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Background. Cardiovascular magnetic resonance imaging is considered the reference standard for assessing cardiac morphology
and function and has demonstrated prognostic utility in patients undergoing transcatheter aortic valve replacement (TAVR).
Novel fully automated analyses may facilitate data analyses but have not yet been compared against conventional manual data
acquisition in patients with severe aortic stenosis (AS). Methods. Fully automated and manual biventricular assessments were
performed in 139 AS patients scheduled for TAVR using commercially available software (suiteHEART®, Neosoft; QMass®,Medis Medical Imaging Systems). Volumetric assessment included left ventricular (LV) mass, LV/right ventricular (RV) end-
diastolic/end-systolic volume, LV/RV stroke volume, and LV/RV ejection fraction (EF). Results of fully automated and manual
analyses were compared. Regression analyses and receiver operator characteristics including area under the curve (AUC)
calculation for prediction of the primary study endpoint cardiovascular (CV) death were performed. Results. Fully automated and
manual assessment of LVEF revealed similar prediction of CV mortality in univariable (manual: hazard ratio (HR) 0.970 (95% CI
0.943–0.997) p � 0.032; automated: HR 0.967 (95% CI 0.939–0.995) p � 0.022) and multivariable analyses (model 1: (including
significant univariable parameters) manual: HR 0.968 (95% CI 0.938–0.999) p � 0.043; automated: HR 0.963 [95% CI
0.933–0.995] p � 0.024; model 2: (including CV risk factors) manual: HR 0.962 (95% CI 0.920–0.996) p � 0.027; automated: HR
0.954 (95%CI 0.920–0.989) p � 0.011).)ere were no differences in AUC (LVEF fully automated: 0.686; manual: 0.661; p � 0.21).
Absolute values of LV volumes differed significantly between automated and manual approaches (p< 0.001 for all). Fully
automated quantification resulted in a time saving of 10 minutes per patient. Conclusion. Fully automated biventricular vol-
umetric assessments enable efficient and equal risk prediction compared to conventional manual approaches. In addition to
significant time saving, this may provide the tools for optimized clinical management and stratification of patients with severe AS
undergoing TAVR.

1. Introduction

Cardiovascular disease remains the leading cause of death
globally. Aortic stenosis (AS) is the most common valvular
heart disease and of rising prevalence in the elderly pop-
ulation. Transthoracic echocardiography (TTE) constitutes
the standard diagnostic tool to quantify AS using

transvalvular gradients and velocities. However, in the ab-
sence of a high-gradient situation, the diagnostic work is
challenging and includes accurate determination of left
ventricular (LV) ejection fraction (EF) and LV stroke vol-
ume (SV) to distinguish between different AS subgroups [1].
Furthermore, cardiac function has strong prognostic im-
plications in patients with AS and other structural heart
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diseases, and therefore, its accurate determination is es-
sential for clinical management and risk prediction [1–5].
Amongst various imaging techniques, cardiovascular mag-
netic resonance (CMR) imaging is considered a reference
methodology with proven superiority over echocardio-
graphical analyses regarding reproducibility and accuracy to
detect clinically significant alterations in LV and right
ventricular (RV) dimensions and function [6–9]. Recently,
novel artificial intelligence (AI)-based deep-learning algo-
rithms were introduced, enabling accurate and fully auto-
mated image analyses using convolutional neural networks
[10–12]. )ese AI-based volumetric analyses were already
shown to be feasible, reproducible, and of prognostic value
in patients with coronary disease and were of high potential
for time saving and facilitation of clinical routine [13, 14].
However, similar data in patients with severe AS are cur-
rently lacking. )erefore, we sought to investigate fully
automated biventricular volumetric analyses using com-
mercially available software solutions in comparison to
conventional manual analyses and to study their accuracy in
terms of volumetric assessment and prognostic implications
in patients with severe AS being scheduled for transcatheter
aortic valve replacement (TAVR).

