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a b s t r a c t 

The Gaussian 09 DFT tool is used to investigate the formational electronic behaviour, reactivity analysis 

and biological properties of fluphenazine dihydrochloride (FDD). The quantum computation is used to de- 

termine the spectroscopic and vibrational assignments of FDD. The NBO method explains charge transfer 

and molecular interactions. Energy gap values are determined using FMO analysis in different solvents 

and toluene is a better solvent due to higher value of solvation energy. The UV-visible spectra are inves- 

tigated in various solvents using the TD-DFT method. Electrostatic potential, the wave function related 

properties such as LOL, NCI and RDG are determined in gaseous phase. Furthermore, the drug likeness 

is analyzed. At last, a docking study with MD simulation is used to investigate FDD’s antiviral activity 

against SARS-CoV-2 main protease. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Fluphenazine is a phenothiazine antipsychotic drug with pi- 

earzine derived substituent that is used to treat schizophrenia 

nd bipolar disorder [1] . This drug also has a number of novel 

nd important biological properties [2] . It is worth noting that 

uphenazine and melamine generate complexes that have both 

ositive and negative pharmacological side effects [3] . Ding et al. 

eported a high efficiency phenothiazine for solar cell [4] . Petrus 

t al. reported XRD structure of fluphenzine dichloride dimethanol 

olvate [5] . Phenothiazine is a non planar confirmation of the 

utterfly or bent kind [6] . Drugs of phenothiazine family have a 

ide range of biological characteristics [7–14] . Promazine has been 

etermined using a variety of methods, including electrophore- 

is, spectro-photometry and electrochemistry [15–18] . Promazine is 

sed to treat psychiatric disorders and cancer [19–24] . The charge 

ransfer properties, detection by graphene sensors and molecular 

ecognition of phenothiazine derivatives are reported [25–30] . Tri- 

uoperazine, an antipsychotic drug has recently been confirmed 
∗ Corresponding author. 

E-mail address: jsalotabi@pnu.edu.sa (J.S. Al-Otaibi) . 
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022-2860/© 2022 Elsevier B.V. All rights reserved. 
o interact with bovine serum albumin [31] . The production of a 

anocomposite for promazine removal from water was reported 

32] . Recently, researchers reported sulphide-metal nanocompos- 

tes synthesis for the detection of promazine and trifluoperazine 

 33 , 34 ]. The uses of trifluoperazine in medicine have recently been 

eported [ 35 , 36 ]. 

Drug research and development rely heavily on quantum chem- 

stry theory, DFT, molecular models and vibrational spectroscopy 

37] . Docking studies give the binding and interaction between lig- 

nd and receptor, as well as drug mechanism [38] . To understand 

he action of drugs and proteins, MD simulations can show the os- 

illations of receptors and ligands [39] . As a result, docking with 

D simulation may be utilized to examine the structural proper- 

ies and binding mechanism of ligands and receptors in a complete 

nd systematic manner. DFT studies of FDD cover new information 

bout their electronic, structural features and reactivity in addi- 

ion to reactivity analysis and MD simulations. DFT is also used to 

chieve the highest precision results of FDD’s properties in variety 

f utilizable eco-solvents [40] . 

https://doi.org/10.1016/j.molstruc.2022.133633
http://www.ScienceDirect.com
http://www.elsevier.com/locate/molstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2022.133633&domain=pdf
mailto:jsalotabi@pnu.edu.sa
https://doi.org/10.1016/j.molstruc.2022.133633
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Fig. 1. Optimized molecular structure of FDD. 
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. Methods 

FDD is obtained as a gift [5] and vibrational spectra (Figs. S1 

nd S2) were recorded according to literature [41] . Gaussian 09 

ackage was used to perform all quantum chemical calculations 

ith B3LYP/6-311 ++ G 

∗ for FDD ( Fig. 1 ) [42–44] . The FMO was

sed to calculate the DFT-based reactivity descriptors by obtaining 

onization energy and electron affinity. NBO analysis was carried 

ut in order to predict the important intra molecular interactions, 

ature and charge transfers within FDD [45] . Various solvents are 

eing used in the current study to examine the properties of elec- 

rons in FDD [46] . HOMO-LUMO and UV analyses are done in dif- 

erent solvents using the IEFPCM model. 

