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Abstract

Purpose: To evaluate the quality of patient‐specific complicated treatment plans,

including commercialized treatment planning systems (TPS) and commissioned beam

data, we developed a process of quality assurance (QA) using a Monte Carlo (MC)

platform. Specifically, we constructed an interface system that automatically con-

verts treatment plan and dose matrix data in digital imaging and communications in

medicine to an MC dose‐calculation engine. The clinical feasibility of the system

was evaluated.

Materials and Methods: A dose‐calculation engine based on GATE v8.1 was embed-

ded in our QA system and in a parallel computing system to significantly reduce the

computation time. The QA system automatically converts parameters in volumetric‐
modulated arc therapy (VMAT) plans to files for dose calculation using GATE. The

system then calculates dose maps. Energies of 6 MV, 10 MV, 6 MV flattening filter

free (FFF), and 10 MV FFF from a TrueBeam with HD120 were modeled and com-

missioned. To evaluate the beam models, percentage depth dose (PDD) values, MC

calculation profiles, and measured beam data were compared at various depths

(Dmax, 5 cm, 10 cm, and 20 cm), field sizes, and energies. To evaluate the feasibility

of the QA system for clinical use, doses measured for clinical VMAT plans using films

were compared to dose maps calculated using our MC‐based QA system.

Results: A LINAC QA system was analyzed by PDD and profile according to the

secondary collimator and multileaf collimator (MLC). Values for MC calculations and

TPS beam data obtained using CC13 ion chamber (IBA Dosimetry, Germany) were

consistent within 1.0%. Clinical validation using a gamma index was performed for

VMAT treatment plans using a solid water phantom and arbitrary patient data. The

gamma evaluation results (with criteria of 3%/3 mm) were 98.1%, 99.1%, 99.2%, and

97.1% for energies of 6 MV, 10 MV, 6 MV FFF, and 10 MV FFF, respectively.

Conclusions: We constructed an MC‐based QA system for evaluating patient treat-

ment plans and evaluated its feasibility in clinical practice. We observed robust

agreement between dose calculations from our QA system and measurements for

VMAT plans. Our QA system could be useful in other clinical settings, such as small‐
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field SRS procedures or analyses of secondary cancer risk, for which dose calcula-

tions using TPS are difficult to verify.

K E Y WORD S

GATE, HD120, Monte Carlo, TPS QA, TrueBeam

1 | INTRODUCTION

Treatment plans of intensity modulated radiotherapy (IMRT) and vol-

umetric modulated arc radiotherapy (VMAT) have dynamic motion of

multileaf collimators (MLC), gantry, or dose rate, during dose deliv-

ery, and could deliver highly conformal prescribed dose to the target

volume while sparing normal volume by modulating intensities.1,2

Model‐based dose calculation algorithms in the commercial treat-

ment planning systems such as anisotropic analytical algorithm (AAA)

or the collapsed cone convolution class (CCC) have fast dose calcula-

tion time and accuracy as level as clinically acceptable.3,4

Although accurate beam data measurement and beam modeling

can reduce uncertainty of dose calculation in IMRT and VMAT plans,

many sources of errors in IMRT planning, including uncertainty of beam

modeling, output for small fields, unmeasured out‐of‐field area, hetero-

geneity, and so on, still remains.5 Especially, as VMAT is widely used for

stereotactic ablative body radiotherapy (SABR) because of its fast treat-

ment time and high conformality,6–9 importance of the patient‐specific
pretreatment quality assurance (QA) has been increased.5,10–12

Monte Carlo (MC) simulation is a popular method used in compar-

ative studies to verify the accuracy of dose calculation using commer-

cial treatment planning systems (TPSs).13–19 Recently, many methods

have been applied to improve the calculation time for Monte Carlo

simulation, which is used to verify the accuracy of radiotherapy.20

GATE v8.1 which is an open‐source toolkit compatible with the Gean-

t4 medical application system21 was released. GATE, which has been

mainly used for single photon emission computed tomography (SPECT)

and positron emission tomography (PET), is a Geant4‐based MC plat-

form with three‐dimensional simulation and parallel computation.