2. Methods

2.1. Study Population. Patients fulfilling echocardiographic
criteria of severe AS according to current guidelines of the
European Society of Cardiology and confirmed indications
for TAVR without typical contraindications for CMR were
able to participate [1, 15, 16]. Between January 2017 and June
2021, a total of 146 patients were prospectively enrolled and
agreed to an additional CMR before undergoing TAVR as
part of an interdisciplinary research project on aortic valve
stenosis [17]. )e local ethics committee approved the study,
and written informed consent was obtained from all pa-
tients. )e study was conducted according to the principles
of the Helsinki Declaration.

2.2. Clinical End Points. Death from cardiovascular (CV)
reason according to the VARC-3 definition was defined as
the clinical end point of this study [18].

2.3. CMR Analyses. CMR imaging was performed on a 3
Tesla MR scanner (MAGNETOM Skyra, Siemens Health-
care, Erlangen, Germany) using a 32-channel surface coil.
)e standardized scanning protocol has been reported
elsewhere and included long- and short-axis (SAX) steady-
state free precession images (repetition time, 3.2ms; echo
time, 1.2ms; flip angle. 60°; slice thickness 8mm) [19]. An
experienced investigator performed manual volumetric
analyses in short-axis orientation using a dedicated post-
processing software (QMass®, Version 3.2.36.4, Medis
Medical Imaging Systems, Leiden, Netherlands) according
to current clinical recommendations including papillary
muscles within the myocardium [20]. For automated vol-
umetric analyses, commercially available AI software pro-
vided by Neosoft (suiteHEART, Version 5.0.0, Neosoft,

Pewaukee, Wisconsin, USA) was used. In a first step, after
uploading the complete dataset of all patients, fully auto-
mated analyses were performed overnight without any
further postprocessing user interaction. Afterwards, all
automatically traced endocardial and epicardial borders
were reviewed visually and adapted in case of insufficient
border delineation. Furthermore, the time needed for visual
border validation and, if required, contour correction was
recorded. Volumetric analyses included LV mass, LV and
RV end-diastolic/-systolic (EDV/ESV) volumes, stroke
volume (SV), and LV and RV EF (Figure 1).

2.4. Statistical Analysis. Statistical analysis was performed
using IBM SPSS Statistics version 27 for Windows (Inter-
national Business Machines Corporation (IBM® Corp.),
Armonk, New York, United States of America) and
Microsoft Excel 2016 (Microsoft Corporation, Redmond,
Washington, USA). Normal distribution for continuous data
was tested using the Shapiro–Wilk test. Data were compared
using the Mann–Whitney U or Student’s t-test as appro-
priate and expressed as median and interquartile range.
Intergroup comparison of categorical variables was per-
formed using the χ2 test, and data were presented as absolute
numbers and percentages. Dependent variables were tested
using the Wilcoxon signed rank test or Student’s t-test for
paired samples as appropriate. Assessment of the manual
and automated analyses agreement was performed first by
calculation of the intraclass correlation coefficients (ICC),
which was scored as excellent (>0.74), good (0.6–0.74), fair
(0.4–0.59), and poor (<0.4), second by Bland–Altman
analysis (mean difference between measurements with 95%
confidence interval (CI)), and third by the coefficient of
variation (COV) [21, 22]. COV was defined as the standard
deviation of the differences divided by the mean [23].
Univariable calculations were used to identify determinants
of the predefined end point and included in multivariable
calculations if p< 0.05 (model 1). In a second model,
classical CV risk factors were additionally included (age,
hypertension, diabetes mellitus, dyslipidaemia, and coronary
heart disease). Results of regression analyses were expressed
as hazard ratio (HR) with corresponding 95% confidence
intervals (CIs). To assess the additional predictive value of
automatically generated volumetric parameters, receiver
operator characteristics (ROC) were implemented. For both
manual and automatic measurements, the area under the
curve (AUC) for predicting the endpoint was calculated and
compared using the nonparametric approach by DeLong
et al. [24].

