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Abstract

The functionandevolutionofeukaryotic cells dependupondirectmolecular interactionsbetweengeneproducts encoded innuclear

and cytoplasmic genomes. Understanding how these cytonuclear interactions drive molecular evolution and generate genetic

incompatibilities between isolated populations and species is of central importance to eukaryotic biology. Plants are an outstanding

systemto investigate sucheffectsbecauseof their twodifferentgenomic compartmentspresent in thecytoplasm (mitochondria and

plastids)and theextensive resourcesdetailingsubcellular targetingofnuclear-encodedproteins.However, thefield lacksaconsistent

classification scheme for mitochondrial- and plastid-targeted proteins based on their molecular interactions with cytoplasmic

genomes and gene products, which hinders efforts to standardize and compare results across studies. Here, we take advantage

of detailed knowledge about the model angiosperm Arabidopsis thaliana to provide a curated database of plant

cytonuclear interactions at the molecular level. CyMIRA (Cytonuclear Molecular Interactions Reference for Arabidopsis) is available

at http://cymira.colostate.edu/ and https://github.com/dbsloan/cymira and will serve as a resource to aid researchers in partitioning

evolutionary genomic data into functional gene classes based on organelle targeting and direct molecular interaction with cyto-

plasmic genomes and gene products. It includes 11 categories (and 27 subcategories) of different cytonuclear complexes and types

of molecular interactions, and it reports residue-level information for cytonuclear contact sites. We hope that this framework will

make it easier to standardize, interpret, and compare studies testing the functional and evolutionary consequences of cytonuclear

interactions.
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Introduction

The endosymbiotic history of eukaryotes has resulted in cells

that are operated under divided genetic control between nu-

clear and cytoplasmic (i.e., mitochondrial and plastid)

genomes. Core eukaryotic functions depend on integration

and coevolution between these genomic compartments. The

level of integration extends down to direct molecular interac-

tions within multisubunit enzyme complexes (Rand et al.

2004). For example, the major enzymes in mitochondria

and plastids such as oxidative phosphorylation (OXPHOS)

complexes, photosynthetic machinery, and ribosomes are

“chimeric” in the sense that they are composed of gene

products from both nuclear and cytoplasmic genomes. This

organization reflects an evolutionary history in which many of

the genes ancestrally present in cytoplasmic genomes have

been replaced by a combination of gene transfer to the nu-

cleus and substitution by existing nuclear genes (Sloan et al.

2018). There are also extensive interactions between cytoplas-

mic RNAs and nuclear-encoded proteins that are responsible

for posttranscriptional processes, such as transcript end-

processing, intron splicing, RNA editing, base modifications,

and tRNA aminoacylation (Germain et al. 2013; Salinas-Gieg�e

et al. 2015). Furthermore, many nuclear-encoded proteins

must directly interact with the cytoplasmic genomes them-

selves to mediate processes of DNA replication, repair, recom-

bination, and transcription (Zhang et al. 2016; Gualberto and

Newton 2017).

The intimacy of these interactions has made them an at-

tractive arena for studying molecular coevolution, especially

because they can elucidate the consequences of genes
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evolving in very different genomic contexts (e.g., differences

in mutation rates, replication and expression mechanisms,

frequency of recombination, effective population sizes, and

modes of inheritance). Not surprisingly, disruption of cytonu-

clear interactions can have significant functional consequen-

ces, and genetic incompatibilities between nuclear and

cytoplasmic genomes contribute to reproductive isolation in

many systems (Burton et al. 2013; Hill 2015; Sloan et al.

2017). It is possible that cytonuclear incompatibilities evolve

at a faster pace than nuclear–nuclear incompatibilities be-

cause of the differences in genome evolution and the con-

flicting genealogical histories that can often distinguish these

compartments (Burton and Barreto 2012; Toews and

Brelsford 2012).

To test such hypotheses, it is often useful to compare

nuclear-encoded proteins that are involved in direct cytonu-

clear molecular interactions against relevant “control” pro-

teins. For example, classic studies in animals have taken

advantage of OXPHOS complex II (succinate dehydrogenase),

which is entirely nuclear-encoded, in order to make compar-

isons with the other OXPHOS complexes, which are all chi-

meric (Ellison and Burton 2006). In the current genomic era, it

has become increasingly popular for evolutionary studies to

partition nuclear gene content into categories based on

whether they are targeted to mitochondria/plastids and

whether they are involved in direct molecular interactions

with cytoplasmic genomes and gene products within these

organelles (Barreto and Burton 2013; Rogell et al. 2014; Pett

and Lavrov 2015; Sloan et al. 2015; Zhang et al. 2015, 2016;

Adrion et al. 2016; Rockenbach et al. 2016; Weng et al. 2016;

Eslamieh et al. 2017; Havird et al. 2017; Sharbrough et al.

