of clusters between 2 and 8 and found clusters with convex silhou-

ette plots indicating categorical data (shown for the post-juice time window in Fig 7A–7G).

Moreover, the almost complete absence of negative silhouette values indicated that the spheri-

cal k-means found consistent partitions for different number of clusters. The normalized neu-

ronal data contains 9–10 dimensions (corresponding to trial types) which are hard to visualize.

In Fig 8 we illustrate the 2-dimensional projections of a data set consisting of 9-dimensional

responses for the post-juice time window. Four clusters are color-coded. Even though the clus-

ters in this representation are partly overlapping, there is a clearly discernible structure. For a

qualitative assessment of the results, we examined the response prototypes defined by the

Fig 7. Cluster results for real data recorded from macaque orbitofrontal cortex limited to the post-juice time window. (A)-(G) Silhouette plots for the spherical k-

means partitions of one example pool (pool 1). Each color corresponds to one cluster. The number of clusters was varied between 2 (A) and 8 (G). (H) Adjusted mutual

information cluster similarity between spherical k-means clustering and variable-based centroid clustering as a function of the number of clusters and number of

variables over all pools. Corresponding numbers of clusters and numbers of variables are marked in red. (I) Maximum adjusted mutual information for each number

of clusters where each bar shows the result of one Jackknife fold.

https://doi.org/10.1371/journal.pcbi.1006667.g007
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centers of individual clusters. In general, the response prototypes obtained for n = 3, 4, 5

closely resembled the neuronal responses illustrated in previous studies [13, 25]. One example

is illustrated in Fig 9. In other words, the clusters obtained from the spherical k-means qualita-

tively validated previous conclusions.

For a quantitative assessment, we used AMI. Comparing the k-means clusters and the vari-

able-centroid clusters, we found similarity peaks for particular combinations of cluster and

variable numbers (Fig 7H). These peaks resembled those obtained for synthetic data,

Fig 8. Visualization of four post-juice clusters in the 9-dimensional trial type space. Each color corresponds to one cluster. Each panel shows the centered and

normalized firing rates of a pair of trial types and each point in a panel represents a cell from pool 1. Cluster centers are marked with black circles.

https://doi.org/10.1371/journal.pcbi.1006667.g008
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providing further evidence for the categorical structure of the neural data. To analyze in more

detail the clusters and variables yielding maximum AMI we performed a Jackknife analysis

(see Methods). This procedure allowed us to estimate the variation of AMI values for a given

number of clusters (Fig 7I). Excluding the peaks for 2 clusters, we obtained the highest AMI

values for 4 clusters and 2 variables. The AMI for this combination of variables and clusters

was significantly greater than the second largest AMI (Wilcoxon rank sum test, p<0.001). We

show the corresponding tuning curves in S13 Fig. These tuning curves resemble a subset of

the variables in Fig 9.

To assess the robustness of these results, we performed three control analyses: First, within

each pool and each trial type, we randomly shuffled neural responses. Permuting neural

responses for a given trial type destroys response patterns across trial types while preserving

the distributions of responses within trial types. We expected that this would abolish the cate-

gorical representation in the data. S2 Fig shows that this was indeed the case. Of note, silhou-

ette plots are concave (S2A–S2G Fig), resembling those that we obtained for synthetic data

without a categorical representation (Fig 5A–5N). Moreover, the AMI is low (S2H Fig, S2I

Fig, S3 Fig “Shuffled data”), in line with the values obtained for synthetic data without catego-

ries (Fig 6D–6F, S3 Fig “Uniform data”) and unlike the data before shuffling (S3 Fig “Original

data”).

Second, we analyzed neural responses from the post-offer, late-delay and pre-juice time

windows as well. S4 Fig, S5 Fig and S6 Fig illustrate the cluster analyses for the post-offer, late-

delay and pre-juice responses, respectively. For each time window, convex silhouette plots

(S4A–S4G Fig, S5A–S5G Fig, S6A–S6G Fig) and the magnitude of AMI values (S4H Fig, S4I

Fig, S5H Fig, S5I Fig, S6H Fig, S6I Fig) clearly confirm the categorical nature of the represen-

tation, as did the 2-dimensional projected cluster visualizations (S7 Fig, S8 Fig, S9 Fig). For

the post-offer window, a lower number of clusters yielded the highest AMI. For consistency,

we show the same number of variables for the post-offer, late-delay and pre-juice time win-

dows (S10 Fig, S11 Fig, S12 Fig, respectively). For all time windows, the response prototypes