3. Results

3.1. Study Population. While the initial study population
consisted of 146 patients, the final cohort after withdrawal
was 142 patients. )ese consisted of 71 patients (50.0%) with
normal ejection fraction high gradient (NEFHG) AS; 19
patients (13.4%) with low ejection fraction high gradient
(LEFHG) AS; 21 patients (14.8%) with low ejection fraction
low gradient (LEFLG) AS; and 31 patients (21.8%) with
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paradoxical low flow low gradient (PLFLG) AS. Mean age of
the study population was 78± 6 years with age ranging from
59 to 90 years. )e majority of patients (62%, n� 88) were
male. Predominant comorbidities were hypertension
(85.9%) followed by coronary artery disease (65.5%), atrial
fibrillation (32.4%), stroke/transient ischemic attack (TIA)
(12.7%), and chronic obstructive pulmonary disease
(COPD) (9.9%). CV death occurred in 12.0% of patients.
)ere were no differences between survivors and deceased
patients in regard to age, sex, and comorbidities. However,
deceased patients’ BMI was slightly higher compared to
survivors (p � 0.017). Details are displayed in Table 1.

3.2. Automated and Manual Assessment of the Volumetric
Parameters. Of the finally included 142 patients, 142 (100%)
patients were analyzed manually and 139 (97.9%) patients
automatically, because the fully automated analysis did not
work. )erefore, further analyses were performed with the
remaining 139 patients.

Differences between manual and automated biven-
tricular segmentation are presented in Table 2. LV mass
was estimated higher and LV volumes lower using

automated analyses compared to manual analyses (LV
mass index (g/m2) automated vs. manual: 88.0
[75.0–111.0] vs. 83.3 [69.4–102.8]; LVEDV index (ml/m2)
automated vs. manual: 71.3 [60.0–88.8] vs. 78.3
[63.3–97.3]; LVESV index (ml/m2) automated vs. manual:
27.7 [16.0–45.6] vs. 31.1 [17.9–44.9] all p< 0.001). )e
opposite was true for RV volumes with statistically sig-
nificant differences for RVEDV (RVEDV index (ml/m2)
automated vs. manual: 69.4 [58.4–83.0] vs. 67.3
[56.9–80.8] p< 0.001; RVESV index (ml/m2) automated
vs. manual: 31.7 [22.7–39.9] vs. 31.4 [23.1–44.4] p � 0.07).
RVEF was higher using automated analyses, but not LVEF
(RVEF (%) automated vs. manual: 55.0 [9.0–61.0] vs. 53.6
[44.2–59.7] p � 0.01; LVEF (%) automated vs. manual:
62.0 [46.0–73.0] vs. 60.3 [45.9–73.4] p � 0.889). Similar
findings were observed in AS subgroups and are presented
in the online data supplement (Tables S1–S4).

Table 3 illustrates the agreement of fully automated and
manual analyses including bias with 95% limits of agreement
(LOA), ICC, and COV. In addition, Bland–Altman plots are
presented in Figure 2. Overall, for both the LV and RV
measurements, high agreement was found between manual
and automated analyses. However, LV parameters showed
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Figure 1: Manual, automated, and automated-corrected biventricular volumetric analyses. Overview of a tracked short-axis stack from the
base to apex in end-diastole (ED) and end-systole (ES) using manual and automated analysis software.
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better agreement than RV parameters for LVEF (bias: 0; 95%
LOA: −12.1 to 12.1; ICC 0.964; COV: 10.5), LVEDV (bias:
11.13; 95% LOA: −23, 5 to 45.8; ICC 0.978; COV: 11.2), and
LVESV (bias 4.63; 95% LOA: −22.6 to 31.9; ICC 0.983; COV:
19.5) as compared to RVEF (bias: −2.44; 95% LOA: −21.7 to
16.9; ICC 0.804; COV: 18.6), RVEDV (bias: −3.44; 95% LOA:
−40.7 to 33.8; ICC 0.954; COV: 13.6), and RVESV (bias: 1.37;
95% LOA: −26.6 to 29.4; ICC 0.955; COV: 21.0). Data for

corresponding subgroup analyses are presented in the online
data supplement (Tables S5–S8).