2017; Barreto et al. 2018; Forsythe et al. 2018; Morales et al.

2018; Ferreira et al. 2019; Li et al. 2019; Yan et al. 2019; Zaidi

and Makova 2019). Such approaches are an effective means

to investigate the evolutionary effect of organelle targeting

and molecular interactions. Because plants contain two endo-

symbiotically derived organelles, they are an especially appeal-

ing system in which to study such questions. However,

comparing across studies can be challenging because of the

variable ways in which authors classify and partition gene sets.

Although there are many excellent databases with gene-

specific information on subcellular targeting in plants (table 1),

none of these provide comprehensive information about di-

rect cytonuclear interactions at the level of protein subunits

and amino-acid residues. To address this limitation, we have

taken advantage of the extensive work on cytonuclear biology

in the model angiosperm Arabidopsis thaliana to create the

Cytonuclear Molecular Interactions Reference for Arabidopsis

(CyMIRA).

Results and Discussion

CyMIRA is a detailed curation of A. thaliana cytonuclear inter-

actions at the molecular level, which is available as

Supplementary Material online with this article (supplemen-

tary file S1, Supplementary Material online). Future updates

will be disseminated via GitHub (https://github.com/dbsloan/

cymira), and we have also generated a queryable web inter-

face to extract specific subsets of the data: http://cymira.colos-

tate.edu/.

Our initial automated predictions of organelle targeting

based on nine existing databases (table 1) identified a total

of 4,130 nuclear-encoded protein-coding genes (1,256

mitochondrial-localized, 2,468 plastid-localized, and 406

dual-localized). The sampled databases differed greatly in

their number of organelle-targeting predictions, and very

few genes shared the same prediction across all nine data-

bases (fig. 1 and supplementary table S1, Supplementary

Material online). Because we limited our classification to pre-

dictions shared by at least two databases, there were thou-

sands of genes that were excluded because they had a

mitochondrial or plastid targeting prediction in only a single

database (fig. 1). As such, taking the full union of predictions

across all nine databases would have massively exceeded typ-

ical estimates of mitochondrial and plastid proteome content.

There are likely multiple factors that contribute to the sub-

stantial differences in predictions among databases. First,

many databases utilize distinct methods for inferring subcel-

lular localization (e.g., fluorescent protein activity vs. mass

spectrometry vs. targeting peptide identification), each of

which may differ in sensitivity and/or bias. Second, many of

the proteins targeted to the organelles also serve other func-

tions inside the cell, resulting in ambiguities in how to apply a

classification scheme. Finally, some of the databases include a

relatively small number of organelle-targeting predictions

and, therefore, may be applying a conservative approach

that is likely to miss many genes with mitochondrial and/or

plastid localization (supplementary text, Supplementary

Material online).

Table 1

Set of Nine Databases with Information on Subcellular Localization of

Proteins in Plants That Were Used for Automated Curations of Targeting

Predictions

Database Targeting Predictions References

Mito Plastid Dual

SUBA predicted 2,370 2,644 97 Hooper et al. (2017)

eSLDB 848 4,427 69 Pierleoni et al. (2007)

PA-GOSUB 985 730 14 Lu et al. (2005)

SUBA experimental 1,217 2,128 785 Hooper et al. (2017)

SWISS PROT 311 657 20 Boutet et al. (2007)

TAIR 397 1,598 266 Reiser et al. (2017)

LocDB 446 1,527 234 Rastogi and Rost (2011)

PPDB 327 1,570 73 Sun et al. (2009)

Organelle DB 512 276 11 Wiwatwattana et al. (2007)

NOTE.—Counts reflect number of genes in each targeting category.
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Subsequent manual curation of proteins with direct cyto-

nuclear interactions led to the inclusion of 138 new genes and

changed the prediction for six genes that were initially iden-

tified as targeting just one organelle to dual targeting. As a

result, our final organelle targeting count was 4,268 with

1,337 mitochondrial, 2,495 plastid, and 436 dual. Of these,

910 were classified as being involved in direct cytonuclear

molecular interactions, meaning that they are components

of chimeric cytonuclear enzyme complexes or directly interact

with cytoplasmic DNA and/or RNA transcripts (table 2). The

majority of genes involved in these direct cytonuclear interac-

tions were characterized as exclusively mitochondrial (535) or

plastid (293), but there are also 82 dual targeted genes in this

group, many of which are involved in DNA recombination/

replication/repair, tRNA aminoacylation, and posttranscrip-

tional RNA modifications (supplementary file S1,

Supplementary Material online).

