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Abstract
Haematological traits are important traits that show associations with immune and meta-

bolic status, as well as diseases in humans and animals. Mapping genome regions that

affect the blood cell traits can contribute to the identification of genomic features useable as

biomarkers for immune, disease and metabolic status. A genome-wide association study

(GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian

multi-marker approaches were integrated to identify genomic regions and corresponding

genes overlapping for both methods. GWAS was performed for haematological traits of 591

German Landrace pig. Heritability estimates for haematological traits were medium to high.

In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10

of p-value > 5). The Bayesian multi-marker approach revealed 102 QTL regions across the

genome, indicated by 1-Mb windows with contribution to additive genetic variance above

0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study

identified overlapping QTL regions from single- and multi-marker approaches for haemato-

logical traits. Identifying candidate genes that affect blood cell traits provides the first step

towards the understanding of the molecular basis of haematological phenotypes.

Background
Genome-wide associational study (GWAS) has become a powerful genomics tool for mapping
genetic loci associated with common diseases and quantitative traits. Haematological traits are
important in the sense that they can reflect the immune status and healthy conditions and be
utilized as biomarkers in human and animals [1]. Pigs are valuable as agricultural commodities
and share some similarities in physiology and genome as well as haematological traits with
humans. Therefore pigs can serve as a tractable model to study genetic determination of physi-
ological and metabolic traits [2, 3].
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Haematological traits include three components, leukocytes, erythrocytes and platelets,
which are markers of immune and/or inflammatory responses [4, 5]. A few studies have
reported on QTL mapping and GWAS for haematological traits in the pig and most studies
used F2 resource populations created by mating two genetically distinct breeds [6–9]. Two
studies of purebred pigs are available, one has detected QTL affecting haematological traits
based on a linkage analysis using 206 microsatellite markers [10] and the other identified SNPs
associated with haematological traits by GWAS [11]. GWAS results for haematological traits at
three growth stages in a White Duroc X Erhualian F2 intercross were also reported [12].

In the present study, we report GWAS for haematological traits of 591 performance-tested
pigs from commercial herds of German Landrace (DL) using the PorcineSNP60 BeadChip
(Illumina Inc., San Diego, CA, USA). The Bayesian multi-marker approach was integrated
with single-marker regression analyses to identify genomic regions and corresponding genes
overlapping for both methods.

Materials and Methods

Animals and sample collection
Animal care and tissue collection procedures followed the guidelines of the German Law of
Animal Protection, and the experimental protocol was approved by the Animal Care Commit-
tee of the Leibniz Institute for Farm Animal Biology (FBN). Animals (n = 591) of a German
Landrace (DL) herdbook herd were kept at the Experimental Farm of the FBN. Animals were
fed ad libitum. Samples were collected from the pigs at an average age of 170 days at the experi-
mental slaughter facility of the FBN after electronarcosis followed by exsanguination. Veteri-
nary inspection of the animals before and of carcasses and organs after slaughter ensured that
only animals without any impairment, disease symptoms or inflammatory and pathological
signs were considered, thus avoiding any bias of blood phenotypes. Haematological traits
(White blood cell count, WBC; Lymphocytes count, LYM; Red blood cell count, RBC; Haemo-
globin concentration, HGB; Haematocrit level, HCT; Mean Corpuscular Volume, MCV; Mean
Corpuscular Haemoglobin, MCH; Mean Corpuscular Haemoglobin Concentration, MCHC;
Red Distribution Width, RDW; Platelets, PLT; Mean Platelet Volume, MPV; Plateletcrit, PCT;
Table 1) were determined using an automated blood analyser device (ABX Pentra 60 HORIBA,

Table 1. Number of samples, means, standard deviations, variance components and estimates of heritability for haematological traits.

