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Gene coexpression networks yield critical insights into biological
processes, and single-cell RNA sequencing provides an opportu-
nity to target inquiries at the cellular level. However, due to the
sparsity and heterogeneity of transcript counts, it is challenging
to construct accurate gene networks. We develop an approach,
locCSN, that estimates cell-specific networks (CSNs) for each cell,
preserving information about cellular heterogeneity that is lost
with other approaches. LocCSN is based on a nonparametric in-
vestigation of the joint distribution of gene expression; hence
it can readily detect nonlinear correlations, and it is more ro-
bust to distributional challenges. Although individual CSNs are
estimated with considerable noise, average CSNs provide stable
estimates of networks, which reveal gene communities better
than traditional measures. Additionally, we propose downstream
analysis methods using CSNs to utilize more fully the information
contained within them. Repeated estimates of gene networks
facilitate testing for differences in network structure between cell
groups. Notably, with this approach, we can identify differential
network genes, which typically do not differ in gene expression,
but do differ in terms of the coexpression networks. These genes
might help explain the etiology of disease. Finally, to further
our understanding of autism spectrum disorder, we examine the
evolution of gene networks in fetal brain cells and compare the
CSNs of cells sampled from case and control subjects to reveal
intriguing patterns in gene coexpression.

coexpression network | differential network genes | differential expression |
single-cell RNA-seq | brain cells

S ingle-cell RNA sequencing (scRNA-seq) provides a high
throughput profile of RNA expression for individual cells

that reveals the heterogeneity across cell populations. Recent
advances in computational methods enable cell type classifica-
tion, novel cell type identification (1), and trajectory alignment
(2); however, among these methods, less attention has been
devoted to gene–gene association and transcriptional networks,
which can shed light on many vital biological processes. Gene
expression is known to be tightly regulated by networks of tran-
scription factors, and understanding these networks at a cellular
level can identify differences in the inner workings of cells in
normal and diseased tissues (3–6).

Thus far, efforts to estimate coexpression networks from
scRNA-seq have been limited in their success (7, 8) for several
reasons, including technical challenges such as a sparsity
of nonzero counts and a high level of noise (9), nonlinear
relationships that are not easily captured by traditional measures,
and heterogeneity in coexpression patterns across cells. Attempts
have been made to circumvent these challenges (4, 5, 10–12).
Many approaches aim to estimate a single coexpression network
across all cell types, but, to gain access to the subtle differences
in gene coexpression at the cellular level, we require estimates
of gene networks evaluated for each cell type. Moreover, even
if the aim is to estimate a cell-type-specific network, traditional
methods estimate a single coexpression relationship across the
entire sample of cells of that type. With such an approach,
heterogeneity of coexpression across individual cells is erased,

but this knowledge can provide valuable insights for downstream
analysis.

To reveal coexpression networks within individual cells, we
aim to construct cell-specific networks (CSNs) from scRNA-
seq data. This idea was first proposed by Dai et al. (13) and
Li et al. (14) wherein they determine gene–gene connectivity
at a single-cell level. The construction of CSNs is based on the
following assessment of local statistical dependency of a pair of
genes: For an individual cell, if the coexpression of the pair of
genes is unusually high, relative to their distribution assuming
the genes to be independent, then the original CSN (oCSN)
algorithm infers a gene–gene relationship (Fig. 1). Notably, the
oCSN algorithm ignores the confounding effect of cell clusters,
which can produce connections in the network between genes
that are correlated globally, but are not correlated within a cell
type (i.e., Simpson’s paradox). More importantly, for each cell,
oCSN only records the degree sequence of its CSN, and this gene-
by-cell matrix is used as input for clustering and low-dimensional
embedding.

