
Bayesian Selection of Markov Models for Symbol
Sequences: Application to Microsaccadic Eye Movements
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Abstract

Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The
order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within
sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of
microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for
various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our
analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with
recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a
broad class of biological systems.
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Introduction

Many biological systems produce discrete sequences of events

that can be used to characterize the underlying generating

processes, e.g., neural spike trains [1] or saccadic eye movements

[2]. Using a coarse-grained description of the data as symbol

sequences [3], we can analyze their statistical properties in terms of

a Markov process [4]. A critical parameter in such a model is the

order of the Markov process which captures the time span of the

statistical dependence within the sequence of symbols. Here we

propose a Bayesian approach to estimate the order of the

underlying Markov process from experimental data.

Visual perception with high acuity is based on accurate fixation

of a target object. However, our eyes are never motionless and

continually produce small irregular movements. Two components

of these miniature or fixational eye movements (FEM) are

microsaccades (rapid small-amplitude movements) and physiolog-

ical drift (a slower, random component of the motion) [5–8].

Following earlier attempts [9], recent progress has identified basic

principles for theoretical models of the generation of fixational eye

movements [10–15]. First, physiological drift might be described

by fractional Brownian motion with two scaling regimes corre-

sponding to persistent and anti-persistent behavior on smaller and

larger time scales respectively [12,16]. Second, microsaccades

represent a more ballistic movement type [10,17]. For an

illustration of characteristic microsaccade properties, see Figure 1a.

Hypotheses on the generating mechanism of microsaccades are

potentially relevant to the analysis of correlations within sequences

of microsaccades. Since sequences of microsaccades appear to

have some non-random structure, isolated microsaccades are often

distinguished from saccadic intrusions (SI) or square-wave jerks

(SWJ) and biphasic square-wave intrusions (BSWI; cf. Fig. 1b). For

example, Abadi and Gowen [18,19] exploited the direction

dissimilarity of microsaccadic events and their temporal proximity

to define different types of SIs with characteristic kinematic

properties (amplitude, displacement) and rate-of-occurrence. As a

result of such a classification scheme, isolated microsaccades and

SWJ represent the most common type of SIs in healthy humans

[18].

The properties of SWJ are highly relevant to neurological

disorders [20–23]. Recently, Otero-Millan et al. [24] introduced

an advanced treatment of microsaccade sequences. Based on a

velocity-threshold algorithm [25], Otero-Millan et al. [24] used

direction dissimilarity, magnitude dissimilarity, and temporal

proximity to calculate a square-wave jerk index which allows a

separation of single-standing microsaccades and SWJ. In their

study with Progressive Supranuclear Palsy (PSP) patients, Otero-

Millan et al. ([24], p. 4386) concluded ‘‘that microsaccades and

SIs are essentially the same phenomena and that SWJ are

generated by a common coupling mechanism in PSP patients and

healthy observers.’’

Here, we will follow up Otero-Millan et al.’s [24] work using an

explicit statistical model of the SWJ coupling mechanism. In our

approach, FEM data is coarse-grained by a mapping to discrete

sequences of symbols, where each symbol represents a micro-

saccade orientation. For a first approximation, the elapsed time

between microsaccadic events is not taken into account for the

statistical description of symbol sequences. Markov chain models

of three different orders will be considered: Markov chains of

zeroth-, first-, and second-order. They correspond to uncorrelated,
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one-, and two-lag memory stochastic processes. For the Markov

chain of zeroth-order, sequences of microsaccadic shapes are

uncorrelated and both SWJ and biphasic square-wave intrusion

(cf. Fig. 1b) would occur by chance as sequences of successive

single saccadic pulses (cf. Fig. 1b). In contrast, in a Markov chain

of first order, pairs of saccadic shapes would be statistically

dependent and the chain would also account for SWJ. Finally, in a

second-order process, also triplets of saccadic shape would be

correlated and a model with memory would also account for

BSWI.