In the current study, we developed a QA program which can

automatically convert treatment plan files in digital imaging and com-

munications in medicine (DICOM) format into our QA system and

export three‐dimensional dose in DICOM format for analysis. We

used GATE v8.1 as dose calculation engine in the QA system. A

TrueBeam with HD120 (Varian Medical Systems, Palo Alto, CA,

USA) was modeled and validated as the source of the QA system.

To verify the clinical usefulness of the QA program, dose calculations

for VMAT treatment plans using the QA program were performed

and compared to dose measured using radiochromic film.

2 | MATERIALS AND METHODS

2.A | Design of the QA system

The QA system analyzes plans and converts data into macro files

that can be used in GATE. The VMAT plan generated using a TPS

exports data to the QA system in DICOM format. The QA system

imports plan files and automatically analyzes the treatment parame-

ters, including number of fields, positions of the x and y jaws, posi-

tions of the gantry and collimator, and position of the MLC over

time for each field and segment. Based on the analyzed information,

the QA system creates a folder corresponding to the patient ID and

name. It then generates a macro capable of performing dose calcula-

tions within the QA system according to number of fields, position

of the gantry, field weight, and MLC in the data folder. The MLC is

stored with the gantry location information file, with outboard leaf,

half‐leaf on target, half‐leaf on isocenter, quarter‐leaf on isocenter,

and quarter‐leaf on target divided into parts A and B. The macros

(consisting of the time sequences) are split into 200 job players and

combined into one file after calculation.

To reduce time consumption in MC‐based dose calculation, we

designed a compact cluster exclusively. The compact cluster is con-

figured with 88 nodes using the Rocks cluster Linux for dose calcula-

tion. The 88 nodes are configured for high‐performance computing

(8–16 GB of RAM and a CPU for Intel i7‐3770 and Xeon E3‐1220).
The cluster system contains one master node in addition to the cal-

culation nodes. The master node controls the job split, output merge,

F I G . 1 . Processing diagram for the Monte Carlo‐based QA system.
QA, quality assurance.
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job submission, and queue management.21,22 The master node com-

municates with the external network to import a treatment plan in

DICOM format and perform dose calculation in parallel via a high‐
speed ethernet switching hub. The constructed cluster submits and

manages the macro converted by the QA system using Condor soft-

ware.23 This QA system was designed to use time weighting applied

within the QA program according to the treatment plan. The Fig. 1

shows the configuration and sequence of the system.

2.B | Linac modeling

To construct a QA system with Monte Carlo‐based dose calculation

engine, geometries of TrueBeam including target, collimator, and

HD120 MLC, provided by the manufacturer under non‐disclosure
agreement, were modeled24 using GATE v 8.1. Modeling of HD120

MLC is the most important for calculating absorbed dose with IMRT/

VMAT treatment plan. Geometries from the HD120 MLC were sim-

ulated using tessellated volumes from stereolithography (STL) files

containing triangular facet data. These data were used to define the

surfaces of three‐dimensional objects. It is composed of 32 pieces

with a thickness of 2.5 mm at the center and 28 pieces with a thick-

ness of 5.0 mm at the periphery.

Although the detailed geometries of target assembly were mod-

eled, we used phase space files provided by the manufacturer. In the

phase space files, photons with nominal energies of 6 MV, 6 MV

flattening filter free (FFF), 10 MV, and 10 MV FFF were recorded

above the jaws. The photon sources were generated from target and

incident electrons with mean energies for each source were 6.18,

5.9, 10.7, and 10.2 MeV, respectively.22 The phase space files were

formatted according to recommendation of the International Atomic

Energy Agency (IAEA) and have been verified in published stud-

ies.21,25 The average of photon energy is 1.92 MeV and 1.87 MeV

for 10 MV and 10 MV FFF, respectively. Because the ratios of pho-

ton spectrum with energy over 10 MeV were 0.08% and 0.014%,

respectively, hadronic processes was not considered in this study.