Molecular Docking studies are carried out for FDD with SARS- 

oV-2 main protease (PDB ID: 6LU7) with highest resolution 1.25 
˚
 [47] and subsequently cleaned for any steric clashes, intrinsic 

ater and co-crystallized molecules. Then the protein structure 

as subjected to energy minimization using 10 0 0 steps of conju- 

ate gradient algorithm. All the hydrogen are properly added and 

aved in pdb format for molecular docking purpose. Docking stud- 

es were carried out in patch dock web server [48] . Grid centre 

as provided as 0.35 Å x 6.0 Å x 3.0 Å. Docking parameters were
Table 1 

Calculated chemical descriptors (eV) of FDD. 

Molecular descriptors Gas Water A

E HOMO -5.5140 -5.5140 -

E LUMO -0.8808 -0.8808 -

Energy gap 4.6332 4.6332 4

Ionization potential 5.5140 5.5140 5

Electron affinity 0.8808 0.8808 0

Chemical hardness 2.3166 2.3166 2

Chemical potential -3.1974 -3.1974 -

Electrophilicity index 2.2065 2.2065 2

2

et for protein small ligand with clustering RMSD 0.5 Å. Ligand 

inding site information was uploaded in the server advanced pa- 

ameter option and energy minimized protein and geometrically. 

he MD simulations studies were carried on the dock complex for 

DD with protein (PDB ID: 6LU7) using the Desmond 2020.2 from 

chrödinger, LLC as reported earlier [49–55] . The RMSD, Rg, RMSF 

nd SASA) were calculated to monitor the stability of the MD sim- 

lations. 

. Results and discussion 

.1. . Spectroscopic and electronic properties 

The phenyl ring modes (Table S1) are assigned at: 3075 (IR), 

082 (Raman), 3100, 3093, 3082, 3074 cm 

−1 (DFT) ( υCH), 1587, 

448 (IR), 1594, 1590, 1469 (Raman), 1596, 1589, 1470, 1447, 1268, 

049 cm 

−1 (DFT) ( υRA); 1041,1241 (IR), 1128, 1040 (Raman), 1244, 

150, 1126, 1039 cm 

−1 (DFT)( δCH) and at 959, 854, 736 (IR), 961, 

22, 850, 738 cm 

−1 (DFT) ( γ CH) for 1,2-substituted ring RA; 3111 

IR), 3112, 3111, 3088 cm 

−1 (DFT) ( υCH); 1623, 1605, 1424, (IR), 

627 (Raman), 1622, 1609, 1500, 1422, 1291, 1047 cm 

−1 (DFT) 

 υRC); 1284 (IR), 1283, 1139, 1047 cm 

−1 (DFT)( δCH) and at 886, 
cetone DMSO Methanol Toluene 

5.5119 -5.5132 -5.5127 -5.5285 

0.8762 -0.8797 -0.8784 -0.8705 

.6357 4.6335 4.6343 4.6580 

.5119 5.5132 5.5127 5.5285 

.8762 0.8797 0.8784 0.8705 

.3179 2.3168 2.3172 2.3290 

3.1941 -3.1965 -3.1956 -3.1995 

.2007 2.2050 2.2034 2.1977 
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Table 2 

Theoretical electronic transition parameters of FDD. 

solvents Wavelength (nm) Band gap (eV) Energy (cm 

−1 ) Oscillator strength (f) Symmetry Major contributions 

Gas 276.72 4.4805 36137.67 0.065 Singlet-A HOMO → L + 2 (85%) 

322.86 3.8402 30973.30 0.0116 Singlet-A HOMO → L (92%) 

Water 276.72 4.4805 36137.67 0.065 Singlet-A HOMO → L + 2 (85%) 

322.86 3.8402 30973.30 0.0116 Singlet-A HOMO → L (92%) 

DMSO 276.91 4.4774 36112.67 0.070 Singlet-A HOMO → L + 2 (86%) 

322.91 3.8396 30968.46 0.0122 Singlet-A HOMO → L (92%) 

Acetone 277.03 4.4755 36097.34 0.0672 Singlet-A HOMO → L + 2 (86%) 

322.72 3.8419 30987.01 0.0118 Singlet-A HOMO → L (92%) 

Toluene 279.09 4.4425 35831.18 0.0800 Singlet-A HOMO → L + 2 (87%) 

321.37 3.8580 31116.87 0.0133 Singlet-A HOMO → L (91%) 

Methanol 276.85 4.4784 36120.73 0.0651 Singlet-A HOMO → L + 2 (85%) 

322.77 3.8413 30982.18 0.0116 Singlet-A HOMO → L (92%) 
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18 (IR), 888 (Raman), 886, 874, 820 (DFT) cm 

−1 ( γ CH) for 1,2,4- 

ubstituted phenyl ring RB [56–58] . 