Manual postprocessing volumetric analyses took on
average 13 minutes by an experienced operator. In contrast,
using fully automated software took on average 45 seconds
for volumetric analyses. )e consequent operator review of
the correct contour detection took 60 seconds on average.
Correction of the contours took another 60 seconds on

Table 2: Biventricular volumes based on CMR measurements.
Left ventricle Automated (uncorrected) Manual p value
LV mass (g) 170.1 (139.1–213.9) 161 (132.0–199.2) <0.001
LV mass index (g/m2) 88.0 (75.0–111.0) 83.3 (69.4–102.8) <0.001
LV EDV index (ml/m2) 71.3 (60.0–88.8) 78.3 (63.3–97.3) <0.001
LV ESV index (ml/m2) 27.7 (16.0–45.6) 31.1 (17.9–44.9) <0.001
LV SV index (ml/m2) 42.8 (35.3–49.3) 45.5 (36.7–53.9) <0.001
LVEF (%) 62.0 (46.0–73.0) 60.3 (45.9–73.4) 0.889
Right ventricle Automated (uncorrected) Manual p value
RV EDV index (ml/m2) 69.4 (58.4–83.0) 67.3 (56.9–80.8) <0.001
RV ESV index (ml/m2) 31.7 (22.7–39.9) 31.4 (23.1–44.4) 0.07
RV SV index (ml/m2) 38.6 (31.4–45.0) 35.2 (28.8–43.4) <0.001
RVEF (%) 55.0 (49.0–61.0) 53.6 (44.2–59.7) 0.01
Continuous data were compared using the Wilcoxon signed rank test and are expressed as median (interquartile range). EDV: end-diastolic volume; ESV:
end-systolic volume; LV: left ventricular; LVEF: left ventricular ejection fraction; RV: right ventricular; RVEF: right ventricular ejection fraction; SV: stroke
volume.

Table 3: Agreement between manual and automated uncorrected analyses.
Left ventricle Bias 95% LOA ICC (95% CI) COV (%)
LV mass (g) −10.08 −84.2 to 64.1 0.890 (0.846–0.921) 21.5
LV EDV (ml) 11.13 −23.5 to 45.8 0.978 (0.969–0.984) 11.2
LV ESV (ml) 4.63 −22.6 to 31.9 0.983 (0.977–0.988) 19.5
LV SV (ml) 6.69 −17.6 to 31.0 0.935 (0.909–0.954) 14.4
LVEF (%) 0 −12.1 to 12.1 0.964 (0.950–0.975) 10.5
Right ventricle Bias 95% LOA ICC (95% IC) COV (%)
RV EDV (ml) −3.44 −40.7 to 33.8 0.954 (0.936–0.967) 13.6
RV ESV (ml) 1.37 −26.6 to 29.4 0.955 (0.938–0.968) 21.0
RV SV (ml) −4.26 −37.1 to 28.6 0.832 (0.765–0.880) 23.3
RVEF (%) −2.44 −21.7 to 16.9 0.804 (0.725–0.860) 18.6
EDV: end-diastolic volume; ESV: end-systolic volume; LV: left ventricular; LVEF: left ventricular ejection fraction; RV: right ventricular; RVEF: right
ventricular ejection fraction; SV: stroke volume.