Many studies have begun taking advantage of protein

structural data to specifically investigate molecular evolution

at the physical interface between contacting cytoplasmic and

nuclear gene products (Osada and Akashi 2012; Havird et al.

2015; Zhang et al. 2015; Havird and McConie 2019; Yan

et al. 2019). We therefore used structural data from 13 pro-

tein complexes (fig. 2) to identify which nuclear subunits ac-

tually contact cytoplasmically encoded subunits within these

complexes and their specific interacting amino acid positions
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FIG. 1.—Summary of nine existing databases on subcellular protein targeting plants that were used to generate our automated targeting predictions.
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(supplementary file S1, Supplementary Material online).

However, the efficacy of this structural mapping approach

varied greatly depending on the completeness and phyloge-

netic relatedness of the reference structures. For many pho-

tosynthetic complexes, reference structures are available from

angiosperms or even A. thaliana itself, but other complexes

required use of structures from anciently divergent species,

including bacteria and mammals (supplementary file S1,

Supplementary Material online), making inference of residue

homology tenuous. Furthermore, even when structures from

close relatives were available, they were sometimes known to

be missing certain subunits (van Bezouwen et al. 2017;

Laughlin et al. 2019). Therefore, we did not analyze many

subunits within these complexes because of their absence

from reference structures or low level of sequence similarity,

designating them simply as not available (“NA”). Some addi-

tional subunits were classified only as “likely” or “not likely”

to be involved in direct cytonuclear interactions because of

low confidence in the reference mapping. Despite these lim-

itations, structural data suggest that most nuclear-encoded

proteins within these chimeric complexes do physically con-

tact cytoplasmic gene products (91% of those for which

assignments were made).

Our goal in generating CyMIRA is to provide a standard-

ized partitioning of plant nuclear gene content based on

cytonuclear interactions at a molecular level to improve con-

sistency across evolutionary genomic studies. One obvious

need that will arise is to extend this A. thaliana annotation

to genomic data sets from nonmodel plant species that lack

the same level of functional data. Because of the extensive

history of gene and whole-genome duplication and the asso-

ciated process of neofunctionalization in plants (Panchy et al.

2016), we recommend against relying solely on homology

searches when porting the CyMIRA annotations to other

Table 2

List of Functional Categories Used in Manual Curation of Direct Cytonuclear Interactions

Category Subcategory Mito Plastid Dual Key Reference(s)

ACCase 0 4 0 Sasaki and Nagano (2004)

Chlororibosome 0 42 0 Bonen and Calixte (2006); Sloan et al. (2014)

Large subunit 0 31 0 Bieri et al. (2017)

Small subunit 0 11 0 Tiller et al. (2012)

Clp protease 0 15 0 Nishimura and van Wijk (2015)

DNA-RRR 11 8 17 Zhang et al. (2016); Gualberto and Newton (2017)

TAT complex 1 0 0 Carrie et al. (2016)

Mitoribosome 88 0 0 Waltz et al. (2019)

Large subunit 41 0 0

Small subunit 47 0 0

OXPHOS 91 0 0 Senkler et al. (2017)

Complex I 48 0 0

Complex III 14 0 0

Complex IV 14 0 0

Complex V 15 0 0

Photosynthesis 0 67 0

ATP synthase 0 3 0 Friso et al. (2004)

Cytochrome b6f 0 2 0 Friso et al. (2004)

NDH 0 18 0 Shikanai (2016)

PSI 0 18 0 Jensen et al. (2007)

PSII 0 22 0 van Bezouwen et al. (2017)

Rubisco 0 4 0 Izumi et al. (2012)

PPR 308 110 36 Cheng et al. (2016)

Transcription and transcript maturation 33 46 5

Intron splicing 7 7 1 de Longevialle et al. (2010)

mTERF 17 11 0 Shevtsov et al. (2018)

RNA polymerase 1 1 1 Kühn et al. (2007)

rRNA base modification 1 2 0 Yu et al. (2008)

Sigma factor 0 6 0 Zhang et al. (2015)

Transcript end processing 5 5 3 Perrin et al. (2004); Stoll and Binder (2016)

tRNA base modification 2 14 0 Chen et al. (2010)

tRNA aminoacylation 3 1 24 Duchêne et al. (2005)

Total 535 293 82

NOTE.—Counts reflect number of genes in each targeting category. Key references are listed by category. More extensive literature references are provided in supplementary
table S2, Supplementary Material online.
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species. Instead, we suggest combining such information

with tools that perform in silico predictions of organelle tar-

geting to increase confidence in assignments (Bannai et al.

