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Large Tunable Thermophase in 
Superconductor – Quantum Dot 
– Superconductor Josephson 
Junctions
Yaakov Kleeorin1, Yigal Meir1,2, Francesco Giazotto3 & Yonatan Dubi2,4

In spite of extended efforts, detecting thermoelectric effects in superconductors has proven to be a 
challenging task, due to the inherent superconducting particle-hole symmetry. Here we present a 
theoretical study of an experimentally attainable Superconductor – Quantum Dot – Superconductor 
(SC-QD-SC) Josephson Junction. Using Keldysh Green’s functions we derive the exact thermo-
phase and thermal response of the junction, and demonstrate that such a junction has highly 
tunable thermoelectric properties and a significant thermal response. The origin of these effects 
is the QD energy level placed between the SCs, which breaks particle-hole symmetry in a gradual 
manner, allowing, in the presence of a temperature gradient, for gate controlled appearance of a 
superconducting thermo-phase. This thermo-phase increases up to a maximal value of ±π/2 after which 
thermovoltage is expected to develop. Our calculations are performed in realistic parameter regimes, 
and we suggest an experimental setup which could be used to verify our predictions.

Thermoelectric (TE) effects correspond to the response of electrical charge (via induced current or voltage) when 
a thermal bias is applied across a junction. Since the warmer side has an equal excess of both particles and holes, 
the direction and magnitude of the TE response are determined by the asymmetry between particles and holes. 
Consequently, TE effects have proven to be a powerful tool in probing the density of states near the Fermi energy, 
particularly in materials with strong electron-electron interactions1–3. However, in superconductors (SCs), which 
are a paradigmatic example of interacting electron systems, the TE response is both small in magnitude and 
hard to control. This is because SCs are inherently particle-hole (p-h) symmetric, and the p-h asymmetry stems 
primarily from impurity scattering4–6. Measuring a substantial and controllable TE response in SCs is therefore 
a major challenge.

Early experiments searching for thermocurrent in superconductors found that even the expected small ther-
mocurrent was generally absent7. An explanation for the absence of thermoelectric response was proposed by 
Ginzburg8, who suggested, within the two fluid scheme, that the superfluid is expected, under certain conditions, 
to counterbalance the quasi-particle (QP) current with a non-dissipative supercurrent9. The existence of such a 
supercurrent is accompanied by an induced gradient in the phase of the SC order parameter10,11.

To overcome the absence of current, experiments in which the setup comprises a bi-metallic loop (taking 
advantage of the fact that the SC phase has to be geometrically quantized), were proposed and performed11,12. 
However, different experiments13 disagreed with each other and with theory14,15, a discrepancy which only 
recently may have been resolved16. Suggestions for increasing the thermal response and p-h asymmetry include 
using magnetic impurities17 or a ferromagnetic junction setup18, leading to a thermo-phase of greater magnitude. 
However, using a magnetic field for tuning the system parameters19 leads to substantial experimental limitations.

In spite of all these efforts, the challenge of devising a SC system which exhibits substantial TE effects and 
with a large degree of control is yet to be met. Here, we demonstrate that in a SC-quantum dot (QD)-SC setup  
(schematically depicted in Fig. 1(a)), the TE response can be considerably larger than in SC tunnel junctions10, 
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where measurable thermo-phase can only arise around the transition temperature. Control over its magnitude 
can be achieved by a gate voltage, which shifts the energy levels of the QD, allowing for breaking of the p-h sym-
metry even for ideal SC electrodes, thus enabling experimental control of the magnitude and direction of the 
thermal response. It is important to note, that such a setup is within current experimental capabilities20–23, making 
our predictions experimentally verifiable.