Traits N Mean ± SD σ2
e σ2

a h2

WBC (10³/mm³) 558 20.8 ± 4.9 17.98 5.33 0.23

LYM (#) 567 7.6 ± 1.9 1.66 1.57 0.49

RBC (106/mm³) 567 8.1 ± 0.8 0.39 0.27 0.41

HGB (g/dl) 559 13.7 ± 1.4 1.21 0.80 0.40

HCT (%) 564 43.2 ± 3.9 9.53 4.92 0.34

MCV (μm³) 567 53.4 ± 3.3 3.29 7.22 0.69

MCH(pg) 561 16.9 ± 1.3 0.56 1.12 0.67

MCHC (g/dl) 561 31.7 ± 1.2 0.45 0.90 0.67

RDW (%) 565 16.5 ± 1.9 1.70 1.59 0.48

PLT (10³/mm³) 545 317.5 ± 82.2 4016.67 2522.7 0.39

MPV (μm³) 564 7.5 ± 0.5 0.19 0.11 0.37

PCT(%) 555 0.2 ± 0.1 0.02 0.004 0.17

WBC, White blood cell count; LYM (#), Lymphocytes count, RBC, Red blood cell count; HGB, Haemoglobin concentration; HCT, Haematocrit level; MCV,

Mean Corpuscular Volume; MCH, Mean Corpuscular Haemoglobin; MCHC, Mean Corpuscular Haemoglobin Concentration; RDW, Red Distribution Width;

PLT, Platelets; MPV, Mean Platelet Volume; PCT, Plateletcrit;. σ2e, residual variance; σ2a, additive genetic variance; h2, heritability.

doi:10.1371/journal.pone.0159212.t001
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Montpellier, France). Liver tissues were sampled in order to extract DNA using the QIAamp
DNAMini Kit (Qiagen, Hilden, Germany).

SNP genotypes
Genotyping was performed using the PorcineSNP60 BeadChip (Illumina Inc., San Diego, CA,
USA) according to the manufacturer's SNP Infinium HD assay protocol. In brief, 200 ng of
DNA were amplified, fragmented, and hybridized to the PorcineSNP60 BeadChip containing
62,163 locus-specific 50-mers that are covalently linked to beads distributed on the microarray
surface. Single-base extension of captured oligos allowed the incorporation of labelled nucleo-
tides that were detected by Illumina iScan, and images were subsequently converted to intensity
data. The intensity data were normalized and the cluster position, genotype, and quality score
were assigned using the GenomeStudio software (Illumina Inc.). Quality control steps were
applied including removing samples with call rates< 99%. Markers with low minor-allele fre-
quency (< 5%) were excluded. Markers that strongly deviated from Hardy-Weinberg equilib-
rium (p< 0.0001) were also filtered out. The average call rate for all samples was 99.8% ± 0.2.
All markers on the PorcineSNP60 BeadChip were mapped to the porcine reference genome,
Sscrofa 10.2.

Single SNPs GWAS
Haematological traits were analysed for an association with SNPs using a mixed-model analysis
of variance in JMP Genomics (SAS Institute, Cary, NC, USA). Mixed-model analysis tests an
association between traits and a single SNPs and simultaneously adjusts for population struc-
ture and family relatedness [13]. The genetic similarity matrix between individuals was first
computed as identity by descent of each pair for the k-matrix. This genome wide relatedness
and the slaughter day were used as random effects. For controlling of population stratification,
the correlation-selected principal components analysis was used [14, 15]. Significant correla-
tions at a false discovery rate (FDR) of 5% were considered as covariates. Additionally, geno-
type and gender were used as fixed effects, age and carcass weight were considered as
covariates. Significantly associated SNP markers were reported at a threshold of NegLog10 (p-
value)> 5. In order to consider multiple testing issues, a false discovery rate (FDR) was esti-
mated (FDR< 5% corresponding to NegLog10 (p-value)> 6).