The stretching modes of piperazine ring RD are at 1009, 945, 

31 (IR), 1006, 947, 931 (Raman) and 1141, 1074, 1062, 1007, 943, 

30 cm 

−1 (DFT). The associated CH2 modes are at: 2993 (IR), 2986 

Raman), 3069-2983 cm 

−1 (DFT) ( υCH2); 1394, 1356, 1302, 1027, 

69, 796, 750 (IR), 1190, 822, 782 (Raman), 1408-750 cm 

−1 (DFT) 

 δCH2). The bands at 1356 and 1027 cm 

−1 in IR are characteris- 

ic modes of bending of CH2. The other CH2 modes of FDD are 

t: 2868 (IR), 3062, 2980, 2890 (Raman), 3061-2886 cm 

−1 (DFT) 

 υCH2); 1474, 1335, 1312, 1261, 1241, 1217, 1120, 868 (IR), 1333, 

310, 1278, 1241, 1228, 865 (Raman), 1484-866 cm 

−1 (DFT) ( δCH2) 

 56 , 59 , 60 ]. 

Other important functional group modes are: υNH…Cl – 2910, 

129 cm 

−1 (DFT), 2219 (IR), 2125 (Raman); δNH…Cl: 1508, 1495, 

490, 1472 cm 

−1 (DFT); υOH – 3487, 3465, 3350 cm 

−1 (DFT), 3433, 

274 (IR), 3404, 3345 (Raman); υCS – 728, 678 cm 

−1 (DFT), 727, 

77 (IR), 727, 678 (Raman); υCF at 1163, 1137, 1077 cm 

−1 (DFT), 

164, 1137, 1078 (IR), 1077 cm 

−1 (Raman); δCF at 562, 513, 430, 

82, 274 cm 

−1 (DFT); υCO – 1063, 1057, 1033 cm 

−1 (DFT), 1064 

IR), 1055 cm 

−1 (Raman) [ 56 , 61 , 62 ]. The other deformation modes

re also identified. 

The solvation energies, changes in enthalpy and Gibbs energy 

f FDD are, respectively, -5.85, -5.97, -6.76 (acetone), -1.42, -1.45, 

1.68 (DMSO) and -2.94, -3.01, -3.44 (methanol) and -53.46, -59.15, 

44.31 kJ/mol (toluene) and the values show that the toluene is the 

est solvent for FDD [63] . The quantum chemical parameters were 

etermined though theoretical calculations using the DFT method 

 Table 1 ). Fig. 2 shows that the FDD’s HOMO and LUMO are dis-

ributed almost throughout the rings except piperazine, indicating 

 high ability to donate and receive electrons [ 64 , 65 ]. The orbitals

f the FDD differ noticeably between the gas and solvent phases. 

he observed higher hardness value (2.3166) in the gas phase of 

DD shows the chemical stability. In the gas state of FDD, energy 

ap, ionization potential and electron affinity are 4.6332, 5.5140, 

.8808 eV, respectively. When comparing descriptors in solvent 

tate, toluene has high energy gap of 4.6380 eV and a hardness 

alue of 2.3290. The highest and lowest ionization potential values 

re for toluene (5.5285) and for acetone (5.5119) [66] . 

UV-Vis spectroscopy is used to investigate the electronic tran- 

itions [67] and the electron spectrum of FDD was computed us- 

ng the IEFPC solvation model in different solvents (Fig. S3) at the 

3LYP/6-311 ++ G 

∗ level of theory. It is used to calculate FDD’s band 

ap and higher values indicate that tightly bound valence elec- 

rons with nucleus [68] . Gas and water get the same wavelength 

76.72 nm, band 4.4805 eV, energy 36137.67 cm 

−1 and oscillatory 

trength 0.065 with contribution 85% ( Table 2 ). Toluene has high- 

st absorption at 279.09 nm, band gap 4.4425 eV and a transition 

rom HOMO to LUMO + 2 (87%) giving aromaticity and biological 

ctivity of FDD. The conventional hybrid functionals, like B3LYP are 
3

nown to underestimate excitation energies in organic systems ac- 

ording to literature [69–71] . The range-separated TDDFT methods 

ive more accurate calculations compared to conventional hybrid 

FT methods. 