Fig 9. Tuning curves of post-juice response prototypes as defined by 8 cluster centers. The x-axis represents offer types ranked by the ratio #B:#A. The y-axis in red

represents normalized response rates of pool 1. The y-axis in black shows monkey behavior. Encoded variables are denoted in the panel titles. Red diamonds represent

the responses to chosen juice A whereas red dots represent the responses to chosen juice B. The separate red diamond and red dot show forced choices.

https://doi.org/10.1371/journal.pcbi.1006667.g009
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resembled those obtained from the post-juice data set (Fig 9, S10 Fig, S11 Fig, S12 Fig). When

plotting fewer variables, we generally obtained subsets of the corresponding plots with greater

number of variables (c.f. S12 Fig, Fig 9), indicating that a similar number of variables is pres-

ent in the data even though expressed to varying degrees.

Third, we applied the PAIRS analysis developed by Raposo and colleagues [3] to test for the

presence of neural clusters (see Methods). Confirming our results, the PAIRS analysis indi-

cated clear categories (PAIRS index 0.67, two-sided p-value from Monte Carlo

simulations < 0.001). (Of note, the number of cells included in our analysis was much larger

than that in the Raposo study.)

Table 2 summarizes the results of our analyses. For 4 clusters and 2 variables, the algorithm

selected variables chosen value A and chosen value B for all neuronal pools. For 6 clusters and 3

variables, variables offer value A, offer value B and chosen juice were selected for all pools. For 8

clusters and 4 variables, the algorithm selected variables offer value A, offer value B, chosen
value and chosen juice. Note that these are the same variables identified in previous studies [13,

25]. For 10 clusters and 5 variables, the algorithm selected these same variables plus the vari-

able value ratio (= other/chosen value). The substantial consistency in the variables identified

with increasing numbers of clusters indicates that the results are very robust.

Discussion

We presented a new algorithm to assess whether a neuronal representation is categorical or

category-free, and to identify the encoded variables if the representation is indeed categorical.

The method involves two steps. First, we cluster the data without committing to any particular

variable. Second, we match clusters with a set of candidate variables. Quantifying similarity

between the clusters of the two steps makes it possible to identify the variables most consistent

with the neuronal data. This new method overcomes limitations of previous approaches, and

is widely applicable. In this study, we tested the algorithm on synthetic data and on neuronal

data recorded in the primate OFC during economic decisions. With respect to the latter, the

most notable result is that we found the neuronal representation in OFC to be categorical in

nature. This result confirms previous assessments of this same data set [13, 25], and the results

obtained by other research groups [14]. We suggest that the categorical nature of the neuronal

representation sets apart OFC from other prefrontal regions, where task-relevant variables are

encoded in category-free representations [6–10]. Importantly, we confirmed our result

through the PAIRS analysis previously used by Raposo et al to demonstrate non-categorical

encoding in the rodent posterior parietal cortex [3]. This result highlights qualitative differ-

ences between brain regions.

In addition, our algorithm identified a set of variables encoded in OFC. The variables most

reliably detected–offer value A, offer value B, chosen value and chosen juice–coincide with those

identified in previous studies [12, 13]. One difference concerns the number of variables. Previ-

ous work identified 4 variables imposing a criterion on the marginal explanatory power (i.e.,

each additional variable should explain�5% responses) [13, 25, 36]. In contrast, the AMI

Table 2. Selected variables.

#variables 1 2 3 4 5
Selected variables chosen value chosen value A

chosen value B
offer value A
offer value B
chosen juice

offer value A
offer value B
chosen juice
chosen value

offer value A
offer value B
chosen juice
chosen value
value ratio

https://doi.org/10.1371/journal.pcbi.1006667.t002
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criterion establishes the optimal number of variables as 2. Several elements may explain this

finding. The AMI procedure penalizes the addition of further variables and thus tends to pro-

vide a conservatively small number of clusters. Concurrently, the variables encoded in OFC

are substantially correlated in the experiments [13]. Geometrically, this means that the centers

of different clusters are close to each other on the hyper-sphere, and not distributed randomly

as might implicitly be assumed. Exacerbating this issue, in our data, neuronal responses encod-

ing the chosen value have some additional jitter, because the relative value of two juices varied

to some extent from session to session. This fact effectively broadened the corresponding clus-

ter on the hyper-sphere.