In our analysis, we use a Bayesian approach for the estimation

of the order of the underlying Markov process from experimentally

observed FEM data. Our method will be tested on simulated data

with known Markov order and, finally, it will be applied to FEM

data of human observers. We will discuss our results with respect

to existing frameworks for the analysis of microsaccades.

Methods

In this section, we give a brief overview on definitions and

properties of Markov processes. We then present our symbolic

dynamics approach for sequences of microsaccade shapes and the

Bayesian estimation of the Markov order. Finally, we shortly

summarize the methods used to detect microsaccades and to

characterize their shapes [26].

Stochastic modeling with Markov processes
Consider a sequence of symbols taken from some finite state

space S~fs1,s2,s3, . . . ,sMg. We denote the sequence of states by

fXt[S,t~1,2, . . . ,Ng. A probability measure Pr on the space of

such sequences:

PrfXtg~PrfX1~s1,X2~s2, . . . ,Xk~sk, . . . ,XN~sNg ð1Þ

is an n-th order Markov measure if it satisfies for all kwn:

PrfXk~skjXk{1~sk{1, . . . ,X1~s1g~

PrfXk~skjXk{1~sk{1, . . . ,Xk{n~sk{ng:
ð2Þ

This means that occurrence of a symbol at position k depends on

the n previous symbols only. The memory has the finite length n

and the probability of any future behavior is not influenced by

additional knowledge concerning its past behavior beyond the

memory horizon n [27,28]. A stationary Markov chain is a Markov

chain, where the transition probability does not explicitly depend

on k but only on the previous symbols sk{1,sk{2, . . . sk{n and the

new symbol sk. In this work, we consider stationary Markov chains

only.

The conditional probabilities in Equation (2) do not fully specify

the Markov probability measure in the space of symbol sequences.

We have to specify in addition the initial distribution:

PrfX1,X2, . . . ,Xng: ð3Þ

We say the measure is (shift)invariant if the distribution of symbols

remains the same under the Markov dynamics given by Equation

(2):

PrfX1,X2, . . . ,Xng~PrfXl ,Xlz1, . . . ,Xlzng: ð4Þ

In the generic case, there is only one invariant measure for a given

dynamic. This is the probability model of sequences that we

consider. In particular, we are now interested in the estimation of

the order of the underlying process.

If we introduce the space ~SS~S|S| . . . S (n-factors) of

compound symbols of order n, or words of length n in the

alphabet S, then the n-th order Markov chain process is

representable as a first-order Markov process in the symbol space

Figure 1. Illustration of microsaccade shape properties reported microsaccade sequence patterns. (a) illustrates a typical microsaccade
shape occurring during fixational eye movements with the designated microsaccade properties. (b) shows microsaccade sequence patterns,
composed of one, two or three subsequent microsaccadic events, so-called saccadic intrusions (SI). From left: single saccadic pulse (SSP), double
saccadic pulse (DSP), square-wave jerks (SWJ), biphasic square wave intrusion (BSWI). All patterns have been hand-picked from the horizontal
trajectories of fixational eye movements. The separating time intervals are not representative for all participants.
doi:10.1371/journal.pone.0043388.g001
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~SS. However, many transitions in this extended space are not

possible and will enter the transition matrix as 0s.

Here, we investigate processes up to an order of three for a

symbol space S~fl,rg. In case of a zeroth-order Markov chain,

the past has no influence and each new symbol is independently

drawn from a probability distribution Pr over the symbol space S.

Therefore such a process is described by a single number Pl[½0,1�,
which is the probability to draw l. The unique invariant measure is

induced through PrfX1~lg~Pl .

In the case of a first-order Markov chain in two symbols we

write for a transition from l to r in a time step k{1 to k:

Plr~PrfXk~rDXk{1~lg ð5Þ

and obtain the transition matrix T1 as:

T1~
Pll

Prl

�
Plr

Prr

�
~

1{q
(1)
1

q
(1)
2

 
q

(1)
1

1{q
(1)
2

!
ð6Þ

Note that everything is parameterized in terms of the two numbers

q
(1)
1 ,q

(1)
2 [½0,1�. The shift-invariant distribution p for a first-order

Markov process [28] is now determined through the left-hand or

Perron-Frobenius eigenvector of the transition matrix [29]. This

eigenvector p solves the equation:

p’~p’T1 ð7Þ

with T1 the transition matrix, p’ the transpose of the column

eigenvector, representing the probabilities of the stationary

distribution, with DDpDD1~1 and all entries pj§0.