Due to lone pair electrons strong NBO interactions (Table 

2) occurred in FDD as: N12 → (C9-C11, C13-C21) with energies, 

3.23 and 23.25 kcal/mol; O65 → (O57-H58) with energy 23.47; 

l71 → (N43-H44) with energy 29.98 and other donor (acceptor) or- 

ials of C2-C3 (C9-C11), C5-C7 (C2-C3), C9-C11 (C5-C7), C13-C21 

C17-C19), C14-C16 (C13-C21), C17-C19 (C13-C21), C17-C19 (C14- 

16) with energies, 20.85, 22.90, 20.85, 20.51, 21.20, 20.15, 22.40 

cal/mol and 100% p-character in F23, F24, F25, Cl72, O62 atoms 

f FDD. 

.2. Topological properties of electron density 

Bader the pioneer proposed the Atoms in Molecules theory 

72] in order to get abundant details about the atoms, molecules, 

hemical bonding and their topological properties such as electron 

ensity (ED) and Laplacian of the electron density (LED). The ED 

alues are given in Table S3. Bond (3, -1), ring (3, + 1) and cage

ritical points (3, + 3) present in FDD ( Fig. 3 ) and the range of

D and LED for C 

–C bonds is 1.549 - 2.024 e/ ̊A 

3 and -13.877- -

2.001 e/ ̊A 

5 . The varying charge density values suggest that nature 

f single and double bonds of the C atoms present in FDD and the 

harge environments around all the carbon atoms might be differ- 

nt [73] . 

In FDD, among the C 

–O bonds, the C54-O57 bond has the 

lightly high value of charge density (1.631 e/ ̊A 

3 ) when compared 

o the other bonds. Similarly, among C 

–N bonds, the C11-N12 and 

26-N12 bonds have higher electron density (1.751 e/ ̊A 

3 , 1.774 

/ ̊A 

3 ) than the remaining C-N bonds. All the C-H bonds have slight 

ariation in their charge density and Laplacian values which sug- 

ests that the charge concentrations at the bond path between the 

toms might be same. The two C 

–S bonds are having almost equal 

harge density value which suggests the similar accumulation of 

harges in between the atoms. The Cl-H atoms exhibiting closed 

hell interactions since their Laplacian values are positive. All the 

hree C 

–F bonds are having similar ED as well as LED. The bonding 

egions between C and F atoms are visible through the Laplacian, 

LF, electron density and LOL maps ( Fig. 4 (a–d)). 

The cylindrical nature of the C 

–H and C 

–O bonds has been re- 

ealed through their corresponding ellipticity values whereas the 

character of the C 

–C, C 

–F and C 

–S bonds are visible through the

ncreased ellipticity values [74] . 

.3. Atomic charges and electrostatic potential 

The distributions of charges among the atoms present in FDD 

ave been calculated through AIM analysis and listed in the Ta- 
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Fig. 2. HOMO-LUMO plots of FDD. 
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le S4. In FDD, C22 possesses the highest positive charge of 1.646e 

ince it is attached with F23, F24 and F25 (electronegative atoms). 

he H44 atom possesses the highest negative charge value of - 

.070e which is attached with the N43 atom. Among the Cl atoms, 

he Cl72 atom has the highest negative charge value (-0.830e) 

hen compared to the Cl71 atom which has the charge value of 

0.199e. 

The regions of positive and negative electrostatic potentials are 

elpful to find out the sites of electrophilic as well as nucleophilic 

ttack which is likely happened between the biomolecule and the 

arget protein [75] . A large region of electronegative is seen around 
4 
he O atoms and small electronegative cloud is seen around N 

toms. The remaining other atoms have been surrounded by large 

lectropositive region. The electrostatic potential map is given in 

ig. 5 [76] . 

.4. Reduced density gradient 

The RDG provides non-covalent and space weak interactions in 

he molecule [77] . The Multiwfn program [78] has been employed 

o sketch the RDG and scatter graph and for FDD which is given in 
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Fig. 3. Molecular graph of the molecule showing critical points. 

Fig. 4. (a) Laplacian of the electron density (b) view of electron localization function of the plane F23-F24-F25 (c) Electron density (d) LOL of the electron density of the 

plane F23-F24-F25. 

F

t
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i

3
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t

ig. S4. The 2-dimensional scatter plots of RDG versus ( λ2 ) ρ(r) in- 

egrated on Fig. S4 shows fingerprints of non-covalent interactions 

n FDD. On left region of Fig. S4, strong attraction, H bond and 

alogen bond regions are portrayed, whereas the Van der Waals 

nteractions are visualized in the central part and steric repulsion 

s visible at right hand side. 
5 
.5. Pharmacology, docking and molecular dynamics simulations 

FDD’s drug resemblance is investigated to assess its potential 

or use as a functional ingredient in pharmacological products. Lip- 

nski’s rule, also known as the rule of five, has been used to inves- 

igate the relationship between the drug similarity of FDD and the 
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Fig. 5. Electrostatic potential of FDD. 