Relying on the CSN principle, a full gene–gene network is
potentially available for each cell (although with high noise),
which can be envisioned as a graph, with genes as nodes and edges
depicting gene–gene dependencies. Building on this concept,
we develop an alternative analysis scheme that utilizes a more
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Understanding gene regulatory networks is a topic of great
interest because it can provide insights into cellular develop-
ment, and identify factors that differ between normal and
abnormal cells and phenotypes. Single-cell RNA sequencing
provides a unique opportunity to gain understanding at the
cellular level, but the technical features of the data create
severe challenges when constructing gene networks. We de-
velop a method that successfully skirts these challenges to
estimate a cell-specific network for each single cell and cell
type. Application of our algorithm to two brain cell samples
furthers our understanding of autism spectrum disorder by
examining the evolution of gene networks in fetal brain cells
and comparing the networks of cells sampled from case and
control subjects.
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Fig. 1. Workflow of locCSN. Starting with the gene expression matrix, we cluster homogeneous cells. For each cell in a cluster, we examine the coexpression
of each pair of genes to determine whether the joint expression is unusually dense in a neighborhood of the cell, relative to expectation assuming the genes
are independent; if so, the genes are connected in that cell’s network. For each cell, we then construct the gene–gene network, based on the results of the
local independence test for each pair of genes.

powerful method, locCSN (https://github.com/xuranw/locCSN),
and expands the utility of the CSN concept for gaining insights
into cell biology. In particular, we retain the networks, rather
than just their degree sequences, so that differences between
cell groups and developmental changes can be examined at the
level of the gene pair. First, to mitigate noise, individual networks
may be averaged across cells within a category or developmental
period, providing a nonparametric estimator of gene coexpres-
sion that performs well for the sparse counts generally observed
for scRNA-seq data. This facilitates contrasts between gene net-
works of related cell types and allows for estimation of evolving
gene communities in developmental trajectories. Second, having
a sample of individual networks provides a valuable measure
of the variability across cells that can be leveraged in powerful
tests of network differences between cell groups. For example,
comparisons can be made between cells obtained from case
and control subjects, or cells sampled from different spatial or
temporal regimes. Finally, the CSN approach facilitates follow-
up analysis to discover the key genes driving the differences
between networks. With this approach, we can identify “differ-
ential network (DN) genes,” which typically do not differ in gene
expression, but do differ in terms of the coexpression network.
These genes could play a key role in network regulation and
hence differences that might help explain the etiology of disease.

We illustrate the value of locCSN by applying it to several
scRNA-seq datasets, including developing fetal brains (15), and
case and control samples from autism spectrum disorder (ASD)
subjects (16). The locCSN extracts cell-level network information
from these data which preserves cell-level network heterogeneity
and highlights network differences between case and control
samples, shedding light on important functional differences.

Results
Our results are summarized as follows. First, we describe the
locCSN algorithm. Second, simulated and real data examples are
used to illustrate differences between locCSN and oCSN. Then,

we apply time-varying community detection to CSNs taken from
two overlapping developmental trajectories in the developing
cortex atlas dataset, and identify differences in their community
evolution. Finally, we show that CSNs enable better separation
of case and control populations in the ASD brain dataset, by
identifying genes that have differing coexpression (but similar
expression levels) between the two groups.

CSN Construction. The algorithm for construction of CSN as orig-
inally published (13) (oCSN) is to estimate, for each cell, a con-
nection strength between each pair of genes, resulting in a gene–
gene network for every cell. This connection strength is based on
a local independence test that is applied to each gene pair and
each cell. The test is nonparametric and does not impose assump-
tions of (nor distinguish notions of) linearity or monotonicity,
and consists of comparing the joint density in a local region to
the product of the marginals. To motivate this test, Dai et al. (13)
give examples where the test succeeds in separating a mixture
of cells, where genes x and y follow a dependent relationship in
some cells but are independent in others (SI Appendix, Fig. S1A).
However, the test requires a choice of resolution (i.e., a band-
width or window size), which greatly affects performance. Dai
et al. (13) proposed a fixed quantile range for the window size,
but we find that this approach gives counterintuitive results and
low power when the joint distribution of genes x and y is a simple
correlated normal (SI Appendix, section 1 and Figs. S1 and S2).
To improve performance, we propose an algorithm for CSN
construction (locCSN) that allows for the window size of the local
independence test to vary cell by cell.

While Dai et al. (13) use all expressions of all cell types to
construct each CSN, we recommend that each CSN be con-
structed using only the cells of a common type, so that the
independence test is conditional on cell type. Otherwise, false
edges may be detected due to Simpson’s paradox: Given a pair
of marker genes that display independent expression within the
marked cell type, CSN construction on all cell types together
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will likely infer an edge indicating nonindependence of the genes
due to the differential expression across types. Therefore, we
recommend clustering the cells into distinct cell types, and then
applying locCSN separately to each cluster, as illustrated for a
single cluster in Fig. 1. Similarly, if cells are developing along a
smooth trajectory, then the cells can be windowed according to
pseudotime (2), and each CSN can be computed using the cells
within its pseudotime bin.