For a second order chain, we have to consider all the transitions

from the last two symbols to the new symbol. To fix the ideas

consider a transition from lr to r:

Plrr~PrfXk~rDXk{1~r,Xk{2~lg: ð8Þ

This defines 2|22 numbers of which only 22 are independent,

since e.g. PlrrzPlrl~1. This process is equivalent to a first order

process in the space of words of length 2 by identifying the

transition from ab to c (a,b,c[fl,rg) with the compound transition

ab to bc. However, a transition ll to rr is impossible and therefore

the associated transition matrix T2 is 0 for these transitions. In

terms of the numbers Pabc of Equation (8) the transition matrix T2

reads:

T2~

Plll

0

Prll

0

0
BBB@

Pllr

0

Prlr

0

0

Plrl

0

Prrl

0

Plrr

0

Prrr

1
CCCA~

1{q
(2)
1

0

1{q
(2)
3

0

0
BBBB@

q
(2)
1

0

q
(2)
3

0

0

q
(2)
2

0

q
(2)
4

0

1{q
(2)
2

0

1{q
(2)
4

1
CCCA ð9Þ

Again, everything is parameterized by the four numbers q(2)
m [½0,1�

for m~1, . . . ,22~4. The stationary distribution can be computed

as the Perron-Frobenius eigenvector analogous equation (Eq. 7).

Bayesian model selection
For an observed data set D, a collection of parameterized

stochastic models can be proposed and the question is which

model fits the best. The selection criteria should not only take into

account how well the data is described but also the complexity of

the model. The goal is not only to optimally fit existing data, but

also to minimize the future prediction error when new unobserved

data becomes available. Optimizing only the fit leads to poor

prediction performance, a phenomenon known as overfitting the

data. In the Bayesian setting, the model selection is commonly

done with the help of the Bayes factor [30]. For a data set D, the

Bayes factor for comparison between the alternative models Hi

and Hj is defined by:

bij~

Ð
L(hi DD)Prfhi DHigdhiÐ
L(hj DD)Prfhj DHjgdhj

ð10Þ

which is the ratio of the integrated posterior, i.e., regarding Bayes

theorem for probability densities, it is the ratio of evidences [30].

Here, L(hi) refers to the likelihood of the parameter set hi which

parameterizes a model under hypothesis Hi, given a data set D.

The probability Prfhi DHig is the prior for the parameter set hi

under hypothesis Hi. The same notation is used for Hj .

To discriminate even smaller differences between hypotheses,

we log-transform Equation (10) to deciban scale:

Bij~10 log10

Ð
L(hi DD)Prfhi DHigdhiÐ
L(hj DD)Prfhj DHjgdhj

ð11Þ

The value of Bij provides evidence in favor of one hypothesis

against the other. Values of Bijv0 will support the null hypothesis

Hj , otherwise, values in the range 0{5, 5{10, 10{15, 15{20,

and larger than 20 provide weak, substantial, strong, very strong,

and decisive evidence against Hj , respectively (cf. [31]).

The Markov model for microsaccades
The question arises how we could estimate the order of the

Markov chain by combining knowledge about Markov processes,

Bayes factor, and symbolic dynamics. If we assume that sequences

of microsaccade directions — with l and r representing leftward

and rightward microsaccades — can be described by Markov

chains, then it is the Markov order which we need to estimate. The

parameter space of an nth-order Markov chain model is 2n

dimensional. We denote these parameters by q
(n)
i [½0,1�,

i~1, . . . ,2n. As a shortcut for all parameters of an nth-order

Markov chain model we use h(n). We propose to use the Bayes

factor analysis to discriminate between different orders of chains.