Comparison with other approaches

In previous work, we assessed the categorical nature of the representation in OFC based on lin-

ear regressions and the analysis of the resulting R2 [12, 13]. As discussed above, that approach

has some limitations, addressed by the algorithm presented here. Another approach, was pro-

posed by Raposo and colleagues [3]. The PAIRS analysis confirmed the categorical nature of

the representation in OFC, but it did not identify specific variables encoded by the population.

Another clustering-based method to assess categorical encoding was recently proposed by

Hirokawa et al [14]. Their data set was recorded from the rat OFC and included 42 conditions.

Applying principal component analysis as a pre-processing step, they first reduced this data set

to 21 dimensions. Using spectral clustering, they identified 9 clusters (the number of clusters

was determined based on bootstrap stability). While there are clear similarities between their

approach and ours, there are also notable differences. Both approaches are founded on cluster-

ing of pre-processed neuronal activity. Hirokawa and colleagues applied spectral clustering,

while we applied spherical k-means. On simulated data, we compared silhouette plots of sev-

eral clustering procedures and we found that spherical k-means performed best. Most impor-

tantly, our approach associates easily interpretable variables with the identified clusters by

making use of two comparative clustering steps–spherical k-means and variable-centroid clus-

tering. Spherical k-means operates without prior assumptions on particular variables while

variable-centroid clustering can be thought of as a cluster representation of a set of variables.

By selecting the set of variables most similar to the assumption-free clusters, we obtain unbi-

ased representations of neuronal categories.

Interestingly, both our results and the results of Hirokawa et al [14] differ from those of a

recent study by Blanchard et al, who concluded that the neuronal representation in OFC is cat-

egory-free [15]. This apparent discrepancy highlights the advantage of assessing the categorical

versus non-categorical nature of a neuronal representation without committing to any particu-

lar set of variables. Blanchard et al examined data from an experiment in which monkeys

chose between two gambles. Apart from the stakes, which varied from trial to trial, the two

gambles differed qualitatively–one gamble was "informative", meaning that the outcome

would be revealed to the animal shortly after the choice; the other was "uninformative", mean-

ing that the animal would learn the outcome only at the end of the trial. Informative and unin-

formative gambles were associated with different colors, and informativeness consistently

affected choices [37]. In the analysis, the authors regressed each neuronal response recorded in

OFC separately on the stakes and on the informativeness. Since the distribution of regression

coefficients was not condensed along these two axes, they concluded that the representation in

OFC is non-categorical [15].

A limitation of Blanchard’s approach is that the neural representation may actually be cate-

gorical, but the frame of reference and/or the encoded variables may not be those tested in the

analysis. Specifically, neurons in the Blanchard study might have represented the identities
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and values of the offers in a color-based reference frame. Under these conditions, different

groups of cells would encode the value of the informative or non-informative offers, with posi-

tive or negative sign. Such representation is categorical, but an analysis based on separate

regressions on stakes and informativeness would fail to reveal its categorical nature. Similarly,

an analysis of variables defined in an order-based reference frame would fail to reveal the cate-

gorical nature of the representation. To visualize this point, consider the clustering problem

defined in the present study. Choosing two variables is equivalent to choosing a particular

plane and to projecting all the data set from the hyper-sphere on that plane. Unless the vectors

that identify the encoded variables lie on the plane, separate clusters will overlap and appear

non-separable. Assessing the categorical or non-categorical nature of the representation with-

out committing to a particular set of variables overcomes this weakness.

Categorical representation and mixed selectivity

We presented a general tool to assess whether a neuronal representation is categorical or non-

categorical. Importantly, this issue is distinct from whether the encoding is pure or mixed [3].

Pure versus mixed selectivity is a property of individual cells. Consider an experiment in

which conditions vary on two dimensions (e.g., visual stimuli that vary for the orientation and

contrast). The activity of any given neuron could vary as a function of only one dimension

(pure selectivity), as a function of a linear combination of the two dimensions (linear mixed

selectivity) or as a non-linear combination of the two dimensions (non-linear mixed selectiv-

ity). In recent years, several studies have discussed the advantages of non-linear mixed selectiv-

ity [6, 9–11]. In contrast, categorical or non-categorical encoding is a property of the neuronal

population [1–3]. Consider again an experiment in which conditions vary on two dimensions,

referred to as variable1 and variable2. Imagine that neurons present mixed selectivity. In prin-

ciple, neurons could all encode the same linear combination of the two parameters (a1 variable

+ a2 variable2, with a1/a2 fixed for the whole population). If so, the representation would be

categorical. Alternatively, different neurons could encode different linear combinations of the

parameters a1 variable + a2 variable2, with a1/a2 varying across the population. If so, the

representation would be non-categorical. Non-categorical representations have been found in

the rat posterior parietal cortex [3] and in lateral prefrontal cortex [7, 8, 38].