Table 1: Baseline characteristics

Variable All patients (n� 142) Survivors (n� 125) CV deceased (n� 17) p value
Age (Y) 80 (74–83) 79 (74–82) 82 (78.5–84) 0.069
Sex (male) 88 (62.0%) 77 (61.6%) 11 (64.7%) 0.805
BMI (kg/m2) 27.5 (24.6–30.7) 27.0 (24.4–30.2) 30.8 (26.9–33.5) 0.014
Comorbidities
Hypertension 122 (85.9%) 107 (85.6%) 15 (88.2%) 1.000
Diabetes mellitus 46 (32.4%) 37 (29.6%) 9 (52.9%) 0.054
Dyslipidaemia 97 (68.3%) 86 (68.8%) 11 (64.7%) 0.866
Coronary artery disease 93 (65.5%) 80 (64.0%) 13 (76.5%) 0.310
Atrial fibrillation 46 (32.4%) 38 (30.4%) 8 (47.1%) 0.168
Stroke/TIA 18 (12.7%) 16 (12.8%) 2 (11.8%) 0.926
COPD 14 (9.9%) 10 (8.0%) 4 (23.5%) 0.066

Data are expressed as median (interquartile range), numbers, and percentage. Comparison of survivors and deceased was performed. Continuous parameters
were tested for normal distribution using the Shapiro–Wilk test and compared using the Mann–Whitney U test or t-test as appropriate. Categorical
parameters were tested using the chi -square test. BMI: body mass index; TIA: transient ischemic attack; COPD: chronic obstructive pulmonary disease.
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average if needed. In 22 patients (15.8%), minor manual
corrections of the myocardial borders mainly in the most
basal or apical slices were performed resulting in a better
agreement with manual analyses (Table 4).

3.3. Prognostic Value of Automated andManual Assessments.
)e mean follow-up period was 760± 439 days. During this
period a total of 27 patients (19.4%) died, whereas in 17 cases
(12.2%), a cardiovascular death occurred. Cox regression
univariable modelling revealed that BMI (HR 1.090 (95% CI
1.001–1.187) p � 0.048) and the presence of COPD (HR
3.090 (95% CI 1.005–9.501) p � 0.048) were associated with
increased CV mortality. Regarding volumetric parameters,
both manual and automated LVEF were associated with the
occurrence of CV death (manual: HR 0.970 (95% CI
0.943–0.997) p � 0.032; automated: HR 0.967 (95% CI
0.939–0.995) p � 0.022). LVEF, derived manually or fully
automatically, remained a significant predictor of CV death
on multivariable modelling including significant univariable
parameters (manual: HR 0.968 (95% CI 0.938–0.999)

p � 0.043; automated: HR 0.963 (95% CI 0.933–0.995)
p � 0.024]. In a second model, classical CV risk factors were
additionally included (age, hypertension, diabetes mellitus,
dyslipidaemia, coronary heart disease). LVEF remained a
significant predictor of CV death (manual: HR 0.962 (95%
CI 0.920–0.996) p � 0.027; automated: HR 0.954 (95% CI
0.920–0.989) p � 0.011). In either model, BMI was also an
independently significant risk predictor. A detailed overview
is given in Table 5.

)ere were no significant differences seen between fully
automated, automated corrected, andmanual LVEFs onAUC
comparison (fully automated: AUC 0.686; automated cor-
rected: AUC: 0.671; manual: AUC 0.661; fully automated vs.
automated corrected: p � 0.115, fully automated vs. manual:
p � 0.214, automated corrected vs. manual: p � 0.545).

4. Discussion

To our knowledge, this is the first study investigating the
applicability of an AI-based fully automated biventricular
volumetric and functional analysis with demonstrated
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Figure 2: Bland–Altman plots for agreement of manual and automated biventricular volumes. LV: left ventricular; RV: right ventricular; EF:
ejection fraction; EDV: end-diastolic volume; ESV: end-systolic volume.