Under the assumption that a given sequence Xt, t~1, . . . ,N of

microsaccade directions, Xt[fl,rg, can be described by a discrete-

time stationary nth-order Markov process, we can write the

likelihood of a sequence Xt given the transition probabilities as:

L(q
(n)
1 , . . . ,q

(n)
2n jX1X2 . . . XN )~

p(n)(X1,X2, . . . Xnjh(n)) P
2n

i~1
q

(n)
i

� �a
(n)
i

1{q
(n)
i

� �b
(n)
i :

ð12Þ

Here, p(n)(:Dh(n)) is the probability to find the first n symbols in the

stationary distribution. This stationary distribution itself depends

on the parameters h(n). On the remaining symbols Xnz1, . . . ,XN ,

the numbers a(n)
i , i~1, . . . ,2n, count for each word (enumerated

by i) the number of transitions for which the new symbol that is

added to the sequence was different from the last symbol in the

word, whereas b
(n)
i counts the transitions from word i to the last

symbol of i. Since the likelihood function for the whole data Xt

depends only on these numbers and the first n symbols, this data

Markov Models for Microsaccade Symbol Sequences
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represents a sufficient statistic. Therefore, all information about

the underlying process is contained in these numbers.

For independent realizations, we can take the product of the

individual likelihood functions. In this case, the individual counts

for each trial simply add up to the total counts. The probabilities of

the initial sequences, however, have to be multiplied.

As prior information about the transition probabilities h(n) we

chose a flat (constant) prior in a hypercube of dimension n. Based

on the calculation of the likelihood of a particular nth-order

Markov chain, we can compare Markov chains of different orders

using the Bayes factor (Eq. 11).

Highly important for the estimation of the Bayes factor are the

integrations in Equation (11). In our work we assumed that the

sequences of microsaccades directions are realizations of a

stationary stochastic process that we described as a Markov

process with unknown order. If one has long sequences, containing

a large number of symbols, the prefactor p(n)(:Dh(n)) could be

assumed to be uniformly distributed. This assumption is equivalent

to assigning the probability PrfX1, . . . ,Xng~2{n to any initial

state of the nth-order Markov chain. In this case, the integrals in

Equation (11) are analytically solvable by a product of Beta

functions B(a(n)
i z1,b(n)

i z1) with i~1, . . . ,2n and n the order of

the Markov chain. For sequences of symbols representing

microsaccade directions in a 20 second time interval, the number

of symbols is between 20 and 50 [26], leaving us with short

sequences. In this case, the term p(n)(:Dh(n)) remains in the integral

and has to be computed numerically for each different order of the

Markov chain. To obtain the integrated likelihood through

numerical integration, the midpoint rule was used with 100

equidistantly sampled integration points between 0 and 1, for each

integral of q
(n)
i . For each value of the parameters q

(n)
i , we evaluated

the transition matrix of the process and computed the Perron-

Frobenius eigenvector, the stationary distribution of the process.

The probability of the initial state of the chain is then drawn from

this stationary distribution p(n)(:Dh(n)).

Simulation of Markov chains
To verify our method, we simulated two-states Markov chains of

zeroth-, first-, and second-order. We generated 532 sequences for

each different Markov order, using 19 different random transition

matrices and comparable sequence lengths as for the microsaccade

sequences. We first computed 30,000 iterates to remove transients

of the process and then chose sequences of different lengths.

Video-based eye tracking in a fixation task
Data used in our study were previously published in [12,32].

Human participants with an average age of 22 years and normal

or corrected-to-normal vision performed a fixation task. A black

square on white background (363 pixels on a computer display

which corresponds to a spatial extent of 7.2 arcmin; Iiyama, Vision

Master Pro 514, 40 by 30 cm, 100 Hz, 10246768 pixels) was

presented to the participants. Participants were asked to fixate this

point. Each subject was required to perform 30 trials (20 seconds

each) and was asked to prevent blinking during each trial. An

online check for blinks was applied. To avoid false detection of

blinks, we checked the trajectories by hand and skipped trials in

which a blink occurred. The number of trials that entered the

analysis for each participant is reported in Table 1. Every fixation

trial was followed by a presentation of a photograph for

10 seconds, allowing participants to relax and perform inspection

Table 1. Microsaccade properties and estimated Markov order.