For each cell, locCSN produces a test statistic for each pair
of genes, zxy , to evaluate pairwise gene–gene independence in
the neighborhood of that cell’s expression. By thresholding these
tests at a given significance level (such as α= 0.05 or 0.01),
we obtain a zero–one adjacency matrix for each individual cell.
Averaging the adjacency matrices gives an aggregate measure
for the intensity of coexpression, which is positive by design and
equals, for each gene pair, the fraction of cells for which the
independence test is rejected.

Implementation of locCSN requires two key choices: an initial-
ization of the window width for each local test and the threshold-
ing parameterα to derive the zero–one adjacency matrix from the
matrix of local test statistics. We simulate coexpression networks
using ESCO (17) to evaluate performance of network estimation
for various choices of these tuning parameters. We observe that
the SD approach for window width recommended by locCSN
performs markedly better than the quantile approach utilized by
oCSN. The performance is robust to choice of starting value for
the SD algorithm (SI Appendix, section 2 and Figs. S3–S7). Our
results also show that there is a range of threshold α for which
performance is stable, and the optimal choice varies somewhat
depending on the strength of the true correlations. Nevertheless,
for both moderate and strong correlations, performance is good
between 0.05 and 0.01, after which the accuracy drops precipi-
tously (SI Appendix, section 2 and Figs. S5 and S6).

Illustrative Examples. To illustrate the importance of local
calculations, we compare locCSN and oCSN for synthetic
data from ESCO (17). The cells are sampled from two
populations, one for which a set of genes exhibit pairwise
correlation and another for which the genes are independent
(SI Appendix, section 2 and Fig. S8 A–C). When calculated for
this set of genes, ideally, the test statistics for each cell will
distinguish the pattern of correlation present in one population
(group2) not in the other (group1) (SI Appendix, Fig. S8C).
The desired pattern is achieved by locCSN, but oCSN pro-
duces false signals of correlation for many cells in group1
(SI Appendix, Fig. S8 D and E). Mixing the two populations leads
to false positives in group1, suggesting that the false positives
result from Simpson’s paradox. Likewise, simulations show that
BigSCale (12), a powerful alternative approach for coexpression
estimation, yields many false connections not detected by locCSN
(SI Appendix, Fig. S8F).

To demonstrate and evaluate the performance of CSN test
statistics on real data, we use the Chu et al. (18) dataset. The
Chu et al. dataset includes seven cell types (Fig. 2A). Marker
genes corresponding to developmental lineage are provided by
the authors, and a heatmap of gene expression reveals that a
subset of genes mark cell types DEC and NPC fairly well (Fig.
2B). We analyze these two cell types, which contain 138 cells
and 173 cells, respectively. The absolute Pearson’s correlation for
lineage marker genes, computed within DEC and NPC cell types,
does not show a clear pattern; specifically, the correlation does
not delineate the expected block structure for marker genes for
DEC and NPC cells (Fig. 2C). By contrast, averaged locCSNs,
thresholded at α= 0.05, preserve the gene block structures and
emphasize the differences between cell types (Fig. 2D). We con-
clude that CSN works well on distinct cell types. The averaged
CSN preserves gene blocks, distinguishes between cell types, and
depicts a clearer coexpression pattern than Pearson’s correlation.
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Fig. 2. Estimated networks for Chu et al. (18) cells. (A) UMAP of Chu et
al. cells, colored by cell types. The red and blue boxes indicate selected cell
type: DEC and NPC. (B) Heatmap of gene expression for 57 developmental
genes for seven cell types. High to low expression corresponds to red to light
yellow in the heatmap. Seven cell types are color coded by the band on the
top of the heatmap. The red and blue boxes indicate DEC and NPC cell types.
(C) Heatmaps of absolute Pearson’s correlation for DEC and NPC cell types,
calculated independently within cell types. The order of genes is the same as
B. (D) Heatmaps of averaged locCSN for DEC and NPC cell types, thresholded
at Gaussian distribution α = 0.05 quantile. The order of genes is the same
as B.