Model
Our model consists of bulk s-type superconductors as leads, with individual gap energies and arbitrary phases 
(taken symmetrically for convenience), and a single QD level in between. The Hamiltonian for the SC-QD-SC 
junction is given by H =  HL +  HR +  HQD +  HV, with the lead Hamiltonians Hs (s =  L, R) given by
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where σ σ
†c c( )sk sk  is the creation (annihilation) of an electron on side s with momentum k, spin σ. The order param-

eter is complex, ∆ = ∆φes
i

ss  and the phase difference is taken, without loss of generality, as φL =  − φR =  φ/2. The 
chemical potential in the SC leads is defined as the zero of energy. We first start with a non-interacting, single-level 
QD. In this case, the QD Hamiltonian HQD and the hopping Hamiltonian between the QD and the SCs, HV, are
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where σ σ
†d d( ) is the creation (annihilation) of an electron on the dot with spin σ. While the calculation is quite 

general, in the present context we assume spin degeneracy, ε↑ =  ε↓ ≡  ε, and uniform tunneling Vks ≡  Vs. From this 
Hamiltonian, the currents and other quantities are calculated using the non-equilibrium Green’s function 
method, as described in the Methods section.

Results
We start by addressing the general form of the current. Substituting the Green’s function (Eq. 10 in the Methods 
section) into the expression for the current, we find that the current can be generally divided into three terms: 
quasi-particle current, IQP, Josephson (pair) current, Isc, and a term involving pair-QP transition, Ipair−QP,
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A temperature dependence exists in all the terms through the temperature dependence of the superconduct-
ing order parameter. The usefulness of this form for the current stems from the fact that within the relevant 
parameter range discussed here, the phase dependence of the amplitude of the various current terms is negligible. 
This phase dependence originates from multiple reflections between the QD and the leads, giving rise to higher 
harmonic processes with a non trivial phase function. These reflections diminish as a function of Γ s/ε, i.e. as the 
energy level in the QD moves away from the Fermi level, and as a result Cooper pairs have smaller probability 
of tunneling across the junction. In the parameter range for which the thermo-phase is appreciable – the tunnel 
junction regime – the ratio Γ s/ε is small and thus multiple reflections can practically be neglected.

In an open junction setup (Fig. 1(c)), with no externally imposed constrains over the thermo-phase, the ther-
mally induced current is completely canceled by the appearance of a thermo-phase across the junction8. This 
serves as the definition for the thermo-phase φth:

Figure 1. (a) Schematic representation of the SC-QD-SC setup. The two SC leads are characterized by their 
spectrum, gap energies and their phases. The QD contains a single degenerate level of energy ε. (b) Closed 
loop experimental setup. In this setup the phase difference Δ φ is geometrically constrained, so it cannot 
always compensate for the thermal quasi-particle current. (c) Open experimental setup, where Δ φ can assume 
arbitrary values.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:35116 | DOI: 10.1038/srep35116

ε φ∆ =I T T( , , , ) 0 (4)th

Linear Response
In the linear response regime (linear in Δ T), assuming a symmetric junction, one can write the different terms 
in Eq. 3 explicitly:
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where the parameters Γ  and Δ  were taken equal on both sides of the junction. In these equations, the expression 
for G r

11 and A, whose contributions to the current are plotted in Fig. 2, is given by ω ω Σ ω= −−ˆ ˆA g( ) Det[( ( )) ( )]r r
0

1  
(Fig. 2(a)) and ω ω ε Σ ω= + −G A( ) ( )/ ( )r r

11 11  (Fig. 2(b)). The transmission channel for the QPs, ω−Im G[ ( )]r
11 , 

demonstrates the asymmetry of transmission as a function of energy, required to generate a thermoelectric 
response. On the other hand, the transmission channel for pairs, 1/A(ω), is driven by a superconducting phase 
difference, generated to compensate for the QP contribution, and thus does not require p-h asymmetry. As can be 
seen in Fig. 2(a,b), both the QP channel and the pair channel contain sharp resonances which are Andreev bound 
states (ABS) (though the ABS do not participate in the QP transport due to Re[ρ(ω)] term in Eq. 5, as ρ has a real 
part only outside the gap). The pair-QP transition term Ipair−QP vanishes identically, since this thermal transport 
process is perfectly particle-hole symmetric (mathematically, writing Ipair−QP as an integral similar to Eq. 5, the 
integrand is an odd function of ω, as a result of a symmetric transmission channel in this process).