Subject No. of trials Rate [MS/s] Ampl. [6] Displ. [6] Estimated Markov order No. of microsaccades IMSI [s]

01 30 0.74 0.21 0.1 first 252 - 191 1.35

02 30 1.12 0.34 0.24 second 409 - 265 0.88

03 22 0.42 0.2 0.15 zeroth 47 - 139 2.29

04 30 1.26 0.23 0.15 first 210 - 547 0.78

05 30 1.34 0.24 0.16 first 355 - 448 0.75

06 30 1.48 0.37 0.29 second 382 - 503 0.7

07 17 0.73 0.16 0.12 first 103 - 146 1.35

08 28 0.84 0.4 0.34 first 261 - 210 1.24

09 30 0.6 0.51 0.34 first 147 - 214 1.46

10 30 0.72 0.13 0.08 first 270 - 160 1.33

11 29 1.37 0.22 0.16 first 483 - 311 0.79

12 30 0.78 0.16 0.11 first 336 - 129 1.34

13 29 0.37 0.17 0.11 first 141 - 73 2.67

14 23 0.99 0.39 0.21 zeroth 194 - 262 1.01

15 29 1.31 0.27 0.16 first 315 - 445 0.79

16 29 1.7 0.27 0.22 first 435 - 550 0.58

17 29 0.84 0.32 0.22 zeroth 96 - 393 1.23

18 30 1.2 0.14 0.09 second 526 - 193 0.82

19 29 0.87 0.56 0.44 first 236 - 271 1.01

total 534 0.98 0.21 0.14 first 5198 - 5450 0.99

Microsaccade and microsaccade sequence properties for the left eye’s movements of nineteen participants in a fixation task experiment. Amplitude (Ampl.),
displacement (Displ.), rate and IMSI are given as average over all trials of the participant that entered the analysis (No. of trials). Number of microsaccades are given as
left- and rightward directed.
doi:10.1371/journal.pone.0043388.t001
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saccades or blinks. At the beginning of each trial, participants

performed a 9-point calibration. The luminance of the screen was

kept constant during both, calibration and recording. This

prevented changes of pupil size due to luminance variation. The

trajectories were recorded using a head mounted eye-tracking

system (EyeLink II, SR Research, Osgoode, Ontario, Canada),

which generated binocular recordings of eye movements at a

sampling rate of 500 Hz. The spatial resolution for a dark pupil

was higher than 0.01u (RMS) visual angle. Participants were seated

on a chair at 50 cm viewing distance. To reduce body and head

movements, a chin rest was used. The experiment was performed

in accordance with the declaration of Helsinki.

Microsaccade detection and characterization
Mergenthaler and Engbert [12] have shown that FEM can

statistically be described by a self-similar process, in this case

modeled by fractional Brownian motion. Our detection method

uses the influence of microsaccades on the self-similarity of the

FEM’s drift to detect the former in the time series. This method,

introduced in [26], is based on the continuous wavelet transform

to detect events of less self-similar behavior. Microsaccades are

then defined as binocularly occurring singularities. In the same

work, we had introduced a two-component model of the

microsaccade shape, which resulted from the principal component

analysis. We characterize microsaccades as binocular events whose

variance in shape can be described by at least 80% with the

microsaccade shape model [26].

To detect the direction of a microsaccadic eye movement, we

mapped the snippet of the trajectory that corresponds to a

microsaccade onto the two-component model. Depending on the

sign of the coefficient for the first component, we determine the

direction as Right or Left, for positive or negative sign, respectively.

Considering the direction of microsaccades and neglecting

temporal proximity, we mapped the sequence of microsaccades

into a time-discrete sequence of two symbols Left and Right, as

shown in Figure 2.