In order to validate the modeling of TrueBeam, the three‐dimen-

sional dose in water phantom with size of 60 × 60 × 60 cm3 was

calculated for each field size varying from 3 × 3 cm2 to

40 × 40 cm2. Resolution of a voxel was 0.4 × 0.4 × 0.4 cm3 and the

physics range cut was set to 0.1 mm.21,26–28 For all the calculations,

a source‐to‐surface distance (SSD) of 100 cm was used. The dose

calculation results were generated as 3D structures to be analyzed

using the program. Each calculated dose was compared with per-

centage depth dose (PDD) and in‐ and cross‐plane profiles at depth

of Dmax, 5 cm, 10 cm, and 20 cm, which were measured with ioniza-

tion chamber.

2.C | Clinical feasibility of the QA system

In order to validate the clinical feasibility, four VMAT plans with

photon energies of 6 MV, 10 MV, 6 MV FFF, and 10 MV FFF in

stereotactic ablative radiotherapy (SABR) for lung, adrenal gland,

liver, and lung cancer, respectively, were enrolled and the character-

istics of the plans summarized in Table 1. QA plans, in which the

TAB L E 1 A summary of treatment plans.

6 MV 10 MV 6 MV FFF 10 MV FFF

Treatment Site Lung Adrenal Gland Liver Lung

Number of Arcs 2 2 2 2

Number of

Control Points

88 182 112 182

Total MU 2429 5319 1781 2730

Daily Dose [Gy] 15 20 12 15

FFF, flattening filter free.

F I G . 2 . PDD results of a Monte Carlo‐
based QA system for (a) 6 MV, (b) 6 MV
FFF, (c) 10 M V, and (d) 10 MV FFF
energies. The empty circles represent the
Monte Carlo calculations, and the solid
lines represent the measured data. FFF,
flattening filter free; QA, quality assurance;
PDD, percentage depth dose.
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gantry angles of all the constraints in the VMAT plans were set to 0

degree, were generated and exported to the QA system. Three‐di-
mensional absorbed dose in a 40 × 40 × 10 cm3 solid water phan-

tom with a voxel size of 0.2 × 0.2 × 0.2 cm3 were calculated using

the QA system. The solid water phantom was set up with source to

axis distance of 100 cm and depth of 5 cm. The two‐dimensional

dose maps at depth of 5 cm were converted to DICOM and com-

pared to the measured absorbed dose using Gafchromic EBT3 film

(Ashland, Bridgewater, NJ, USA).

The measured and calculated dose maps were normalized glob-

ally to dose that the homogeneously high dose region and nearby

prescribed dose were received, following by recommendation of

AAPM TG‐218.5 The measured dose map was normalized to dose at

isocenter of the calculation. The gamma index was evaluated accord-

ing to the following dose difference (DD)/distance to agreement

(DTA) criteria: 2%/2 mm, 3%/3 mm, and 4%/4 mm with 10% dose

threshold.

3 | RESULTS

Figure 2 shows the examples of the calculated and measured PDD

with the field size of 10 × 10 cm2 and Fig. 3 shows the profiles at

the depths of Dmax, 5 cm, 10 cm, and 20 cm. The measured and cal-

culated values were represented to be solid line and circle, respec-

tively. The calculated PDD and profiles resulted from MC simulation

of TrueBeam seems to be agreed to the measured PDD and profiles

well.