Since in linear response one can define I =  σΔ φ +  SφσΔ T, in analogy to the Seebeck coefficient, we can define 
the thermo-phase Seebeck coefficient (TPSC) in a similar manner,
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In Fig. 2(c), the TPSC Sφ is plotted as a function of dot level energy ε, for various temperatures T and couplings 
Γ . Sφ consistently peaks around |ε| =  Δ  +  aΓ , with the factor a being typically a ~ 1–2.5 for the relevant parame-
ters (Γ > 0.05). The TPSC peak occurs when the dot energy is slightly above the SC coherence peaks in the BCS 
DOS, at the point that maximizes the interplay of p-h asymmetry and transmission. This is similar in nature to the 
Seebeck coefficient peak through a QD between normal leads24, which resides a distance Γ  above (or below) the 
QD energy level resonance. In the inset of Fig. 2(c) we plot the inverse temperature dependence of the TPSC on a 

Figure 2. (a) Imaginary part of 1/A, the pair channel of transmission through the dot, as a function of energy, 
for Γ  =  0.1,ε =  0.5,φ =  π/2. The narrow peaks are the ABS inside the gap (b) Imaginary part of −G r

11, the quasi-
particle channel of transmission through the dot, which is proportional to the DOS of electrons on the dot, as a 
function of energy, for the same parameters as (a). The p-h asymmetry is visible in the continuum. (c) The 
thermo-phase Seebeck coefficient Sφ (Eq. 7) as a function of dot energy, for various T and Γ . The peak position 
depends only on Γ  and Δ  as will be discussed in the text. Inset: ln(Sφ) as a function of inverse temperature for 
various dot levels, ε =  0.4, 0.8, 1.4.
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log scale, for various level energies. For T ≪  Δ  the leading contribution to the temperature dependence of the 
TPSC stems from the activated form of the the Fermi function in the QP term (5), which can be approximated by 
∼ −e E T/g , where Eg is an activation energy. Indeed, the logarithmic slopes of Sφ, depicted in the inset of Fig. 2(c), 
are linear with an activation gap Δ 0, as expected for QPs. This description works rather well for most of the rele-
vant temperature range. In the opposite limit, for T approaching the SC transition temperature Tc, the TPSC 
diverges due to vanishing of the Josephson term, as 1/Δ 2 ~ (T −  Tc)−1.

Beyond Linear Response
The formulation described in the previous section applies, in fact, also beyond the linear response regime in Δ T, 
where the main deviation from linear response stems from the difference in order parameters on both sides due 
to thermal difference. The full analytical expression, including all contributions, is quite long and thus will not be 
shown here. Figure 3 depicts the total current as a function of phase for several values of temperature difference, 
Δ T. The general division of the current into the three terms (Eq. 3) holds also beyond the linear response regime, 
as can be seen in the inset of Fig. 3, which shows the QP and the Josephson contributions to the total current (the 
contribution from the pair-QP transition term Ipair−QP still vanishes). The Josephson term is modified due the dif-
ference in Δ  between the two sides25. As can be clearly seen from the figure, the QP term is almost insensitive to 
phase difference, but sensitive to changes in temperature difference, while the Josephson term oscillates with the 
phase difference, but weakly sensitive to temperatures far from the SC transition temperature.

As the temperature difference increases beyond a critical value Δ Tc (the red curve in Fig. 3, corresponding to 
Δ T =  0.181 for the depicted set of parameters) the QP current reaches a value such that the Josephson current can 
no longer compensate for it (for Δ T =  Δ Tc the thermo-phase is exactly ± π/2). If the total current is kept at zero, 
an effective voltage will develop in this regime, which will give rise to a time-dependent AC response (as in the AC 
Josephson effect), an effect which has in fact been measured in tunnel junctions26. We leave the time-dependent 
thermal Josephson effect for a future study, and concentrate here on Δ T below the critical value Δ Tc.

Solving the condition (4) for vanishing current, we plot in Fig. 4 the thermo-phase φth as a function of the left 
lead temperature TL (for fixed TR) and QD level energy ε. The region of φth =  ± π/2 (red or blue plateau in Fig. 4) 
corresponds to the regime for which Δ T ≥  Δ Tc, and is not covered in this work. The value of the critical temper-
ature difference as a function of dot energy can be read from Fig. 4 as the contour of the ± π/2 plateau. The value 
of the critical Δ Tc can be directly measured in experiments, by applying a temperature difference and monitoring 
for which Δ T a finite current (or voltage) begins to appear.