Table 4: Agreement between manual and automated corrected analyses.
Left ventricle Bias 95% LOA ICC (95% CI) COV (%)
LV mass (g) −9.91 −83.6 to 63.8 0.891 (0.848–0.922) 21.4
LV EDV (ml) 11.47 −22.5 to 45.4 0.979 (0.971–0.985) 11.0
LV ESV (ml) 4.77 −20.8 to 30.3 0.985 (0.979–0.989) 18.4
LV SV (ml) 6.89 −15.8 to 29.6 0.944 (0.921–0.960) 13.5
LVEF (%) 0.03 −10.2 to 10.2 0.975 (0.965–0.982) 8.8
Right ventricle Bias 95% LOA ICC (95% IC) COV (%)
RV EDV (ml) −3.48 −40.7 to 33.7 0.954 (0.936–0.967) 13.6
RV ESV (ml) 1.44 −25.5 to 28.4 0.958 (0.942–0.970) 20.3
RV SV (ml) −4.35 −36.3 to 27.6 0.841 (0.778–0.886) 22.7
RVEF (%) −2.47 −21.4 to 16.5 0.810 (0.735–0.864) 18.3
EDV: end-diastolic volume; ESV: end-systolic volume; LV: left ventricular; LVEF: left ventricular ejection fraction; RV: right ventricular; RVEF: right
ventricular ejection fraction; SV: stroke volume.
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clinical utility and predictive value for optimized risk
stratification in patients with severe AS. )e following
findings are notable: Firstly, fully automatically derived
CMR-based LVEF has a similar significant association with
mortality compared to conventional analyses with the ad-
vantage of a substantial time saving. Secondly, automatically
calculated results seem sufficient for risk prediction without
a mandatory user interaction by a CMR imaging specialist.
)irdly, AI-based CMR postprocessing software facilitates

the use and widens the applicability of CMR imaging with
potential fast and easy integration into clinical routine.

)e rising incidence of valvular heart diseases is inevi-
tably associated with an increased need for economical and
accurate diagnostic procedures. Especially CMR imaging
plays a key role amongst noninvasive imaging techniques
due to its comprehensive myocardial analysis tools. How-
ever, its postprocessing routine is still laborious and time
consuming [8]. Recently, automated postprocessing soft-
ware solutions based on deep-learning algorithms have been
developed and are already commercially available with
proven clinical utility [11, 25, 26].

AI software has been already applied in various cardio-
vascular diseases and shown to offer similar or even improved
risk stratification compared to manual approaches [27]. Ap-
plications are wide ranging and demonstrate that a patient-
centred individual approach, for example, using machine
learning multiprotein risk models, allows a better detection of
future events than currently used clinical risk scores [28].
Recently, the field of applications has also been extended to
optimized screening and diagnosis procedures including subtle
ECG alterations in patients with AS [29, 30]. Amongst the
parameters for clinical decision making, especially the LVEF
has a pivotal role for optimized patient management with
important prognostic implications that were proven in various
different studies comprising common CV diseases like acute
myocardial infarction or heart failure [2, 31, 32]. Furthermore,
clinical decisions like the indication for the implantation of an
implantable cardioverter defibrillator are based on the LVEF
[2]. In addition, in patients with severe AS scheduled for aortic
valve replacement, data have shown an important association
between mortality and LVEF [33, 34]. In line with these
findings, our results showed significant associations of the
LVEF with CV mortality independently of whether a fully
automated or conventional analysis approach was used.
)erefore, applying fully automated volumetric analyses in
patients with severe AS is feasible and offers an attractive al-
ternative postprocessing approach compared to manual seg-
mentation with equal prognostic implications. Although the
LVEFmight not be the one complete parameter to describe the
prognosis of all AS patients, for example, aortic valve calcifi-
cation or global longitudinal strain measurements might be the
more important parameters for optimized prognosis evaluation
in different subgroups of AS, the LVEF and the SV have
important roles to define respective AS subgroups and,
therefore, their accurate assessment has a crucial role in clinical
routine [35, 36]. Furthermore, our results are similar to the
predictive value of LVEF in a large cohort of patients with acute
myocardial infarction and therefore confirm a certain pre-
dictive value of this parameter in patients with AS [13].