By contrast, the averaged CSNs calculated from oCSN ignore
coexpression between genes, especially the dense block for NPC
at the upper right corner (SI Appendix, Fig. S9). Finally, we show
that our results are robust to a range of tuning parameters
(SI Appendix, Fig. S9 B and C).

The observed performance advantage of locCSN relative
to Pearson’s is supported by simulations (SI Appendix, Fig. S7
and Table S1). These results are notable because the simulation
generates a linear relationship between correlated genes. Thus,
even when the correlation between genes follows the assumed
parametric form, locCSN performs better because it adapts to
the sparsity expected in scRNA-seq data.

CSN Analysis of Developmental Trajectories. To illustrate the
application of CSN to developing cells, we feature the de-
velopmental trajectory of human excitatory neuron cells in
the Developing Cortex Atlas dataset (15), which includes
Radial Gila and Progenitors (P), Intermediate Progenitors
(IP), Maturing Excitatory (ExN), Migrating Excitatory (ExM),
Excitatory Upper-layer enriched (ExM-U), and Excitatory Deep
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Fig. 3. Development of networks in human fetal brain cells. (A) UMAP of human fetal brain single-cell expression from seven cell types involved in
development of excitatory neuron cells, (B) with developmental trajectories superimposed. The UMAP plots indicate metacells, whose coordinates are
the average UMAP cellular locations. The two principal curves are generated by Slingshot (19). Colors are determined by the metacell’s pseudotime and cell
types for the two curves, which are calculated as the average pseudotime over all cells in the metacell. Left and Right show the metacells’ assignment, based
on pseudotime, to D curve and U curve, respectively. (C and D) Sankey plots of averaged CSN for eight bins in D curve and U curve. Gene flows are shown
as colored bands connecting two adjacent pseudotime bins for (C) D curve and (D) U curve. The color of each band is the mixture of colors assigned to its
constituent genes, so that flows with similar gene compositions are assigned similar colors.

layer (ExDp), with cell type labels determined by the authors
(SI Appendix, section 3 and Table S2). Using Slingshot (19), we
estimate the developmental path consists of two trajectories, one
ending in upper-layer (U curve) and the other in deep-layer (D
curve) excitatory neurons (Fig. 3 A and B).

To circumvent challenges due to sparse counts, which are
prevalent in these data, we pool similar cells within cell type and
form metacells (20), each containing ∼20 cells. Each metacell’s
expression, pseudotime, and Uniform Manifold Approximation
and Projection (UMAP) coordinate is computed as the average
over pooled cells. Metacells are assigned to trajectories based on
proximity, using Slingshot (19). At the early stages of develop-
ment, the curves are nearly overlapping, and metacells are not
differentiated by curve, but, as the cells develop, metacells can be
assigned to a distinct curve (SI Appendix, Tables S2 and S3). Both
curves start at the P cell class with full overlap, but, moving along
ExN and ExM cell classes, there is progressively less overlap
between the two curves until they bifurcate, with D curve and
U curve culminating in purely ExDp and ExM-U metacells,
respectively. Next, within each cell type, we generate eight bins
based on the metacell pseudotime values, each consisting of∼800
metacells containing fairly homogeneous cells.

For each metacell, we use locCSN to compute gene networks.
For illustration, we focus on a restricted gene list. We choose
ASD risk genes because the development of excitatory neurons is
of interest in ASD research (15, 21, 22). Specifically, CSNs were
computed for 444 genes chosen by intersecting the expressed
genes in the metacells with a list of 992 ASD-associated genes
gleaned from the Simons Foundation Autism Research Initiative

(SFARI) database (classes S, 1, 2, and 3) (23). Our objective
is to map the formation of gene clusters over developmental
epochs, as cells develop into upper- or deep-layer excitatory
neurons. We apply PisCES (11) to the average CSNs per bin,
to find time-varying gene community structure in the D-curve
and U-curve trajectories, and use Sankey plots to visualize the
evolution of gene communities (Fig. 3 C and D). As expected,
the gene communities are nearly identical for the two curves for
the first four pseudotime bins (Dataset S1), which share a large
fraction of metacells, but the results progressively differentiate
as the overlap in metacells diminishes. Most notably, the gene
community associated with cluster 4 (purple) for U curve splits
and merges into the other gene communities at ExN_pt3, while
it persists for D curve. For both curves, cluster 1 (red) contains
genes that are more highly connected than the other loosely con-
nected gene communities (SI Appendix, Fig. S10). For all of the
remaining identified gene clusters, the correlation is extremely
weak in the early stages and becomes more apparent in the final
developmental bin.