Non-categorical encoding implies mixed selectivity, but the converse is not true. This fact is

well illustrated by the encoding of economic decision variables in OFC. By definition, subjec-

tive values integrate all the dimensions relevant to choice, including physical traits of the

goods (commodity, quantity, probability, time delay, etc.) and properties internal to the sub-

ject (motivation, risk attitude, patience, etc.) [39]. For example, the subjective value of a quan-

tity q of apple juice (A) received at time t with probability p is roughly equal (under

simplifying assumptions!) to VA(q, p, t)� ρA q pα e-t/τ, where ρA captures the subjective desir-

ability of the apple, α captures the risk attitude, and τ captures the patience. Clearly, the value

is a non-linear combination of the dimensions varied by the experimenters (q, p and t). As a

consequence, any value-encoding neuron will present non-linear mixed selectivity, as indeed

observed in many studies [13, 40–44]. This circumstance, however, has no implications on the

categorical nature of the representation. Consider for example our task, in which monkeys

choose between juice A and juice B. Variables possibly encoded by the population include offer
value A and offer value B. In principle, individual neurons could encode any linear combina-

tion aA offer value A + aB offer value B. The categorical or non-categorical nature of the repre-

sentation is a property of the joint distribution for the coefficients [aA aB] across the

population. For example, if each neuron encodes only one of the two variables, the distribution

for [aA aB] has two peaks at [0 1] and [1 0] and is close to zero elsewhere. Similarly, there
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might be two groups of neurons encoding the value sum and the value difference. In this case,

the distribution for [aA aB] has two peaks centered on [1 1]/21/2 and [1–1]/21/2 and is close to

zero elsewhere. In both these scenarios, the representation is categorical in nature. Conversely,

coefficients [aA aB] could be uniformly distributed on a broad domain, and the representation

would be non-categorical. Our results demonstrate that the representation of decision vari-

ables in OFC is indeed categorical.

Methods

Experimental design and data set

The experimental procedures for data collection and preliminary data analyses have been

described before [25]. Briefly, two monkeys participated in the study. All experimental proce-

dures conformed to the NIH Guide for the Care and Use of Laboratory Animals and were

approved by the Institutional Animal Care and Use Committee (IACUC) at Washington Uni-

versity in St Louis (protocol #20140031). Throughout the study, the animal health was over-

seen by a veterinary staff. Before training, a head restraining device and a recording chamber

were implanted under general anesthesia (Isoflurane). Steps taken to increase the animal wel-

fare included pair housing, cage enrichment, and usage of exclusively positive reinforcers.

In each session, a monkey chose between two juices (labeled A and B, with A preferred to

B) offered in variable amounts. Each trial started with the animal fixating the center of a com-

puter monitor. After 0.5 s, two sets of colored squares representing the two offers appeared on

the two sides of the fixation point. For each offer, the color represented the juice type and the

number of squares represented the juice amount. The animal maintained central fixation for a

randomly variable delay (1–2 s), after which the fixation point was extinguished and two sac-

cade targets appeared by the offers (go signal). The animal indicated its choice with a saccade

and maintained peripheral fixation for 0.75 s before juice delivery.

In this experiment, the same neuron was recorded during two subsequent blocks of trials.

Juices offered in the two blocks could be the same or different [25]. For the purpose of the

present analysis, we considered data in each trial block independently. Thus each neuron

appears in the analysis twice and the term "session" refers to a block of trials. In each session,

offered quantities varied from trial to trial. An "offer type" was defined by two offers (e.g.,

[1A:3B]). Different offer types were pseudo-randomly interleaved. Their frequency varied, but

each offer type was typically presented at least 20 times in each session. A "trial type" was

defined by an offer and a choice (e.g., [1A:3B,A]).

In each session, choices were analyzed with a logistic regression:

choice B ¼ 1=ð1þ expð� XÞÞ

X ¼ a0 þ a1logðqB=qAÞ

where qA and qB were the quantities of juices A and B offered to the animal. The relative value

of the juices was inferred from the flex of the sigmoid and defined as ρ = exp(−a0/a1).