Besides an equal risk prediction, there were numerical
differences between fully automatically assessed volumetric
parameters compared to manual segmentation by an expe-
rienced CMR operator in our study. Fully automated mea-
surements resulted in larger LVmass and smaller LV volumes;
however, the LVEF showed no statistically significant differ-
ence. )ese results are contrary to previous studies applying
AI-based fully automated quantification that documented
smaller LV mass but larger volumes [13, 14]. )ese differences

Table 5: Univariable and multivariable cox regression analyses
including LVEF for prediction of CV mortality.

Variable Hazard ratio
(95% CI) p value

Univariable models
Age (Y) 1.074 (0.978–1.178) 0.135
Sex (male) 1.195 (0.438–3.261) 0.727
BMI (kg/m2) 1.090 (1.001–1.187) 0.048
Hypertension (present) 1.054 (0.240–4.623) 0.944
Diabetes mellitus (present) 2.196 (0.846–5.700) 0.106
Dyslipidaemia (present) 0.953 (0.347–2.618) 0.925
Coronary artery disease
(present) 1.888 (0.614–5.811) 0.268

Atrial fibrillation (present) 2.372 (0.907–6.198) 0.078
Stroke/TIA (present) 0.816 (0.186–3.573) 0.787
COPD (present) 3.090 (1.005–9.501) 0.049
Automated LVEF (%) 0.967 (0.939–0.995) 0.022
LVEF (%) 0.970 (0.943–0.997) 0.032
Automated LV SVI (ml/m2) 0.996 (0.952–1.042) 0.859
LV SVI (ml/m2) 0.999 (0.961–1.039) 0.965

Multivariable models
Model 1a
Automated LVEF (%) 0.963 (0.933–0.995) 0.024
BMI (kg/m2) 1.130 (1.029–1.241) 0.011
COPD (present) 2.277 (0.691–7.507) 0.451

Model 1b
LVEF (%) 0.968 (0.938–0.999) 0.043
BMI (kg/m2) 1.126 (1.025–1.237) 0.013
COPD (present) 2.400 (0.718–8.014) 0.155

Model 2a
Automated LVEF (%) 0.954 (0.920–0.989) 0.011
BMI (kg/m2) 1.162 (1.024–1.320) 0.020
COPD (present) 1.718 (0.414–7.123) 0.456
Age (Y) 2.231 (0.742–6.704) 0.153
Diabetes mellitus (present) 2.231 (0.742–6.704) 0.153
Hypertension (present) 2.128 (0.397–11.417) 0.378
Dyslipidaemia (present) 0.662 (0.209–2.090) 0.482
Coronary artery disease
(present) 1.363 (0.391–4.747) 0.627

Model 2b
LVEF (%) 0.962 (0.929–0.996) 0.027
BMI (kg/m2) 1.139 (1.014–1.280) 0.028
COPD (present) 2.000 (0.494–8.102) 0.331
Age (Y) 1.113 (0.345–4.406) 0.055
Diabetes mellitus (present) 2.385 (0.798–7.121) 0.120
Hypertension (present) 1.846 (0.356–9.578) 0.465
Dyslipidaemia (present) 0.655 (0.209–2.055) 0.468
Coronary artery disease
(present) 1.233 (0.345–4.406) 0.747

BMI: body mass Index; TIA: transient ischemic attack; COPD: chronic
obstructive pulmonary disease; LVEF: left ventricular ejection fraction; LV
SVI: left ventricular stroke volume index
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might be caused by a slightly different volumetric approach
excluding the papillary muscles and trabecular endocardial
tissue in the aforementioned studies. Since an exact delineation
of trabecular tissue using manual analysis software is tedious
and partially limited due to automated smoothing of the
analysis software, the automated approach might provide a
more exact representation of myocardial volumetric relations.
Nevertheless, in line with the aforementioned studies, the
documented agreement of volumetric parameters was excel-
lent in our study with LVEF having the lowest bias. In terms of
biventricular agreement, LV measurements were better than
RV segmentations, which might be explainable by the more
complex anatomy of the RV which has also been described in
previous CMR studies [14, 37].