We study the membership in gene clusters when they are rela-
tively stable without major splitting and merging from ExN_pt3
an onward. We refer to gene clusters in D curve as clusters 1
to 4 and, in U curve, as clusters 1 to 3, where labels run from
top to bottom of the display. The numbers of genes in each
stable cluster and the overlap between clusters from two curves
are shown in SI Appendix, Table S4 (Dataset S1). For example,
most of the genes from cluster 1 (dense cluster) for D curve
are included in the corresponding dense cluster, that is, cluster
1 for U curve. While the cluster membership is fairly stable
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along each curve, the strength of correlation changes over time
(SI Appendix, Fig. S10).

We also consider the averaged metacell gene expression across
pseudotime for each gene cluster (SI Appendix, Fig. S11). Gene
expression is relatively stable across cellular development. The
dense gene cluster (cluster 1) has high expressions, while the
loose gene clusters have relatively low expression. Yet, even
though all genes outside of the dense cluster have lower ex-
pression levels, using locCSN, combined with PisCES, we are
able to detect subtle correlation, and partition genes into gene
communities. It is worth noting that none of these communities
are identified by WGCNA (24) (SI Appendix, Fig. S12), which
relies on Pearson’s correlation, but could also be implemented
using average CSN matrices for potentially better performance.

To understand the function of gene communities, we check
Gene Ontology (GO) terms (25) (SI Appendix, section 4) for the
seven gene communities (SI Appendix, Fig. S13 and Dataset S1).
For both curves, GO term treemaps for the dense gene commu-
nity (cluster 1) include metabolic processes, organelle organiza-
tion, and the process of mitosis, which are critical during the fetal
stage. For D curve, cluster 2 is enriched for chromatin organiza-
tion, which is critical for gene expression regulation, while, for U
curve, cluster 2 is enriched for organelle and cellular component
organization. The most loosely structured set of genes, cluster 3,
shows no GO enrichment for either curve, suggesting it might
not be biologically meaningful. Of greatest interest is cluster 4,
which is ultimately restricted to D curve and enriched for synaptic
organization, suggesting that these neurons are more mature.
This discovery fits with the biological process of neural migration
which naturally proliferates the deep layers earlier than the upper
layers.

CSN Analysis of Brain Cells from ASD Subjects. To demonstrate how
CSN is used to contrast network structure in two populations
of cells, we analyze the ASD Brain dataset (16). These data
feature single-nuclei RNA-seq (snRNA-seq) data from an ASD
study of cortical nuclei assessing 13 cell types and illustrate
our results using excitatory neurons layers: L2/3, L4, L5/6, and
L5/6-CC. For details of the full analysis pipeline and results,
see SI Appendix, section 5, Figs. S14–S16, and Tables S5–S7. To
illustrate, the results are computed for ASD risk gene, 104

marker genes, and 77 highly expressed genes across cell types
(housekeeping genes). We obtain the ASD gene list by intersect-
ing the 992 measured SFARI genes (23) with expressed genes of
ASD case and control dataset, and 942 genes remain.

After CSN construction, we compare the differences between
control and ASD groups by testing for differences in their net-
works. We use two types of tests: first, an omnibus test for generic
differences, and, second, a targeted test, aimed at identifying
high-leverage genes that drive the difference. To test for dif-
ferences in the distribution of the two classes, we can use a
nonparametric distance-based test statistic (DISTp) taken from
Matteson and James (26), coupled with a permutation test. This
test is highly sensitive to differences in network structure, but
a rejection merely indicates that the networks are significantly
different. To gain further insights into the network differences, we
can utilize the sparse leading-eigenvalue-driven (sLED) test (27).
The sLED is designed to detect signal attributable to a modest
number of genes in the high-dimensional setting encountered
for studies of transcription. To emphasize the contrast with dif-
ferentially expressed genes, we call these DN genes. The sLED
takes as input a method for constructing gene–gene relationship
matrices from individual cells, such as the average CSN network
or Pearson’s correlation matrix. (Further details can be found in
SI Appendix, section 6.)