Neuronal data were recorded from central OFC using standard techniques [25]. The analy-

sis of firing rates was based on four primary time windows: post-offer (0.5 s after the offer),

late delay (0.5–1 s after the offer), pre-juice (0.5 s before juice delivery), and post-juice (0.5 s

after juice delivery). For each trial type and each time window, firing rates were averaged

across trials. A "neuronal response" was defined as the activity of one cell in a window as a

function of the trial type. Task-related responses were identified with an ANOVA (factor trial

type, p<0.001).
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In preliminary work, we submitted the present data set to standard analyses for variable

selection. In these analyses, we defined a large number of variables (Table 1), regressed each

response on each variable, and used methods for variable selection to identify a subset of vari-

ables that best explained the population (see Results and [13]). These procedures replicated

previous results, as neuronal responses were found to encode variables offer value A, offer
value B, chosen value and chosen juice [13].

Neuronal pools

The hyper-spherical clustering procedures introduced in this study require that different neu-

ronal responses be defined on the same trial types (i.e., in the same space). Importantly, the

offer types presented to the animal in our experiments could vary from session to session,

although the same few sets of offer types were used repeatedly in many sessions. As a result,

the entire data set could be divided in six groups of neuronal responses defined on the same

trial types.

The variables included in the analysis are defined in Table 1. Of note, some variables (e.g.,

chosen value) were defined based on the relative value of the juices, which depends on the ani-

mal choices and thus varies somewhat from session to session. Ideally, the analyses described

in this study would be conducted on pools of neuronal responses recorded in the same session,

such that variables would be defined equally for all the responses. In contrast, our neurons

were recorded in different sessions. Hence, we grouped responses in pools of similar relative

values. For each group of neuronal responses recorded with the same trial types we examined

the distribution of relative values. For five of the six groups, the distribution was bimodal.

Hence, we split each of them in two and we removed outliers based on the inter-quartile range

(IQR). In conclusion, our data set included 9 pools of neuronal responses recorded with the

same trial types and similar relative values. (The remaining variability in relative values was

effectively a noise factor that, if anything, made it more difficult to show categorical encoding.)

Neuronal pools included 139–536 responses, and each pool was analyzed separately. When

combining similarity values obtained for different pools, we weighted the similarities accord-

ing to the number of neurons in the pool.

Spherical representation of neuronal responses and variables

We represented neuronal responses as points in a high-dimensional space where each axis cor-

responds to a trial type. Raw neuronal responses were centered (by subtracting the mean firing

rate across trial types) and normalized (imposing a unitary vector length). As a result, the neu-

ronal population was constrained to the hyper-spherical surface of unitary radius. Similarly,

for each variable we calculated a vector with elements given by the variable value in each trial

type. We then centered and normalized the vector. Hence, each variable was represented as a

point on the unitary hyper-spherical surface.

Previous work indicated that neuronal responses can encode a variable with positive or neg-

ative slope [13]. Hence, the sign of the normalized vector is ambiguous. For this reason, before

conducting the clustering procedures, we mirrored each data point on the hyper-spherical sur-

face. Resulting cluster centers were most of the time, but not always, symmetric when adding

the mirror points. In principle, non-symmetrical clusters may be understood considering even

and odd numbers of clusters. Symmetry implies an even number of true clusters, which is not

necessarily the case. For instance, consider the case of the 3D sphere. If the raw data present

only one cluster along the equator, adding mirror points will not generate a second cluster. If

we run the algorithm imposing two clusters, the algorithm will place two cluster centers some-

where on the equator, but not necessarily on opposite ends. Now consider a situation where
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the raw data present a cluster along half of the equator and another cluster at one pole. Adding

mirror points will result in one cluster along the equator and one cluster at each pole (3 clus-

ters total). These examples demonstrate that mirroring does not necessarily induce an even

number of clusters or symmetric cluster centers.

Variable selection procedure

We selected variables by evaluating cluster similarity of partitions induced by a set of variables

and of partitions obtained from spherical k-means clustering. The general algorithm for select-

ing the most informative set of variables works as follows:

• For given number of clusters, partition cells using spherical k-means clustering yielding par-

tition U (see below)

• For given number of variables n, select variables by:

� Iterate over different combinations c of n variables:

■ For given set of variables c, use each variable as a cluster center and cluster cells by

means of proximity clustering yielding partition V (see below)

■ Evaluate similarity between partitions U and V using adjusted mutual information

(AMI)

� Select variable combination c that maximizes similarity

We clustered cells using the spherical k-means algorithm [28]:

1. Start with a partitioning fUð0Þi g
R

i¼1
and the centroids cð0Þ1 ; c

ð0Þ

2 . . .; cð0ÞR associated with the parti-

tioning. Set the index of iteration t = 0.