Mean errors in PDD and profiles with the field sizes varying from

3 × 3 cm2 to 40 × 40 cm2 were summarized in Table 2. Each PDD

and profile was normalized to Dmax and central axis dose as 100%,

respectively. All the differences at all the measured spots corre-

sponding to the calculated spot were obtained in percentage point

and calculated to be the mean errors. The mean errors of the calcu-

lated PDDs for all the evaluated field sizes were averaged to be

0.13%, 0.46%, 0.70%, and 0.61% for 6 MV, 10 MV, 6 MV FFF, and

F I G . 3 . Lateral profile results of a Monte
Carlo‐based QA system for (a) 6 MV, (b)
6 MV FFF, (c) 10 MV, and (d) 10 MV FFF
energies at Dmax depth, (e) 6MV, (f) 6 MV
FFF, (g) 10 MV, and (h) 10 MV FFF
energies at 5 cm depth, (i) 6 MV, (j) 6 MV
FFF, (k) 10 MV, and (l) 10 MV FFF
energies at 10 cm depth, (m) 6 MV, (n)
6MV FFF, (o) 10 MV, and (p) 10 MV FFF
energies at 20 cm depth. The empty circles
represent the Monte Carlo calculations,
and the solid lines represent the measured
data. FFF, flattening filter free; QA, quality
assurance.
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10 MV FFF, respectively. The mean errors of the calculated profiles

for 6 MV, 10 MV, 6 MV FFF, and 10 MV FFF were averaged to be

0.45%, 0.38%, 0.44%, and 0.34%, respectively. For all the energies,

the smallest average value of the mean errors was observed to be

0.27% for 8 × 8 cm2 and largest average value was to be 0.53% for

30 × 30 cm2. And, the largest differences between measurements

and the Monte Carlo calculation were 1.4% (40 × 40 cm2 using

6 MV FFF) and 1.12% (30 × 30 cm2 using 10 MV).

The MLC shapes for all the constraints were converted automati-

cally using the QA system, as shown in Fig. 4, and absorbed doses

for all the VMAT plans were calculated successfully. Fig. 5 shows

the 2D dose distribution from film dosimetry, those from MC‐based
calculation using the QA system, and gamma analysis. Gamma values

with the criteria of 3%/3 mm were evaluated to be 98.1%, 99.1%,

99.2% and 97.1% in treatment plans with 6 MV for lung cancer,

10 MV for adrenal gland cancer, 6 MV FFF for liver cancer and

10 MV FFF for lung cancer, respectively. Gamma analysis with

criteria of 3%/3 mm to 4%/4 mm were evaluated to be over 95% for

all the cases, as shown in Table 3. In criteria of 2%/2 mm, gamma

value less than 90% was observed for 10 MV FFF.

The computing time required for MC‐based dose calculation

using the QA system with clustering was 15 hours per treatment

plan on average. The number of particles and weight for VMAT

plans were decided to achieve an overall statistical uncertainty of

less than ≤1.0%.

4 | DISCUSSION

In this study, we constructed a MC‐based QA system with a new

version of GATE for the Geant4 platform (released in 2018) and

evaluated clinical feasibility. The accuracy of the PDDs and profiles

calculated with the developed MC‐based QA system was verified by

comparing the measurement results with good agreement of 1%.

F I G . 3 . (Continued).
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Especially, the maximum error was 0.92% for the field size of

20 × 20 cm2. Dose calculations using the MC‐based QA system for

the treatment plans were performed and good agreement with

gamma passing rate higher than 97% was observed between the pla-

nar dose distributions from the MC‐based QA system and the film

measurement. Our results show that MC‐based QA system can be

used for the patient specific QA of VMAT treatment plans effec-

tively.

In order to validate feasibility of clinical QA and accuracy in dose

calculation, two‐dimensional dose distribution was calculated using

the MC‐based QA system and measured using Gafchromic EBT3 film

which is one of conventional QA tools for IMRT with high spatial

resolution.29 AAPM TG‐100 reported various processes involved in

the IMRT,30 and various sources of uncertainties in the steps of

treatment planning and delivery could affect to accuracy of dose cal-

culation and measurement in this study.

In the process of treatment plan, 4‐degree control point in the

VMAT treatment plans enrolled in this study might increase uncer-

tainty of delivery.31 Inadequate beam measurement, beam modeling,

heterogeneity calculation, and region of dose calculation could affect

TAB L E 2 The error rate (%) of the Monte Carlo‐based QA system for (a) PDD and (b–e) lateral profiles.