Even though fully automated analysis was successful
in the majority of the study population (97.9%), a visual
review of the automated contours and their adaption, if
necessary, by the CMR operator was performed in our
study and resulted in an improved agreement of volu-
metric parameters. However, the corrections did not
enable an improved risk stratification, and therefore, a
direct clinical use of the parameters without a categori-
cally needed review of the delineations could be envisaged.
Although one might consider to omit visual review of the
contours as a consequence, individual level CIs of −12.1 to
12.1 for LVEF and even wider ranges for LV volumes
underline the importance of a visual review and correc-
tions in case of insufficient border delineation. As pre-
viously described, a relevant proportion of patients
required manual border adjustments especially in basal
and apical slices which are the most challenging areas of
myocardial volumetric analyses bringing current auto-
mated software solutions to their delineation limits
[13, 38].

However, the decisive advantage of AI-based software in
the field of CMR postprocessing is a remarkable saving of
time, which is underlined by the results of our study.
Compared to manual analysis, the AI-based software pro-
vided about 10 saved minutes for volumetric assessments on
a per-patient basis. )e time saving use of fully automated
software can be even increased by using it “on-the-fly”
during imaging acquisition or overnight. )is does not only
result in a more efficient postprocessing practice during
clinical routine but also in facilitated analyses of large patient
cohorts and, consequently, might even be accompanied by
lower costs of CMR imaging procedures.

In addition to the time-saving aspect, AI solutions offer
more user-independent measurements and can improve
comparability of parameters in serial examinations or between
CMR core laboratories of different hospitals. )e excellent
intra-observer and interobserver reproducibility for fully au-
tomated volumetric assessment that exceeds the reproducibility
of manual assessments has been described previously by
Backhaus et al. [14]. With a more widespread availability of
MRI scanners and increasing incidences of patients with AS
and consequently rising numbers of interventional valve re-
placement procedures, AI-based software therefore constitutes
a key tool for accurate and efficient volumetric assessment in
clinical routine even for nonimaging specialists.

4.1. Study Limitations. Some limitations need to be
addressed. Firstly, due to typical CMR contraindications
only selected patients were able to participate in this study.
Secondly, only patients considered stable and being able to
lie in a supine position were included. Both contraindica-
tions and the ability to undergo CMR scanning might have
led to a selection bias and resulting in lower event rates by
excluding potentially sicker patients. However, these limi-
tations apply to both analysis techniques and therefore do
not limit the validity of the analysis. )irdly, detailed in-
formation of the AI-based algorithm is not disclosed by the
manufacturer and therefore cannot be described in more
detail. )irdly, the fully automated software does not offer
RV mass quantification yet, and consequently, this pa-
rameter was not analyzed in our study. Fourthly, a total of
three patients (2.1%) could not be analyzed using the au-
tomated algorithm, which needs to be considered especially
when studying dyspneic patients such as AS patients. Finally,
we have observed small numerical differences between fully
automated and manual volumetric assessments. Conse-
quently, on an individual patient level final contours and
results should always be approved or corrected by a re-
sponsible physician to also allow comparability between
repeated scans, e.g., before and after TAVR.

5. Conclusion

Fully automated assessment of biventricular volumes and
function is feasible and enables similar risk prediction
compared to a conventional manual approach in patients
with severe aortic stenosis scheduled for TAVR. Agreement
between manual and fully automated analyses is excellent,
andmanual correction of border delineation does not lead to
an improved risk prediction. Due to its accuracy and im-
mense time-saving nature, application of AI software en-
ables a more widespread user-independent risk stratification
and may facilitate easy implementation of CMR imaging in
clinical routine prior to TAVR. Further studies are needed to
validate these findings to fully establish this technique in
clinical routine.
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