Bayesian GWAS
Prior to the analyses, the genotype matrix was processed using fastPHASE (version 1.2) to
impute missing genotype information [16]. Bayesian models implemented in GenSel software
(version 4.55R) were applied to the dataset [17]. All analyses were performed using a chain
length of 51000 iterations with the first 1000 cycles being discarded as burn-in. An output was
created at every 50th iteration. The proportion of SNP that were considered as having no effect
in a single iteration was set to π = 0.995. Thus, approximately 240 SNPs were reported in a sin-
gle iteration of the Markov chain Monte Carlo (MCMC) sampling. Initially, the Bayes C
approach was used to estimate additive genetic and residual variance components for each
trait. The heritability was calculated as the proportion of the additive genetic variance to the
total phenotypic variance. Subsequently, the prior information of variance components was
used to run Bayes B models and estimate SNP effects. For haematological traits, fixed effect of
gender was considered as class variable in the models. Age and carcass weight were included as
covariates. In addition, estimated SNP effects were combined for all markers located in non-
overlapping 1-Mb windows and the window contributions to the genetic variance were esti-
mated using the window option implemented in the GenSel software. In total, 2559 1-Mb
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windows located on autosomes and the X chromosome were included in the analyses. The the-
oretical proportion of a single window to the genetic variance of a trait was approximately
0.039% (100%/2559) and 1-Mb windows with contributions above 0.5% were reported.

Results

Phenotypic and genotypic measurements
591 pigs of commercial German Landrace (DL) were analysed for the following haematological
traits: White blood cell count (WBC), Red Blood Cell Count (RBC), Haematocrit level (HCT),
Haemoglobin concentration (HGB), Mean Corpuscular Volume (MCV), Mean Corpuscular
Haemoglobin (MCH, ratio of HGB to RBC), Mean Corpuscular Haemoglobin Concentration
(MCHC, ratio of HGB to HCT), Red Distribution Width (RDW); Platelets (PLT); Mean Plate-
let Volume (MPV); Plateletcrit (PCT); and Lymphocytes count (LYM). Means of raw data, var-
iance components and heritability estimates generated by the BayesC analyses for the
haematological traits are listed in Table 1. Heritability estimates for haematological traits were
medium to high (0.17–0.69).

After filtering, 48,909 SNPs were retained for the subsequent GWAS by both single-marker
analysis and Bayesian multi-marker approach. For single-marker analysis, a total of 252 SNPs
associated with 12 haematological traits were revealed at significance levels of negative log 10
of p value> 5 (See: S1 Table, Fig 1). The top five markers associated with each trait are shown
in Table 2 for haematological traits. For the Bayesian multi-marker approach, 1-Mb windows
with an explained additive genetic variance of the traits above 0.5% were reported. In total 102
QTL regions were associated with haematological traits that were distributed across the whole
genome (See: S2 Table, Fig 2). The regions overlapping between the results of single- (general-
ized linear model) and multi- (Bayesian approach) marker genome- wide association analyses
accounted for 24 out of 102 overlapping QTL regions (See: S2 Table). The transcripts located
in the overlapping regions, especially those that showed largest QTL effect for each haematolo-
gical trait are shown in Table 3.

Fig 1. Manhattan plots displaying the genome-wide association based on single-markers analysis
with haematological traits in German Landrace. Black lines indicate the significance threshold
corresponding to negative log10 (NegLog10)>5.

doi:10.1371/journal.pone.0159212.g001
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Table 2. Results of single-marker (generalized linear mixedmodel) genome-wide association analyses in a commercial German Landrace pig
population.

Trait SNP_ID SSC position Candidate genes Major/minor allele Variance explained P-value