3 × 3 m2 4 × 4 cm2 6 × 6 cm2 8 × 8 cm2 10 × 10 cm2 20 × 20 cm2 30 × 30 cm2 40 × 40 cm2

(a) Percent depth dose

6 MV 0.21 0.03 0.06 0.21 0.12 0.12 0.18 0.11

10 MV 0.32 0.13 0.08 0.32 0.30 0.93 0.54 1.09

6 MV FFF 0.86 0.81 0.89 0.66 0.72 0.73 0.60 0.34

10 MV FFF 0.63 0.84 0.66 0.63 0.76 0.57 0.60 0.23

(b) Lateral profile at Dmax depth

6 MV 0.37 0.71 0.15 0.19 0.47 0.88 0.63 0.51

10 MV 0.56 0.60 0.23 0.32 0.21 0.3 0.11 0.37

6 MV FFF 0.05 0.17 0.92 0.78 0.68 0.76 0.70 0.20

10 MV FFF 0.37 0.47 0.26 0.05 0.12 0.61 0.55 0.44

(c) Lateral profile at 5 cm depth

6 MV 0.66 0.51 0.46 0.49 0.12 0.13 0.84 0.64

10 MV 0.48 0.53 0.62 0.58 0.21 0.31 1.12 0.87

6 MV FFF 0.51 0.42 0.12 0.13 0.29 0.50 0.57 0.52

10 MV FFF 0.55 0.56 0.49 0.43 0.30 0.17 0.09 0.12

(d) Lateral profile at 10 cm depth

6 MV 0.48 0.70 0.35 0.03 0.61 0.24 0.67 0.51

10 MV 0.84 0.08 0.84 0.34 0.23 0.08 0.01 0.04

6 MV FFF 0.39 0.03 0.15 0.11 0.55 0.51 0.96 0.04

10 MV FFF 0.62 0.46 0.47 0.31 0.17 0.17 0.24 0.11

(e) Lateral profile at 20 cm depth

6 MV 0.34 0.90 0.57 0.07 0.13 0.48 0.61 0.03

10 MV 0.27 0.61 0.10 0.18 0.42 0.13 0.36 0.32

6 MV FFF 0.48 0.25 0.14 0.24 0.43 0.63 0.57 1.4

10 MV FFF 0.46 0.30 0.47 0.03 0.04 0.21 0.48 0.95

PDD, percentage depth dose.

F I G . 4 . Field shape of the HD120
multileaf collimator generated by (a) a
treatment planning system and (b) the
Monte Carlo‐based QA system.
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F I G . 5 . Two‐dimensional dose map for a VMAT plan using four different energies (a) measured by EBT3 film and (b) calculated by the
Monte Carlo‐based QA system (SAD 100 cm); (c) the gamma index image. QA, quality assurance; SAD, source to axis distance; VMAT,
volumetric‐modulated arc therapy.
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to accuracy of dose calculation.5 And also, tissue and material com-

position could affect accuracy.32,33 In order to reduce factor causing

dose calculation error, three‐dimensional dose using homogenous

solid water phantom was calculated.

In the processes of positioning and delivery, various sources of

uncertainties, for example, film positioning, accuracy of leaf motion,

and gantry rotation, could affect accuracy of dose delivery. Also,

uncertainties of registration and dose conversion34 in the step of

analysis could affect accuracy of the results in this study. In pretreat-

ment QA for VMAT treatment plan, irradiation with fixed gantry

angle and composite dose for the all fields were efficient; however,

dose error resulted from uncertainties of MLC motion, gantry rota-

tion, dose rate variation, and daily output variation might be

obscured.5 Because the purpose of this study was to evaluate accu-

racy of dose calculation and feasibility of the MC‐based QA system

for VMAT treatment plan, we fixed gantry angle to 0 degree in order

to reduce and minimize uncertainties of MLC motion and gantry

rotation in delivery for VMAT treatment plans.