Fig. 6. (a) RMSD plot displaying the molecular vibration of C α backbone of 6LU7 + FDD (b) RMSF plots showing the fluctuations of respective amino acids throughout the 

simulation time 100 ns for 6LU7 + FDD (C) Radius of gyration plots for the deduction of compactness of protein 6LU7 + FDD (d) Number of hydrogen bonds formed between 

6LU7 and FDD during 100 ns simulation time scale (e) Solvent accessible surface area (SASA) displaying the ligand bound and unbound area at the binding pocket 6LU7 + FDD. 
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ral effects. The FDD is validated according to rule 5 (Table S5). 

he hydrogen bond donors (5) and acceptors (6), TPSA (113.29 ̊A 

2 ), 

olecular weight (576.54 g/mol), refractivity (156.09), Lipinski vio- 

ation (1) and biological score (0.55) are parameters of FDD which 

re within the threshold values. These parameters of FDD lead to 

he conclusion that it has a high potential for use as a drug [ 79 , 80 ].

Molecular docking studies of FDD with 6LU7 are displayed in 

ig. S5. Surface view of FDD with 6LU7 displayed that FDD well 

ccommodated within in the binding pocket (Fig. S5). The ma- 

or residues interacted with FDD at the binding pocket of protein 

rg222 forming conventional hydrogen bond, halogen bonds with 

RG217 and TRP218 and rest are in non bonded vander Waal’s in- 

eraction. The dock score is calculated within 0.5 Å RMSD clus- 

ers tolerence is -8.7 kcalmol −1 within the binding pocket area, 

86.40. 

To determine the stability and convergence of 6LU7 + FDD com- 

lex, MD simulation studies were performed for 100 ns. When 

he RMSD values were compared, the simulation of 100 ns re- 

ealed stable conformation. A deviation of 0.5 Å is observed for 

he C α-backbone of 6LU7 bound to FDD ( Fig. 6 a). The RMSD plots

re in the acceptable range, indicating that 6LU7 is stable in the 
6 
DD bound state before and after simulation, and quite stable 

ue to FDD’s higher affinity. The RMSF plot gives a significant 

pike of fluctuation (2.0 Å) at amino acid residue 50 and 275 in 

LU7 while remaining residues show less fluctuation during 100 

s which gives a stable amino acid conformation for the entire 

eriod of simulation ( Fig. 6 b). It means 6LU7 structures are sta- 

le during simulation in FDD bound conformations. Radius of gy- 

ation of 6LU7 C α-backbone is lowered from 26.45 Å to 26.40 Å in

he 6LU7 + FDD complex and this is an indication of the compact- 

ess of 6LU7 + FDD complex ( Fig. 6 c). The stable Rg peak thus con-

rms compactness of 6LU7 in FDD bound state. According to the 

verall quality analysis based on RMSD and Rg, FDD bound to the 

LU7 target posthumously in the binding cavities and gives stabil- 

ty. The number of H-bonds showed significant numbers between 

LU7 and FDD ( Fig. 6 d). The complex’s stability is aided by a con-

istent numbers of hydrogen bonds formed between protein and 

DD. The accessible solvent surface area gives information about 

he compactness of FDD-6LU7. The lowering of SASA in case of FDD 

ound to 6LU7 as compared to unbound state signifies the achieve- 

ent of stable converged structures due to high compactness of 

oth the systems ( Fig. 6 e) [81–84] . 
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. Conclusion 

We used theoretical and experimental methods to investigate 

he spectroscopic properties of FDD in this study. The FDD drug 

ontains reactive sites are identified on O and N atoms. The UV- 

is spectrum shows maximum absorption wavelengths with sol- 

ent toluene, which is superior to other solvents. In FDD, C54- 

57 bond has the slightly high value of charge density when com- 

ared to the other bonds and among the C-N bonds, the C11-N12 

nd C26-N12 bonds have higher electron density. The ADMET and 

rug-likeness properties of FDD demonstrate its intoxicating na- 

ure.Molecular docking studies confirm the protein-FDD H bond in- 

eraction with binding energy of -8.70 kcal/mol. The lowering of 

ASA for FDD-6LU7 as compared to unbound state gives a stable 

onverged structure. Hence the FDD compound can be a potential 

rug candidate for SARS-CoV-2 main protease. 
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