2. For each normalized rate vector x find the centroids ci�(x) closest in cosine similarity to x,

i.e.:

i�ðxÞ ¼ arg max
j

xTcðtÞj

Next, compute the new partitioning fUðtþ1Þ

i g
R

i¼1
¼ f ðfUðtÞi g

R

i¼1
Þ induced by the old centroids

fcðtÞi g
R

i¼1
:

Uðtþ1Þ

i ¼ fx : i�ðxÞ ¼ ig; 1 � i � R

3. Compute new centroids corresponding to the partitioning computed for fUðtþ1Þ

i g
R

i¼1
:

cðtþ1Þ

i ¼
sðUðtþ1Þ

i Þ

ksðUðtþ1Þ

i Þk

where sðUðtÞi Þ ¼
X

x2UðtÞi

x

4. If
XR

i¼1

X

x2Uðtþ1Þ

i

xTci �
XR

i¼1

X

x2UðtÞi

xTci is greater than the tolerance 1e-4 (default value), increment

t by 1 and go to step 2. Otherwise, stop.

Categorical encoding of decision variables in orbitofrontal cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006667 October 14, 2019 20 / 27

https://doi.org/10.1371/journal.pcbi.1006667


For given variables, we partitioned cells using proximity clustering: for each cell, we calcu-

lated the cosine distance to each variable and assigned the cell to the variable with the smallest

distance. Variables therefore became centroids of the clusters.

Our similarity measure between partitions is the adjusted mutual information:

AMIðU;VÞ ¼
IðU;VÞ � E½IðU;VÞ�

max½HðUÞ;HðVÞ� � E½IðU;VÞ�

where U = {U1,. . .,UR} and V = {V1,. . .,VC} denote two partitions of the same data (i.e.

[
R

i
Ui ¼ [

C

j
Vj). Note that a partition U here refers to a set of sets {U1,. . .,UR} where each element

Ui of the partition is a set of rate vectors. E denotes expectation of the mutual information over

random partitions subject to having a fixed number of clusters and points in each cluster, H

denotes entropy:

HðUÞ ¼ �
XR

i¼1

ai
N
log

ai
N

h i

HðVÞ ¼ �
XC

j¼1

bj
N
log

bj
N

� �

and I(U,V) denotes mutual information [45] between U and V:

IðU;VÞ ¼
XR

i¼1

XC

j¼1

nij
N
log

nij=N
aibj=N2

" #

Mutual information was used because of its several advantages as metric for computing sta-

tistical associations between neural variables or between neural and behavioral variables,

namely its ability to capture all forms of associations between such variables, including both

linear and non-linear ones at all orders [46]. In the above equation for I(U,V), nij denotes the

number of objects that are common to clusters Ui and Vj, that is nij = #(Ui\Vj) and ai ¼
XC

j¼1

nij

and bj ¼
XR

i¼1

nij. Subtraction of the expectation values in the numerator and denominator

adjusts the measure for chance and effectively corrects the positive bias of the measure. These

terms can be calculated analytically [26]. In particular, we used the Python implementation

sklearn.metrics.adjusted_mutual_info_score of the Scikit-learn package to calculate the AMI.

We checked all possible variable combinations (stopping at 5 variables) and collapsed the

variables offer value A and offer value B to offer value A|B as well as chosen value A and chosen
value B to chosen value A|B by pruning variable combinations that contained one but not the

other of the collapsed variables. We then selected the variables and clusters with the greatest

adjusted mutual information similarity.

Jackknife estimates of standard error

We estimated standard errors of adjusted mutual information values by apply the Jackknife

procedure over pools [47]. For a given number of clusters and a given jackknife subsample, we

took the maximum AMI over the different numbers of variables. This yielded a (#clusters x

#subsamples) matrix. We then collapsed the subsample dimension in two ways: 1) For a given

number of clusters, we averaged over subsamples to get the mean AMI. 2) For a given number

Categorical encoding of decision variables in orbitofrontal cortex
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of clusters, we used the jackknife equation for standard deviation [47] to get an estimate of the

standard error:

stdðAMIÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n � 1

n

Xn

i¼1

ðyi � yð�ÞÞ
2

s

;

where θi denotes the i-th AMI estimate and

yð�Þ ¼
1

n

Xn

i¼1

yi

denotes the mean AMI.