HCT ASGA0055625 13 2696249 A/G 4.20% 9.99E-07

HCT MARC0069568 1 305211691 NUP214 G/A 3.72% 4.26E-06

HCT ASGA0068589 15 1138203 A/C 3.64% 5.52E-06

HCT ASGA0068559 15 666572 G/A 3.48% 8.81E-06

HCT ALGA0122657 6 136078566 C/A 3.45% 9.63E-06

HGB ASGA0106305 67212092 A/G 4.43% 5.68E-07

HGB MARC0018859 10 13257224 LOC100520091 C/A 4.00% 2.10E-06

HGB ASGA0071068 15 141300399 G/A 3.85% 3.22E-06

HGB SIRI0000352 15 141355395 A/G 3.85% 3.22E-06

HGB CASI0009310 4 13581654 A/G 3.53% 8.51E-06

LYM ALGA0079602 14 78525259 G/A 4.26% 9.49E-07

LYM ASGA0064978 14 78068318 DDX21 G/A 4.19% 1.01E-06

LYM ALGA0079529 14 77974347 STOX1 A/G 4.11% 1.30E-06

LYM ASGA0004304 1 125555348 LIPC G/A 3.86% 2.75E-06

LYM H3GA0007030 2 88476158 G/A 3.67% 4.87E-06

MCH ALGA0004603 153917457 G/A 6.90% 3.39E-10

MCH ASGA0081192 X 62086511 EFNB1 C/A 6.57% 9.34E-10

MCH H3GA0049198 17 52392791 SERINC3 A/G 5.30% 4.20E-08

MCH ASGA0003713 1 95391090 A/G 5.20% 5.81E-08

MCH MARC0009397 X 51700353 SMC1A A/G 5.06% 8.83E-08

MCHC ALGA0116756 16 75218282 GRIA1 G/A 4.72% 2.58E-07

MCHC ALGA0026794 4 100817218 FCRL3 A/G 3.98% 2.34E-06

MCHC ALGA0082915 14 146908519 FANK1 G/A 3.89% 3.03E-06

MCHC M1GA0019565 14 146929488 G/A 3.70% 5.27E-06

MCHC INRA0040046 13 39012509 CHDH G/A 3.66% 5.92E-06

MCV H3GA0055482 143472051 A/G 5.49% 2.03E-08

MCV ALGA0099736 X 48628584 G/A 5.30% 3.61E-08

MCV MARC0071761 X 48604940 G/C 5.30% 3.61E-08

MCV H3GA0002563 1 122922363 A/G 5.25% 4.12E-08

MCV ASGA0081192 X 62086511 EFNB1 C/A 5.15% 5.62E-08

MPV ALGA0066401 12 42685899 G/A 5.00% 9.10E-08

MPV MARC0044698 12 42662420 A/G 4.54% 3.66E-07

MPV M1GA0024295 45786519 G/A 4.77% 1.09E-06

MPV H3GA0051240 18 58034747 G/A 4.09% 1.42E-06

MPV ASGA0051711 11 77040959 LOC100524825 A/G 3.80% 3.45E-06

PCT M1GA0000623 1 9221985 IGF2R G/A 4.40% 6.72E-07

PCT ALGA0054690 9 123960077 A/G 4.13% 1.50E-06

PCT SIRI0000179 15 15594040 A/G 4.02% 2.12E-06

PCT ALGA0108179 2 65200938 LOC100515528 A/C 3.97% 2.41E-06

PCT DIAS0003568 2 65152586 PKN1 G/A 3.97% 2.41E-06

PLT ASGA0030815 7 5233250 BMP6 A/G 5.66% 2.18E-08

PLT H3GA0048433 17 34347812 A/G 4.60% 4.82E-07

PLT H3GA0047920 17 13605158 A/G 4.48% 6.90E-07

PLT H3GA0053642 6 134996322 LOC102162168 G/A 4.27% 1.27E-06

PLT H3GA0055786 195877640 G/A 4.19% 1.59E-06

RBC ALGA0104402 6 136084448 A/C 4.13% 1.14E-06

(Continued)
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White blood cell count and Lymphocytes count
Regarding the analysis of GWAS for WBC, only 3 SNPs located on chromosomes 7 and 17
reached the threshold levels of 5% FDR. The most significant markers associated with WBC
located on SSC7 (30.8 Mb; H3GA0020550). The other 2 SNPs (ALGA0095413 and
ASGA0091117) located on SSC17 (51.9–52.2 Mb) in the vicinity of the TOX high mobility

Table 2. (Continued)

Trait SNP_ID SSC position Candidate genes Major/minor allele Variance explained P-value