For each cell type that yielded a significant sLED–CSN dif-
ference, we identify the high-leverage genes (defined as the
top loading genes that explain 90% of the signal by sLED; see

Dataset S2). We call these the “DN genes,” to indicate that they
strongly differ between case and control in their coexpression
and network structure, but not necessarily in expression. Nearly
all the DN genes are ASD genes (SI Appendix, Table S8). This
suggests that ASD risk gene networks are disrupted in case versus
control brains, while marker genes and housekeeping genes are
not disrupted. The DN genes identified by sLED–CSN show
striking differences in their averaged CSNs (Fig. 4 A–D) and also
their visualized networks (Fig. 4 E–H). Comparing across layers,
we find minimal overlap in the DN genes (Fig. 4I), suggesting that
the network differences are layer specific. The sLED–Pearson
test detects no significant differences between control and ASD
groups for the neuron layers, in contrast to the sLED–CSN test
(Fig. 4J).

Restricting to ASD genes, the sLED–Pearson test detects
no significant differences between control and ASD groups
for any cell type after adjusting for multiple testing, while
the sLED–CSN and DISTp tests detect differences in 10
and 6 of the 13 cell types tested, respectively (SI Appendix,
Table S9 and Figs. S17 and S18). Removal of the DN genes
reduces the number of significant differences cell types detected
via sLED from 10 to 2, suggesting that they explain much of
the difference between the groups (SI Appendix, Table S10).
For the 10 significant cell types detected by sLED–CSN, we
investigate the overlap between the differential expressed
(DE) SFARI genes provided in Velmeshev et al. (16) and
the sLED–CSN DN genes. There is, surprisingly, no overlap
(SI Appendix, Table S11), suggesting that most DN genes do
not show practically significant differences in expression
level between control and ASD groups (Dataset S2); similar
conclusions can also be drawn by directly inspecting the marginal
expression levels (SI Appendix, Fig. S19). Finally, we contrasted
layer-specific DN genes identified from among all ASD genes
with the remaining ASD risk gene set and found GO enrichment
for several intriguing categories, including nervous system devel-
opment, protein localization, cellular potassium ion homeostasis,
and chromosome organization (SI Appendix, Fig. S20). Overall,
the DN genes offer critical insights about coexpression patterns
and how they differ between ASD and control brains.

To further illustrate the applicability of CSN to analyze
coexpression patterns, we investigated developing liver cells
(SI Appendix, section 7, Fig. S21, and Tables S13–S15).

Discussion
Single-cell gene coexpression networks can yield critical insights
into biological processes, but they are challenging to estimate,
due to cellular heterogeneity and sparsity of transcript counts.
Our proposed solution, locCSN, estimates coexpression net-
works at the level of the individual cell by sharing strength at
the level of the gene pair.

While each CSN is estimated with considerable noise, aver-
aging CSNs over homogeneous cells provides stable estimates
of network structure, and this provides insights into how these
networks vary by cell type and over developmental epochs. Due
to the nonparametric approach, averaged CSN networks provide
better estimates of gene block structures than traditional mea-
sures.

Subtle differences in network structure can be used to classify
cells into subtypes and by cell state. While each CSN is estimated
with considerable noise, averaging CSNs over homogeneous cells
provides stable estimates of network structure, and this pro-
vides insights into how these networks vary by cell type, by cell
state, and over developmental epochs. Understanding cell-type-
specific gene networks can contribute substantially to our un-
derstanding of how biological processes are impacted by disease
and disorders (15, 27–29). Just as we can test for differential
gene expression, we can test for differential coexpression and
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Fig. 4. CSN analysis results for ASD Brain dataset. (A–D) Heatmaps of average CSNs and the average difference (ASD minus control). Heatmaps display
sLED-CSN selected DN genes for each cell type, contrasted with an additional 30 randomly selected genes from 1,123 genes, including 942 ASD genes, 104
marker genes, and 77 housekeeping genes. The black squares delineate the DN genes for each cell type: (A) L2/3, (B) L4, (C) L5/6, and (D) L5/6-CC. (E–H) Gene
networks for DN genes in the excitatory neuron layers. The networks are generated from averaged CSN of control and ASD groups. (E) L2/3, (F) L4, (G) L5/6,
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aim to detect genes that drive the differences in coexpression.
Small changes in gene expression can lead to substantial changes
in network structure, ultimately, with large biological effect. To
capture this feature, Dai et al. (13) defined “dark” genes as those
genes with differences in the degree of connectivity. They are
dark because we fail to detect them with transitional differential
expression and yet can detect them with CSN analysis. In the
same vein, but using a more general definition, we defined DN
genes as genes that leverage the differences in network structure.
We found that most genes that leverage significant differences of
connection between ASD and control groups are missed when
simply comparing their expression levels. In a similar setting,
using the scHOT algorithm, Ghazanfar et al. (6) identified DN
genes in developing mouse liver cells that were not DE genes.
Both analyses suggest that traditional analyses of gene expression
miss critical signals about gene expression differences across
developmental epochs and between phenotypes. CSN offers a
powerful framework to discover DN genes.