Results

Exact Bayesian estimation of Markov order
Using the method introduced above, we generated sequences

from Markov chains of zeroth-, first-, and second-order. By

definition, the zeroth-order Markov chain is an uncorrelated

random process. After the computation of a(n)
i and b(n)

i , we used

Equation (11) and (12) to estimate the order of the chain.

This was done by evaluating the Bayes factor (Eq. 11) and using

a flat prior. Due to the hierarchical structure of the Markov

models, this approach is an application of Occam’s razor in

ambiguous conditions: when the Bayes factor supports two

alternative hypotheses with equivalent strength, the most parsi-

monious model, i.e., the lowest order, would be selected. We

present in Figure 3 the results of the Bayes factor analysis, which

we obtained by means of Monte Carlo simulation, for simulations

of sequences of Markov chains of (a) zeroth-, (b) first-, and (c)

second-order.

Throughout our Bayes factor analysis, the parameterization

which led to a zeroth-order Markov chain is taken as null

hypothesis. For simulated uncorrelated random processes, the

estimation returned a zeroth-order Markov chain as the best

descriptor for the data. None of the hypotheses of higher-order

Markov chains showed evidence against the null hypothesis (cf.

Fig. 3a). For sequences simulated from a first-order Markov chain,

the estimator presented the highest evidence against the null

hypothesis for the first-order parameterization. Due to nesting of

the Markov chains, a parameterization as second- or third-order

Markov chain also puts evidence against the null hypothesis, i.e.

the zeroth-order parameterization. But the scale of interpretation

of the Bayes factor allows the separation of the first-order Markov

chain from the others. The Bayes factor analysis estimated the

parameterization of the Markov chain as first-order (cf. Fig. 3b).

We obtained a similar result for the simulated sequences of

second-order Markov chains. Here, the highest evidence against

the null is given for a second-order parameterization of the

Markov chain model (cf. Fig. 3c). The order was estimated

correctly.

The dynamical Markov model of microsaccade directions
Using the direction of the horizontal component of the

microsaccadic eye movements, we obtained sequences of Left

and Right movements, as illustrated in Figure 2. Under the

assumption that microsaccade direction sequences of an individual

subject can be evaluated as realizations of a single Markov process,

we summed the counts a(n)
i and b(n)

i from all different trials of one

participant and estimated the order of the Markov chain as

described above.

Selecting the null hypothesis of a zeroth-order Markov chain,

we compare the parameterizations, corresponding to higher-order

Markov chains, against this null hypothesis. For thirteen partic-

ipants, the estimator preferred the parameterization as first-order

Markov chain, i.e., compared against zeroth-order parameteriza-

tion, evidence against the latter is found (cf. Fig. 4a). Although in

comparison with second- and third-order parameterization, the

null hypothesis was supported, it is the nesting of Markov chains

and additionally the scale of interpretation of the Bayes factor that

revealed the first-order parameterization of the Markov chain

model as the best estimate. In Figure 4b, the analysis is presented

for the remaining 6 out of 19 participants. For three subjects, no

evidence against the null hypothesis, i.e., against a parameteriza-

tion as zeroth-order Markov chain existed (cf. Fig. 4b, left column).

The microsaccade sequences mapped on the sequences of two

symbols could be described best for the remaining three subjects

by a second-order Markov chain. The highest evidence against the

null hypothesis was calculated for a second-order parameterization

(cf. Fig. 4b, right column).

Yet, for thirteen participants, a parameterization of the model

as first-order Markov chain returns the best fitting stochastic

process for the microsaccade sequences. Nevertheless, for six

participants, the support for zeroth- or second-order parameter-

ization of the Markov chain is very close to be supportive for first-

order Markov chain parameterization as well.

Relationship between microsaccade properties and
estimated Markov order

Table 1 summarizes for each participant the estimated order of

the Markov chain and the characteristic properties of both,

microsaccades and microsaccades sequences. The part of the time

series that corresponds to a microsaccadic event is mapped on the

two-components model [26]. The amplitude and displacement

were evaluated for the horizontal component of the microsaccade.

The average rate and intermicrosaccade intervals (IMSI) were

taken from those microsaccadic events that are binocularly

appearing in both eyes and whose variance can be mapped on

the two components of the microsaccade model by at least 80%.