RBC M1GA0001919 1 305953354 A/C 3.91% 2.26E-06

RBC MARC0069568 1 305211691 NUP214 G/A 3.89% 2.39E-06

RBC ALGA0122657 6 136078566 C/A 3.87% 2.57E-06

RBC ASGA0055625 13 2696249 A/G 3.81% 3.08E-06

RDW ALGA0099585 X 38268046 A/G 5.59% 1.48E-08

RDW ALGA0099588 X 38289148 G/A 5.38% 2.83E-08

RDW ALGA0096935 18 8952443 ESYT2 G/A 5.00% 8.85E-08

RDW H3GA0055482 143472051 A/G 4.60% 3.02E-07

RDW DRGA0009770 9 124492658 TPK1 A/G 4.33% 6.80E-07

WBC H3GA0020550 7 30832008 A/G 4.10% 1.60E-06

WBC ALGA0095413 17 52208129 HNF4A G/A 3.92% 2.74E-06

WBC ASGA0091117 17 51942244 TOX2 A/G 3.80% 3.98E-06

WBC ASGA0090286 17 51967501 TOX2 A/G 3.45% 1.14E-05

WBC MARC0043068 3 65094505 A/G 3.27% 1.91E-05

table shows the top 5 markers for each of the 12 haematological traits

doi:10.1371/journal.pone.0159212.t002

Fig 2. Manhattan plots displaying the genome-wide association based on the Bayesianmulti-marker
approach (Bayes B) for haematological traits in German Landrace.Horizontal line represents the
threshold of 0.05% of additive genetic variance explained by 1-Mb marker windows.

doi:10.1371/journal.pone.0159212.g002
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group box family member 2 (TOX2) gene locus (P = 1.6x10-6 and P = 2.7x10-6) as shown in
Manhattan plots of WBC (Fig 1). Bayesian multi-marker approach detected the region that
explained 2.2% of the additive genetic variance for WBC at 28–29 Mb on SSC14 (Fig 2). The
overlapping region with single-marker analysis was also found on SSC17 (51–52 Mb) and
explained 1.01% of the additive genetic variance for WBC. The top 4 LYM associated SNPs
mapped on SSC14 (77.9–78.5 Mb) in DEAD-box helicase 21 (DDX21) and storkhead box 1

Table 3. Results of multi- (Bayesian approach) marker genome-wide association analysis in a commercial German Landrace pig population.

Trait SSC start (Mb) end (Mb) %Var #SNPs Gene located within region and/or overlap with single gene GWAS

HCT 8 139 139.9 1.82 34 FAM13A, HERC3, PYURF

HCT 15 0 1 0.62 27 LOC100739056, NEB

HGB 5 4.1 4.9 1.54 24 PMM1, SCL25A17

HGB 16 5 5.9 1.62 25 MARCH11, FBXL7

LYM 14 77 78 0.55 16 STOX1*

LYM 14 78 79 2.16 28 DDX21*

LYM X 44.1 45 1.01 14 KDM6A

LYM X 45 46 1.06 19 miR-221, miR-222

MCH 17 51 52 1.33 29 L3MBTL1*

MCH 17 52 53 1.15 24 TOX2*, MYBL2*, SERINC3*, LOC102159476*

MCH X 2 2.8 2.72 15 NLGN4X

MCHC 7 40 41 2.53 30 KANK4

MCHC 15 140 140.9 3.21 28 EIF2B1

MCV 1 259 259.9 1.55 15 TLE4

MCV 13 140 140.9 1.7 15 OPA1,TMEM44

MCV X 2 2.8 1.57 15 NLGN4X

MCV X 62.1 62.7 1.32 4 EFNB1*

MPV 1 284 285 1.14 27 SNX30

MPV 12 62 63 0.64 30 CENPV*

MPV 18 0 1 1.23 19

MPV 18 43 43.9 0.67 21 BMPER*, LOC102163798*

PCT 1 9 10 5.13 29 IGF2R*, MAS1,PARK2

PCT 2 69.1 69.8 0.79 8 ZGLP1*, ICAM3, CDC37

PCT 9 0 1 2.23 39

PLT 2 69.1 69.8 2.3 8 ZGLP1*

PLT 7 5 6 1.14 30 BMP6*, BLOC1S5

RBC 1 305.1 306 0.7 39 NUP214*

RBC 6 136 137 0.53 17 RAVER2*

RBC 16 5 5.9 1.36 25 MARCH11, C7H14orf2

RDW 1 259 259.9 2.92 15 TLE4

RDW 7 108.1 109 2.13 15 LOC100737221

RDW 9 124.1 124.6 2.92 13 TPK1*

RDW 13 140 140.9 4.74 15 OPA1,TMEM44, LOC100627758

RDW X 2 2.8 3.16 15 NLGN4X

WBC 14 28 29 2.21 29 TMEM132C

WBC 17 51 52 1.01 29 TOX2*

table shows QTL regions that explain the highest proportion of the genetic variance or overlap with single-marker analysis for haematological traits.