Generation of synthetic data

We generated two synthetic data sets to test our variable selection procedure: one with catego-

ries and the other without categories.

To generate the data set with categories, we selected four variables: total value, offer value A,

offer value B and chosen juice. We represented each of these variables in the trial type space on

the hyper-sphere as a 9-dimensional vector with unit length (see Section “Representation of

cells and variables”). Then, for each of these variables, we generated 100 synthetic cell

responses by adding independent Gaussian noise to each of the vector elements (zero-mean,

standard deviation 0.25). Using this procedure, we obtained point clouds around each variable

consisting of 100 points each. Finally, we moved the points to the unit hyper-sphere by nor-

malizing the vector length of each point. Each point then represented the centered and nor-

malized firing rates of a synthetic cell.

To generate a data set without categories, we drew 400 samples uniformly on the 9-dimen-

sional unit hyper-sphere. To do so, we generated a 9-dimensional vector with independent stan-

dard normal distributed elements for each sample and then normalized the vector to unit length.

PAIRS analysis

To test whether another method for detecting the presence of neural clusters would also indi-

cate categories, we applied the PAIRS analysis [3] as follows. For the PAIRS analysis, an input

matrix is required having size (number of cells)-by-(number of trial types times number of

time points per trial). For a given trial type we did not have a neural response for each cell.

Therefore, we selected the nine most common trial types leaving 2380 cells that had responses

for all of these trial types. We filled the matrix by calculating the 10 ms peri-stimulus time his-

togram for each of these cells and trial types in the time window from -500 ms before offer

onset to 1,000 ms after offer onset. We then performed principal component analysis to reduce

this matrix to a (number of cells)-by-8 matrix. For each cell, we then found the k nearest-

neighbors and calculated the k-angle, that is the mean angle it made with each of these neigh-

bors. The median of the angles over cells then yielded ŷdata. We then generated 10,000 matrices

of size (number of cells)-by-8 filled with Gaussian random variables and calculated the k-angle

for each of them. The median over the (number of cells)-times-10,000 angles then yielded

ŷrandom. We then calculated the PAIRS index as

PAIRS ¼
ŷrandom � ŷdata

ŷrandom

:
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We varied k between 2 and 39 and found stable PAIR indices between 0.67 and 0.70. In this

range, ŷrandom varied between 0.22 and 0.69.

Supporting information

S1 Fig. Distribution of relative values for each pool. Violin plots of the distributions of rela-

tive values. The values were log transformed for better visibility. Each component shows the

distribution for one pool. The ranges of distribution support indicate that the relative values

are similar in each pool.

(TIF)

S2 Fig. Shuffling analysis of cluster results for real data recorded from macaque orbito-

frontal cortex. Within each pool and each trial type, neural responses were randomly shuffled

to destroy categories but preserve response distributions within each trial type. (A)-(F) Silhou-

ette plots for the spherical k-means partitions of one example pool. Each color corresponds to

one cluster. The number of clusters was varied between 2 (A) and 8 (G). (H) Adjusted mutual

information cluster similarity between spherical k-means clustering and variable-based cen-

troid clustering as a function of the number of clusters and number of variables over all pools.

Corresponding numbers of clusters and numbers of variables are marked in red. (I) Maximum

adjusted mutual information for each number of clusters with Jackknife estimated standard

errors.

(TIF)

S3 Fig. Comparison of maximum adjusted mutual information for non-categorical data,

shuffled data and unshuffled data. Maximum adjusted mutual information over number of

variables for different numbers of clusters as in Fig 6F (“Uniform data”), S2 Fig I collapsed

over folds (“Shuffled data”) and Fig 7I collapsed over folds (“Original data”).

(TIF)

S4 Fig. Cluster results for real data limited to the post-offer time window. In this analysis,

neural responses were taken from the post-offer time window only. (A)-(G) Silhouette plots

for the spherical k-means partitions of one example pool. Each color corresponds to one clus-

ter. The number of clusters was varied between 2 (A) and 8 (G). (H) Adjusted mutual informa-

tion cluster similarity between spherical k-means clustering and variable-based centroid

clustering as a function of the number of clusters and number of variables over all pools. Cor-

responding numbers of clusters and numbers of variables are marked in red. (I) Maximum

adjusted mutual information for each number of clusters where each bar shows the result of

one Jackknife fold.