Coulomb Interaction
So far we have ignored the on-site interaction on the QD, which may be important, for example, in the Coulomb 
blockade regime27. In order to address this, we add to the Hamiltonian an on-site Coulomb interaction, repre-
sented by a term HU =  Un↑n↓, where ≡σ σ σ

†n d d . Within the Hartree-Fock (HF) approximation, the dot levels are 
renormalized according to ε ε= +σ σU n , where the dot occupations 〈 nσ〉  are calculated self-consistently (σ is 
the spin opposite to σ). Once the dot levels and occupations are determined (inset in Fig. 5), the thermo-phase 
can be calculated using Eq. 4.

Compared to the non-interacting problem, the interaction introduces a new regime where the dot is singly 
occupied, the effective spin energy levels split28, and a magnetic moment forms. This splitting suppresses the 
pair tunneling amplitude, where eventually the Josephson term becomes smaller and, unless smeared by tem-
perature, changes sign, leading to a π-junction transition29,30. It is important to note that the HF approximation, 
while found to generally describe the SC-QD-SC physics very well29,31, will not be valid in the Kondo regime, 
where Tk >  Δ32. In addition, it may give qualitatively inaccurate values for the boundaries of the singly occu-
pied regime33. These failures of the HF approximation are rather limited in the small Γ /Δ  limit33, which is the 
regime of interest in the present work, and therefore we can safely proceed with its usage. Furthermore, we note 
that although there seems to be an apparent spin symmetry breaking from the form of the HF solution, these 
spin-asymmetric solutions are doubly-degenerate with the degenerate solutions having opposite spins. It is thus 

Figure 3. The total current I as a function of phase difference for various temperature differences ΔT, 
for ε = 1.1, T = 0.2, Γ = 0.1. Inset: current divided into the two contributions: quasi-particle current and 
Josephson current. The first (QP) term in eq. (3) gives the up shift in current due to temperature bias and the 
third (Josephson) term gives the amplitude of the modulation with phase. Phase dependence is negligible in the 
QP term (dot-dashed line).
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important to take both solutions into account to preserve spin symmetry. In Fig. 5 we show the thermo-phase φth 
as a function of the bare dot energy (shifted by half the Coulomb interaction), for various values of U. We first 
note that the thermo-phase is symmetric not around ε =  0, but around the new (and only) point of particle-hole 
symmetry, ε −  U/2 =  0. There are other points, inside the singly occupied region, where the QP term (and con-
sequently also the thermo-phase) vanish, but this is due to cancellation of contributions and not because of p-h 
symmetry. Inside this region, we also see sharp ± π/2 peaks (points A, B in Fig. 5) which correspond to a van-
ishing Josephson term during the π-junction transition, where any thermal gradient will produce the maximal 
thermo-phase of ± π/2. Other new features (such as a small peak at point C and a tiny peak at point D in Fig. 5) 
emerge from the non-monotonous behavior of the QP term, in the singly occupied regime. In this regime, the 
contributions from the two spin levels have opposite signs and their magnitude difference also changes sign as a 
function of average dot energy. The features outside this region, however, are unaffected by the interaction except 
for the trivial shift away from the p-h symmetry point by U/2.

Discussion
All the results presented in this paper can be directly tested experimentally. To measure the thermoelectric effect 
and the thermo-phase, we suggest the experimental setup depicted in Fig. 1(b). It consists of a SC ring with one 
branch including a QD while the other branch including a thin insulating barrier. One side of the ring is heated 
in order to create a temperature gradient, and as a result, a unidirectional circulating thermocurrent arises. This 
setup makes use of the geometrical constraint on the gauge invariant phase, and of the fact that the phase drop 
occurs primarily at the point of most resistance34 (which is the QD as opposed to the insulating barrier). This 
implies that the phase difference across the QD junction is φ =  2π(Φ /Φ 0 +  n), where Φ  is the magnetic flux pene-
trating the ring and Φ 0 =  hc/2e is the flux quantum. Since there is no external magnetic flux, the phase difference 

Figure 4. Left panel: The thermo-phase φth as a function of dot energy and TL, for TR = 0.2, Γ = 0.1. The 
± π/2 plateau (red or blue) means that the quasi-particle current (IQP) has reached or exceeded the Josephson 
amplitude (Ic). Right panel: the same plot for a larger range of parameters, including negative dot energies. The 
thermo-phase is odd with respect to ε.