Figure 5 shows the one-step transition matrices for each

participant for a first-order Markov model. The values are

calculated on the maximum likelihood estimates, i.e.:

Markov Models for Microsaccade Symbol Sequences
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qi~
a

(1)
i

a
(1)
i zb

(1)
i

: ð13Þ

There are inter-individual differences for transition matrices across

participants. We identified participants for which the probabilities

to change or stay in a state are almost equal. But still a first-order

Markov chain describes their sequences best although the

probabilities are close to 0:5, i.e., chance-level in uncorrelated

random processes. Furthermore, the same evidences against

higher- or lower-order Markov chains does not imply that the

transition matrices are similar, too. Therefore, a sole analysis on

the transition matrices to determine the Markov order would not

give correct results.

Discussion

Symbol sequences obtained from experimental observations of

complex biological dynamics can be modeled by a stochastic

process. We developed a new procedure for the estimation of the

order of an underlying Markov process. The framework was

developed and tested for simulated data and applied to micro-

saccadic eye movements from human eye tracking recordings.

Bayesian estimation of the Markov order
Before investigating data from human fixation, we tested our

method on simulated data. We generated realizations of zeroth-,

first- and second-order Markov chains and we inferred their order.

We compared the evidences for parameterization as higher-order

Markov chains against the null hypothesis which referred to a

parameterization as zeroth-order Markov chain.

Although different order Markov chains are nested into each

other, we were able to recover the correct order of each simulated

data set. The scale of interpretation of the Bayes factor analysis lets

us even separate models with smallest differences — here, a

Markov model with different parameterizations, i.e., different

orders. The estimator turned out to be useful with a flat prior on

model probabilities, since more complex hypotheses, i.e., higher-

order Markov chains, contain a larger variance in their marginal

likelihoods.

Symbolic dynamics for sequences of microsaccades
As a first step, we derived symbol sequences from microsaccadic

eye movements by a coarse-graining strategy. We neglected

temporal intervals between subsequent events and mapped

microsaccades to symbols based on their spatial orientation.

Despite this simplification, the resulting symbol sequences kept

robust properties of the experimental data. In particular, we were

interested in the statistical dependence between the orientations in

sequences of microsaccades. For each given sequence, we

computed the transition probability matrix for each participant.

Transition probabilities were used for likelihood computations

within the framework of Bayesian inference.

A Markov model for microsaccade sequences
Earlier findings in the analysis of microsaccades postulate the

existence of a statistical coupling of subsequent microsaccade

orientations, e.g., square-wave jerks (SWJ) and biphasic square

wave intrusions (BSWI) [18], in addition to isolated microsaccades.

Under the assumption that sequences of microsaccade directions

are realizations of a discrete-time Markov process, we estimate the

order of the chain from experimental data. A zeroth-order Markov

chain represents a stationary stochastic process without any

memory of the current state, i.e., an uncorrelated process. In

contrast, the first-order Markov chain could produce SWJ, i.e.,

sequence of two microsaccades with opposite directions, and

isolated microsaccades as result of the same process with one-step

Figure 2. Horizontal FEM trajectory with detected microsaccades and illustration of the sequence of microsaccade directions. (a)
Trajectory of a 20s FEM trial with (upper panel) detected microsaccades and (lower panel) directions of microsaccades. (b) Sequence of microsaccade
directions represented as discrete time series of binary states. For the analysis of microsaccade direction sequences, we neglect the temporal
proximity existent in the sequence of microsaccades.
doi:10.1371/journal.pone.0043388.g002
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memory, i.e., when knowledge of the current state influences the

probability for the upcoming transition. The sequences realized in

a BSWI can be explained as follows: The first microsaccade drives

the eye away from its initial position and the next two

microsaccades return the eye to its launch site, i.e., the third

microsaccade depends on the previous two microsaccadic events

as the second event was not error-correcting but overshot the

launch site. However, according to our analyses using the Bayes

factor, the first-order Markov chain is the best description of most

of the experimentally observed microsaccade sequences. Thus, the

observed pattern of a BSWI occurs only by chance in a process

with memory length 1 such that statistically, no support is given for

the existence of such pattern if not occurring randomly. This adds

to the statistical description of the microsaccade dynamics and

lends support to ‘‘the idea of a continuum between microsaccades

and SIs (or at least microsaccades and SWJ)’’ as proposed by

Otero-Millan et al. ([24], p. 4385), following the original idea of

Gowen et al. ([33], p. 154).