The purpose of the QA system is to verify dose calculations and

other factors related to the actual patient treatment plan. Similar

studies have been conducted to evaluate and validate treatment

plans.35–37 Verifying the accuracy of a radiation dose calculation is

essential. A reliable, secondary verification should be performed with

difficult or complex treatment plans or in stereotactic radiosurgery

(SRS) cases requiring high doses in one fraction.27,38 Although there

are limitations in the dose calculation algorithms used in commercial

planning systems, programs for calculating dose using Monte Carlo

TAB L E 3 Results of gamma index comparison (2%/2 mm, 3%/
3 mm, and 4%/4 mm) between measured data using EBT3 film and
calculated data using Monte Carlo.

2%/2 mm 3%/3 mm 4%/4 mm

6 MV 94.6% 98.1% 99.5%

10 MV 97.4% 99.1% 99.8%

6 MV FFF 96.5% 99.2% 99.8%

10 MV FFF 87.2% 97.1% 99.8%

FFF, flattening filter free.

F I G . 6 . VMAT treatment procedures for
(a) measurement‐based QA system
currently used and (b) MC‐based QA
system. QA, quality assurance; VMAT,
volumetric‐modulated arc therapy.

108 | LEE ET AL.



are often deemed sufficient. However, although Monte Carlo‐based
dose calculation has distinct advantages, it can cause differences in

results based on the accuracy of position or the material composi-

tion21 and also it requires more time to calculation. These make the

use of Monte Carlo dose calculation difficult in clinical purpose uni-

versally.

In order to overcome the disadvantages, many researchers are

choosing to buy cluster computers at a high cost or to pay for and

use parallel computers at sites capable of high‐performance comput-

ing. However, it is cost‐prohibitive for many researchers to purchase

clusters, and it can be inconvenient to install certain programs or

wait for their use. The GATE v8.1 platform used in our study had a

problem of compatibility with the existing cluster system, so we

upgraded all the programs in the cluster with the QA system. We

developed cost‐effective compact clusters that can be constructed

directly for each clinical site and developed a QA program that is

easily applied and analyzed. The Fig. 6 shows a schematic diagram of

the QA program. The current system is a prototype. We are trying

to apply SRS or stereotactic body radiotherapy (SBRT) with fre-

quency of about one case per day. We have plans to reduce compu-

tation time through future studies. Our Monte Carlo‐based QA

system, designed to enable QA before treatment and without the

need to access treatment equipment, may be useful for various clini-

cal procedures.

Currently, the QA for VMAT plans used in clinical practice is

based on a solid water phantom, which is commonly used to

determine the difference from the expected dose in TPS.39,40 QA

using EPID and dynalog files or independent dose calculations

using a treatment plan and dynalog files generated at the pre-

treatment QA are also being performed. Our developed clinical

QA program can identify dose issues that cannot be calculated

by TPS, including errors in beam delivery, radiation scattering,

and leakage dose. According to the ICRP 86, the incidence of

TPS in radiation therapy is 28%. Therefore, the availability of an

additional QA protocol system for TPS is becoming increasingly

necessary.41

As monitor unit (MU) in the use of IMRT or VMAT is usually

higher than that in conventional RT, effect of neutron dose in IMRT

and VMAT has been studied and reported.42–45 Peripheral dose of

thermal neutron in VMAT with 10 MV was less than 100 micro‐Gray
of kerma equivalent.45 All the mean energies of the photon simu-

lated in this study were less than 10 MeV and only 0.08% for 10

MV was over 10 MeV, we did not consider effect of the neutron

dose in film measurement. However, neutron dose generated by the

use of photon with higher energy than 10 MV may affect in pre-

treatment QA and dosimetry in VMAT or IMRT plans.

5 | CONCLUSION

We established a pretreatment QA system for clinical use of

Monte Carlo calculations for TrueBeam and HD120 MLC and con-

firmed the possibility of using this system for VMAT plans. Our

QA system can be used clinically as an additional verification or

replacement QA method for VMAT plans, which are increasing.

Importantly, our system confirms the accuracy of commercial TPS

dose algorithms currently in clinical use. Our system can also be

applied in other settings, including calculation of dose accuracy in

small fields or secondary cancer risk for out of field which are

difficult to assess with TPS.
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