Figure 5. Thermo-phase as a function of symmetrized bare dot energy for various values of interaction 
strength U. T =  0.1, Δ T =  0.05, Γ  =  0.1 Inset: renormalized dot energies as a function of symmetrized bare dot 
energy. A separation between the renormalized dot energies appears in the doublet regime (singly occupied), 
where a magnetic moment is formed.
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across the QD, necessary to produce the supercurrent that cancels the thermal current in the bulk of the SC, is 
accompanied by a generation of a magnetic flux through the ring. This flux, in fact, arises from supercurrents 
running on the surface of the ring12. This experimentally measurable flux can be continuously modified by the 
applied temperature gradient, or the position of the dot level energy. In order to measure the critical temperature 
difference, an open setup (Fig. 1(c)) can also be utilized (where no phase detection is necessary). The temperature 
difference for which effective thermovoltage begins to appear, is the critical temperature difference. Ref. 22 has 
already applied setups that involve SCs and a QD, while ref. 21 has already demonstrated applying a temperature 
bias in SC21, but these two approaches have yet to be experimentally explored together.

In summary, we have demonstrated that a superconductor - quantum dot - superconductor junction can serve as 
a model system to study thermoelectric effects in SC systems, as it exhibits a large and controllable TE response. The 
current response to a temperature difference has been studied as a function of the most important control parameters, 
namely temperature, gate voltage and dot-electrode couplings. Specific experimental realizations to test our predictions 
have been suggested, and we believe that they are well within current experimental capabilities. Further studies that 
examine the AC thermal Josephson effect (beyond the critical temperature difference) are currently under way.

Methods
In order to find the current across the junction we calculate the Green’s function in Nambu space30, 
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where πΓ = V N2 (0)s s s
2 , Ns(0) being the normal metal density of states (DOS). ρs can be regarded as the general-

ized DOS in the superconductor, normalized by the normal metal value, where there is an imaginary (|ω| <  Δ s) 
contribution from inside the gap. Applying the self energies to the Dyson equation30 we find the retarded Green’s 
Function in Fourier space ω ω ω= − Σσ
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and Σ = Σ + Σr
L
r

R
r . Using = − J enL R L R( ) ( ), we express the current in terms of the Green’s functions on the dot35, 

∫ ω ω ω ω= − ∑ Σ − Σσ σ
<ˆ ˆ ˆJ d GRe[( ( ) ( )) ( )]e

h L R 11
, where the lesser Green’s functions ≡ < Ψ Ψ >σ

< †G t i t( ) ( )ij i j , 
and we can calculate the term in the square brackets in the expression for J using the Langreth relation36 
[A(ω)B(ω)]< =  Ar(ω)B< (ω) +  A< (ω)Ba(ω).

From a numerical perspective, a broadening of the superconducting gap energy is required to avoid diver-
gence of the superconducting DOS. A suitable Dynes Broadening37,38 is required, and if done carefully (the broad-
ening should be mutually conjugate for particles and holes, namely Δ (ω) =  Δ 0 −  i sign(ω)η), it enables one to 
directly see the contribution from the Andreev bound states28,30, which are usually numerically elusive (being 
ideally a delta function contribution to the local DOS), as can be seen in Fig. 2(a,b). In all the calculations the 
zero temperature SC order parameter on both sides was set as the unit energy, Δ s(T =  0) ≡  Δ 0 =  1, and all other 
energy values are measured in units of Δ 0. The value of the Dynes broadening parameter used in our calculations 
is η =  10−4, but the results are largely independent of this value.
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