2002; Small et al. 2004; Emanuelsson et al. 2007;

Sperschneider et al. 2017).

A further complication in expanding to evolutionary studies

across species is that the landscape of cytonuclear integration

and interactions is rapidly shifting in plants. Unlike many eukar-

yotes in which the gene content in cytoplasmic genomes has

reached a period of long-term stasis (Johnston and Williams

2016; Janou�skovec et al. 2017), flowering plants remain highly

active in the process of endosymbiotic gene transfer to the

nucleus (Timmis et al. 2004). For example, our CyMIRA anno-

tations do not include OXPHOS complex II because this is en-

tirely nuclear-encoded in A. thaliana. In contrast, many other

angiosperms have retained functional complex II genes (sdh3

and/or sdh4) in their mitochondrial genomes. Ribosomal sub-

units are also subject to ongoing functional transfers to the

nucleus, resulting in substantial heterogeneity in cytoplasmic

gene content across angiosperms (Adams et al. 2002).

Therefore, species-specific additions and deletions to this data

set, even at the whole complex level, should be considered

based on the retained cytoplasmic gene content in each line-

age. Although this continued need for refinement across phy-

logenetic scales undoubtedly poses a challenge for future

studies, the dynamic nature of cytoplasmic genomes in plants

is also one of the strongest motivations for studying cytonuclear

interactions in these systems.

In summary, the proliferation of plant genomic resources

makes this an exciting time to take studies of cytonuclear biol-

ogy to a genome-wide level, and methodological consistency

will be key to the efficacy of such efforts. We hope that

CyMIRA will serve as useful community resource in this respect.

Materials and Methods

Curation of Mitochondrial and Plastid Targeting Databases

To identify mitochondrial- and plastid-targeted genes, we in-

tegrated predictions from nine existing databases (table 1

and supplementary text, Supplementary Material online).

FIG. 2.—Chimeric cytonuclear protein complexes showing cytoplasmic-encoded, nuclear-encoded, and nuclear contact residues. Plastid-encoded

residues are in green, mitochondrial-encoded residues are in purple, nuclear-encoded noncontact residues are in yellow, and nuclear-encoded contact

residues are in red. Amino acids are shown as spheres, RNA is shown as ribbons. PDB accessions for reference structures: PSI: 2O01, PSII: 5MDX, rubisco:

5IU0, ACCase: 2F9Y, NDH: 6NBY, B6F: 1VF5, plastid ATPase: 6FKF, chlororibosome: 5MMM, CI: 5LNK, CIII: 1BGY, CIV: 1V54, mitochondrial ATPase: 5ARA,

and mitoribosome: 3J9M.
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Based on these data sets, we classified all nuclear-encoded

proteins in the A. thaliana Araport11 genome annotation into

five targeting categories: mitochondrial, plastid, dual (both

mitochondrial and plastid), other, or unknown. Because of

the cytonuclear focus of this project, in cases where

organelle-targeted proteins were known to have additional

subcellular localizations, we still classified them based on their

mitochondrial/plastid targeting status alone. To classify a pro-

tein as having an organellar localization, we required it to be

identified as such in at least two different databases. Because

it is well documented that many plant proteins play a dual

functional role in both the mitochondria and plastids (Carrie

and Small 2013), we assigned genes to the dual-targeted

category as long as there were at least two databases sup-

porting targeting to the mitochondria and at least two sup-

porting targeting to the plastids. It was possible (although not

required) for these to be the same two databases because the

selected databases explicitly classify some genes as dual tar-

geted. Some of these automated database classifications

were subsequently refined based on manual curation of direct

molecular interactions as described below.

Curation of Direct Cytonuclear Molecular Interactions

We conducted a literature-based curation to generate a re-

source that could distinguish nuclear proteins that are simply

targeted to mitochondria and plastids from those that are

involved in direct and intimate interactions with cytoplasmic

genomes or their gene products. We assigned genes to 11

types of cytonuclear enzyme complexes and molecular inter-

actions, which are further divided into 27 subcategories

(table 2).