CRISPR-Cas technologies (30, 31) provide researchers with
tools to introduce and assess the effects of many genetic pertur-
bations. For example, Jin et al. (32) used the Perturb-Seq method
(31) to introduce dozens of ASD risk genes to developing mice
brains and then assessed the impact on the single-cell transcrip-
tome. Because CSN estimates the network of each cell, it is a
natural tool for analysis of such perturbation experiments, which
target individual cells with distinct perturbations. CSN analysis
provides a useful tool for determining how such perturbations
impact the network structure of a cell.

Constructing gene networks using the CSN approach is com-
putationally intensive because we compute a test statistics for
each pair of genes and each cell; however, a number of ap-
proximations can be readily applied to enhance the speed so
that CSN can be applied to very large datasets. We found that
CSN performed better when applied to metacells, which reduces
the number of cells by at least an order of magnitude. It is
often natural to reduce the genes under investigation by CSN
to a meaningful subset, such as genes previously implicated in
genetic risk, genes mapped to critical pathways, or highly variable
genes. Restricting the investigation to a subset of genes greatly
reduces the computational complexity of CSN analysis, but, more
importantly, it can reveal more scientifically interpretable results.
By focusing on hundreds of documented ASD risk genes, we were
able to identify intriguing network structure in developmental
trajectories and changes in network structure between ASD and
control subjects. In the literature, several papers have implicated
particular cell types, especially neurons and subtypes of neurons,
in ASD risk (15, 16, 22, 33–35), but no consensus has been
reached. Here we found that gene network structure differed
subtly between the developmental trajectories of fetal brain cells
for upper-layer and deep-layer excitatory neurons. Specifically,
while both trajectories revealed clustering of genes involved
in gene expression regulation, only the deep-layer trajectory
showed clustering of synaptic genes. Identifying differences in
gene networks, both over developmental epochs and between
phenotypes, can shed light on the genetic etiology of human
phenotypes. For more discussion, see SI Appendix, section 10.

Materials and Methods

locCSN Method. To compute z(j)
xy , the estimated gene–gene relationship of

cell j for gene pair (x, y), we first identify the neighborhood and then
construct a test statistic. Let B(j)

x and B(j)
y denote one-dimensional bins of

cells for genes x and y centered at the expression levels for cell j, with widths
wx and wy ,

B(j)
x = {i : |Xix − Xjx| ≤ wx} and

B(j)
y = {i : |Xiy − Xjy | ≤ wy},

with cell counts n(j)
x = |B(j)

x | and n(j)
y = |B(j)

y |. Let B(j)
xy = B(j)

x ∩ B(j)
y denote

the joint window centered at cell j with counts n(j)
xy = |B(j)

xy |.
The z(j)

xy is represented by a normalized test statistic, z(j)
xy = ρ(j)

xy /σ(j)
xy ,where

ρ(j)
xy is a local test statistic for independence of genes x and y, comparing the

joint distribution with the product of the marginals,

ρ
(j)
xy =

n(j)
xy

N
−

n(j)
x n(j)

y

N2
,

and the normalizing factor σ(j)
xy is the asymptotic SD of ρ(j)

xy under the null
hypothesis that genes x and y are independent,

σ
(j)
xy

2
=

n(j)
x n(j)

y (N − n(j)
x )(N − n(j)

y )

N4(N − 1)
,

as shown (along with asymptotic normality of z(j)
xy under the null) in Dai et al.