Moreover, Otero-Millan et al. concluded ‘‘that microsaccades

and SIs are essentially the same phenomena’’ ([24], p. 4386) but

highlighted before that ‘‘Future studies should investigate the

relationship between microsaccades and other types of saccadic

intrusions’’ ([24], p. 4385). Following [18], these other types of

saccadic eye movements are single saccadic pulse (SSP), double

saccadic pulse (DSP), and biphasic square wave intrusion (BSWI).

Having obtained strong evidence for a one-step memory process as

model for the generation of microsaccades and SWJ, the BSWI

component might be interpreted as a rare random event in the

sequence of directions with first-order statistical dependence. The

second-order Markov chain with its two-step memory is compat-

ible with the data of only three participants, however, the scale of

interpretation of the Bayes factor yielded only very weak support

against a first-order Markov chain, if a direct comparison is made.

In our analysis, we considered the dynamics of the microsaccade

directions, disrespecting a possible coupling between physiological

drift and microsaccades [6,10,34]. Further analyses, which

combine both components of fixational eye movements, could

potentially lead to more complicated process assumptions.

A potential application of our method rises from the observation

that microsaccade directions seem to be influenced by the relative eye

position and fixation target. Otero et al. [24] showed for a subgroup

of participants, whose eye movements have been recorded with the

scleral search coil technique [35], that the first microsaccade in a SWJ

is error-producing. It may be possible that in a region which is close to

the fixated target, microsaccades are error-producing and thus

independent from the previous direction. On the other hand, micro-

saccades triggered far away from the target may be error-correcting

and thus related to the previous saccadic direction. In this scheme, it

may be possible to discriminate between two separate regions around

the fixation target: a nearby region where the SWJ are the majority

and thus the sequences of microsaccade shapes are better described

by a Markov chain of first-order and a far-away region in which it

Figure 3. Markov order estimation for sequences of simulated different order Markov chains. Using a parameterization as zeroth-order
Markov chain as null hypothesis, we compared in the Bayes factor the evidences against first-, second-, and third-order parameterization of Markov
chain. We simulated sequences of: (a) uncorrelated random processes, (b) first-order Markov chain, and (c) second-order Markov chains, each of two
symbols. In (a) we obtained support for zeroth-order parameterization, in (b) evidence against the null for all orders but highest with a first-order
parameterization and (c) accordingly for a second-order parameterization. This validated the estimator to be correct.
doi:10.1371/journal.pone.0043388.g003
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may be possible to find a more complex behavior leading to a mixture

of microsaccade shapes. For our analysis, limitations of the EyeLink II

system to resolve the absolute eye position with necessary accuracy of

more than 0.5u do not allow us to perform a comparable analysis with

our data. But it should be considered in studies in which the

resolution is higher.

Figure 4. Markov order estimation for microsaccade sequences of nineteen participants in a fixation task experiment. Using the
zeroth-order parameterization of the Markov chain model as null hypothesis, we calculated the Bayes factor to separate that order which best
described the sequences of microsaccade directions. (a) The thirteen participants show evidence of different strengths against the null hypothesis.
Through parsimony, a first-order parameterization of the Markov chain would be estimated as best descriptor. (b) For six participants, support for
zeroth- (left column) or second-order (right column) is estimated.
doi:10.1371/journal.pone.0043388.g004
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While we demonstrated our method on examples from

fixational eye movements, we believe that the Bayesian estimation

of the Markov order of a stochastic process underlying the

generation of symbol sequences will turn out as a powerful tool for

a broad range of biological systems.
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