(TIF)

S5 Fig. Cluster results for real data limited to the late-delay time window. In this analysis,

neural responses were taken from the late-delay time window only. (A)-(G) Silhouette plots

for the spherical k-means partitions of one example pool. Each color corresponds to one clus-

ter. The number of clusters was varied between 2 (A) and 8 (G). (H) Adjusted mutual informa-

tion cluster similarity between spherical k-means clustering and variable-based centroid

clustering as a function of the number of clusters and number of variables over all pools. Cor-

responding numbers of clusters and numbers of variables are marked in red. (I) Maximum

adjusted mutual information for each number of clusters where each bar shows the result of

one Jackknife fold.

(TIF)
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S6 Fig. Cluster results for real data limited to the pre-juice time window. In this analysis,

neural responses were taken from the pre-juice time window only. (A)-(G) Silhouette plots for

the spherical k-means partitions of one example pool. Each color corresponds to one cluster.

The number of clusters was varied between 2 (A) and 8 (G). (H) Adjusted mutual information

cluster similarity between spherical k-means clustering and variable-based centroid clustering

as a function of the number of clusters and number of variables over all pools. Corresponding

numbers of clusters and numbers of variables are marked in red. (I) Maximum adjusted

mutual information for each number of clusters where each bar shows the result of one Jack-

knife fold.

(TIF)

S7 Fig. Visualization of four post-offer clusters in the 9-dimensional trial type space. Like

Fig 8 but neural responses were taken from the post-offer time window only. Each color corre-

sponds to one cluster. Each panel shows the centered and normalized firing rates of a pair of

trial types and each point in a panel represents a cell from pool 1. Cluster centers are marked

with black circles.

(TIF)

S8 Fig. Visualization of four late-delay clusters in the 9-dimensional trial type space. Like

Fig 8 but neural responses were taken from the late-delay time window only. Each color corre-

sponds to one cluster. Each panel shows the centered and normalized firing rates of a pair of

trial types and each point in a panel represents a cell from pool 1. Cluster centers are marked

with black circles.

(TIF)

S9 Fig. Visualization of four pre-juice clusters in the 9-dimensional trial type space. Like

Fig 8 but neural responses were taken from the pre-juice time window only. Each color corre-

sponds to one cluster. Each panel shows the centered and normalized firing rates of a pair of

trial types and each point in a panel represents a cell from pool 1. Cluster centers are marked

with black circles.

(TIF)

S10 Fig. Tuning curves of post-offer response prototypes as defined by 6 cluster centers.

Like Fig 9 but neural responses were taken from the post-offer time window only. The number

of clusters is lower than for the full data set (6 clusters instead of 8 clusters). The x-axis repre-

sents offer types ranked by the ratio #B:#A. The y-axis in red represents normalized response

rates. The y-axis in black shows monkey behavior. Red diamonds represent the responses to

chosen juice A whereas red dots represent the responses to chosen juice B. The separate red

diamond and red dot show forced choices.

(TIF)

S11 Fig. Tuning curves of late-delay response prototypes as defined by 8 cluster centers.

Like Fig 9 but neural responses were taken from the late-delay time window only. The number

of clusters is the same as for the full data set. The x-axis represents offer types ranked by the

ratio #B:#A. The y-axis in red represents normalized response rates. The y-axis in black shows

monkey behavior. Red diamonds represent the responses to chosen juice A whereas red dots

represent the responses to chosen juice B. The separate red diamond and red dot show forced

choices.

(TIF)

S12 Fig. Tuning curves of pre-juice response prototypes as defined by 8 cluster centers.

Like Fig 9 but neural responses were taken from the pre-juice time window only. The number
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of clusters is the same as for the full data set. The x-axis represents offer types ranked by the

ratio #B:#A. The y-axis in red represents normalized response rates. The y-axis in black shows

monkey behavior. Red diamonds represent the responses to chosen juice A whereas red dots

represent the responses to chosen juice B. The separate red diamond and red dot show forced

choices.

(TIF)

S13 Fig. Tuning curves of post-juice response prototypes as defined by 4 cluster centers.

Like Fig 9 but for 4 cluster and 2 variables. The x-axis represents offer types ranked by the ratio

#B:#A. The y-axis in red represents normalized response rates. The y-axis in black shows mon-

key behavior. Red diamonds represent the responses to chosen juice A whereas red dots repre-

sent the responses to chosen juice B. The separate red diamond and red dot show forced

choices.

(TIF)
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