Because of the manual nature of this curation, our classi-

fications often required judgment calls and special consider-

ations. With respect to major multisubunit enzymes, we

aimed to restrict our classification to the core complex, ex-

cluding proteins such as assembly factors involved in more

transient interactions (e.g., Lu 2016; Ligas et al. 2019).

One of the largest classes of genes involved in plant cyto-

nuclear interactions is the RNA-binding pentatricopeptide re-

peat (PPR) family (Schmitz-Linneweber and Small 2008).

These proteins are overwhelmingly targeted to the mitochon-

dria and plastids where they play diverse roles in RNA proc-

essing and maturation. We classified six specialized PPRs as

components of the mitochondrial ribosome (Waltz et al.

2019) or as functioning in tRNA end processing (Gobert

et al. 2010). The remaining PPRs were assigned to their

own category. Even though many PPRs still lack detailed func-

tional characterization, we considered these examples of di-

rect cytonuclear interactions because of their near universal

role in binding cytoplasmic transcripts. A total of 109 PPRs

(24%) were not identified as mitochondrial or plastid targeted

based on our automated database curation. In these cases,

we reassigned their targeting classification using The

Arabidopsis Information Resource (TAIR) Gene Ontology

(GO) cellular component designations (Berardini et al.

2015). As a result, all PPRs were assigned as mitochondrial

and/or plastid targeted, with the exception of only nine genes

(AT1G06150, AT1G77150, AT2G20720, AT3G13150,

AT3G47530, AT3G58590, AT5G09320, AT5G15300,

AT5G44230), which we excluded from the direct-

interaction data set. A large portion of PPR genes function

as specificity factors in C-to-U RNA editing of organellar tran-

scripts. Therefore, RNA editing interactions are effectively sub-

sumed within the PPR category. Although other types of

nuclear proteins have been found to function in RNA editing

(Sun et al. 2016), we are not aware of any evidence that these

directly bind to organellar transcripts, so they were not clas-

sified as directly interacting.

Mitochondrial transcription termination factors (mTERFs)

are another sizeable family of organelle-targeted nucleic-

acid binding proteins (Shevtsov et al. 2018). Similar to how

we handled PPRs, we defined mTERFs as their own subcate-

gory within the transcription and transcript maturation cate-

gory, even though many individual mTERF genes await

functional characterization.

Although our manual curation of direct cytonuclear inter-

actions overwhelmingly agreed with general subcellular tar-

geting predictions from our database summary, there were

189 genes (21%, including 100 PPRs; see above) for which

the automated targeting predictions did not include the

organelle(s) found in our manual analysis. In such cases, we

updated the original automated targeting call by adding the

location of direct cytonuclear interactions (but we did not

remove other predicted localizations from the automated

call set).

As a companion to this curated interaction data set, we

also made use of the TAIR Interactome v 2.0 (Geisler-Lee et al.

2007), which identifies proteins with direct physical interac-

tions. We used all pairwise interactions to create a list of

partners for each Araport11 protein (supplementary file S1,

Supplementary Material online). For organelle-targeted pro-

teins, lists were further refined to include interacting partners

that are targeted to the same subcellular compartment.

Identification of Direct Cytonuclear Contact Sites within
Multisubunit Enzyme Complexes

In some cases, nuclear-encoded proteins may form part of a

cytonuclear enzyme complex but still not physically contact a

cytoplasmic gene product within the complex. Therefore, to

identify direct cytonuclear interactions at the level of subunits

and amino-acid residues, we mapped A. thaliana protein

sequences to reference structures of 13 multisubunit enzyme

complexes that are involved in OXPHOS, photosynthesis, pro-

tein translation, and fatty acid biosynthesis. Reference struc-

tures for these complexes were searched in the Protein Data

Bank (PDB) and were chosen based on their completeness

CyMIRA GBE
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and relatedness to A. thaliana (supplementary file S1,

Supplementary Material online). We identified cytonuclear

contact residues in these structures using the “find clashes/

contacts” tool in Chimera version 1.12 (Pettersen et al. 2004)

with default contact settings except that the van der Waals

(VDW) overlap was changed to ��1 Å. VDW overlap is es-

sentially a measure of the distance between two atoms, and

changing this value to ��1 Å allows for detecting more

weakly interacting residues than by default. We determined

homologous genes and residues in A. thaliana by querying the

structural reference sequences with TAIR BLAST 2.2.8, and

we aligned the resulting hits with MUSCLE as implemented

in MEGA 7 (Kumar et al. 2016) to identify the corresponding

contact residues in A. thaliana genes.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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