(13). We remark that, as a preprocessing step, we fix z(j)
xy = 0 if the expression

of either gene is zero for that cell.
The choice of the window sizes wx and wy plays an important role in the

performance of the algorithm. Whereas oCSN by Dai et al. (13) uses window
sizes equal to a fixed quantile range, we instead choose the window size
based on a local SD, which we compute iteratively. Bins B(j)

x (0) and B(j)
y (0)

are initialized to include a quantile range [as in Dai et al. (13)], and then,
iteratively, we follow

w(j)
x (t) = St. Dev{Xix : i ∈ B(j)

y (t − 1)}

w(j)
y (t) = St. Dev{Xiy : i ∈ B(j)

x (t − 1)}

B(j)
x (t) = {i : |Xix − Xjx| ≤ w(j)

x (t)}

B(j)
y (t) = {i : |Xiy − Xjy | ≤ w(j)

y (t)}

for t = 1, . . . until convergence is achieved (SI Appendix, Fig. S1B). In prac-
tice, if the iterations do not converge, B(j)

x (1) and B(j)
y (1) are used as

window sizes. A summary of notation that appears above can be found in
SI Appendix, Table S12.

Metacell: Reduce Sparsity of Expressions. For scRNA-seq and snRNA-seq
datasets, the expression can be very sparse. In this setting, a direct
application of the CSN algorithm fails to discover network structure. It can
be advantageous to cluster the data before performing downstream analysis
(36); hence, we apply the Metacell algorithm (20) before constructing
CSNs. Metacell partitions cells into metacells, defined as disjoint clusters
of homogeneous profiles. After applying Metacell to prelabeled cells, we
further divide metacells with multiple cell types or subtypes into pure-cell-
type metacells. Expression of a metacell is defined as the mean of the cells
in the cluster, which alleviates the problem of having zero expression for
many genes per cell. The metacells are then treated as cells for the purpose
of constructing metacell-specific networks. In this paper, for convenience,
CSN refers to either a cell-specific network or metacell-specific network.

Trajectory-Based Community Detection. The PisCES algorithm (11) is
designed to identify cluster structure that varies smoothly over adjacent
developmental periods. Following CSN construction for a smooth trajectory,
where the cells have been binned by similar pseudotimes, we apply the
PisCES algorithm using the average CSN of each bin as input. The time-
varying community structure can then be visualized using Sankey plots.

Runtime of locCSN. The CSN approach can be computationally intensive
because we compute a test statistics for each pair of genes and each cell;
however, a number of speed ups are possible. By replacing cells with meta-
cells (20), we can reduce the computational complexity substantially. We also
provide an approximate CSN calculation by partitioning the outcome space
for each pair of genes into a grid. Cells that fall into the same grid yield the
same test statistic. With these approximations, CSN can be readily applied
to larger datasets with good accuracy (SI Appendix, section 8 and Fig. S22).
Computational time can also be reduced by limiting the number of genes.
While a large number of genes are expressed overall, a relatively modest
number of genes are expressed in each cell type, and it is natural to restrict
analysis to this subset. Another option is to limit investigation to genes of
particular biological interest, such as those implicated in disease or involved
in biological processes of interest. Alternatively, to construct a network for
a large number of genes (∼1,000), the CSN computation can be applied to
each gene pair in parallel.

If only the average CSN is required, cells may be sampled (stratifying
within cell type) to reduce computation. To accommodate massive datasets,
a possible direction for future work might be to consider fast or vectorizable
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implementations. This may require precomputation of required quantities;
for example, computing the window counts n(j)

xy for all cells j might be
vectorizable by first constructing a two-dimensional cumulative distribution
function of cell counts for a given gene pair.

The examples of runtime against input matrix size are shown in
SI Appendix, Table S16. Runtimes are measured under Python 3.7.6 [MSC
v.1916 32 bit (Intel)]. The runtimes for real data analysis are provided in
SI Appendix, Table S17.

Data Availability. All data used in this manuscript are publicly available. The
description of dataset for analysis is in SI Appendix, section 9. The accession

numbers and links of third-party high-throughput sequencing data obtained
from the Gene Expression Omnibus and European Bioinformatics Institute
databases are listed in SI Appendix, Table S18, respectively. All of the code
used in these analyses is covered by the MIT License and is available from
GitHub: https://github.com/xuranw/locCSN.

Previously published data were used for this work (15, 16, 18).
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