*the candidate gene which overlap between single- (generalized linear mixed model) and multi- (Bayesian approach) marker genome- wide association

analysis

doi:10.1371/journal.pone.0159212.t003
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(STOX1) and on SSC1 in lipase C, hepatic type (LIPC) (Table 2 and Fig 1). It is noteworthy that
at the same region on SSC14, QTLs for LYM were identified by Bayesian method, which
explained 2.16% of the additive genetic variance (Fig 2). The other two overlapping regions on
SSCX were detected by the Bayesian analysis and by the single-marker analysis for an associa-
tion with LYM. These regions contained the interesting transcripts of lysine demethylase 6A
(KDM6A) and micro RNA (miR-221 and miR-222) (Table 3).

Red blood cell traits
We performed GWAS for the following seven erythrocyte-related traits: RBC, HCT, HGB,
MCV, MCH, MCHC and RDW. The single-marker approach revealed a number of genetic loci
that were significantly associated with RBC (9 loci), HCT (1 loci), HGB (4 loci), MCV (98 loci),
MCH (78 loci), MCHC (5 loci) and RDW (27 loci) at significance thresholds of FDR< 5% and
NegLog10 (p-value)> 5. The detailed information is shown in additional file 1: S1 Table. In
addition, the corresponding Manhattan plots are shown in Fig 1 and the top 5 most significant
associations are listed in Table 2.

Interestingly, overlaying the results from both analysis methods consistently discerned RBC
associated regions located on SSC1 (305.1–305.2 Mb) physically linked to nucleoporin 214
(NUP214), and on SSC6 (136 Mb) in ribonucleoprotein, PTB binding 2 (RAVER2). The QTL
region for RBC with the largest effect was found on SSC16 (5–5.9 Mb) explaining 1.36% of the
additive genetic variance (Fig 2). This region was annotated with the transcript of membrane
associated ring-CH-type finger 11 (MARCH11) and C7H14orf2. The SNPs on NUP214 also
associated with HCT (p = 4.2x10-6). A region with the largest QTL effect for HCT accounting
for 1.82% of the additive genetic variance encompassed the potential candidate genes family
with sequence similarity 13 member A (FAM13A), HECT and RLD domain containing E3 ubi-
quitin protein ligase 3 (HERC3) and PIGY upstream reading frame (PYURF). The results also
showed some discrepancies between the two GWAS analysis methods such as HGB of which
most significant single SNPs were located on SSC15 (141.3 Mb), while multi-marker analysis
detected significant loci on SSC5 (4.1–4.9 Mb) and SSC16 (5.0–5.9 Mb).

Most prominent regions revealed from single-marker analyses with MCV and MCH were
located on SSCX (46–63 Mb), peaking in the ephrin B1 (EFNB1) gene (p = 9.3x10-10 for MCH
and p = 5.6x10-8 for MCV), and on SSC1 (90–105 Mb), covering interesting genes like inhibitor
of Bruton tyrosine kinase (IBTK) and CD109 molecule (CD109). On SSC17 (50.9–52.9 Mb) the
region spanning the l(3)mbt-like 1 (L3MBTL1)- MYB proto-oncogene like 2 (MYBL2)-TOX2-
serine incorporator 3 (SERINC3) locus showed effect on MCH as revealed by both single- and
multi-marker analyses. For MCV a wide QTL region was identified on SSC2 including 4 signif-
icantly associated SNP and further supported by two windows exceeding the threshold in
Bayesian GWAS (See: S2 Table).

Eleven SNPs significantly associated with MCV, MCH and RDW and located on SSCX
(49.5–63.2 Mb), covering the region of LOC100521307, Cdc42 guanine nucleotide exchange
factor 9 (ARHGEF9) and ectodysplasin-A (EDA). By means of multi-marker analysis, a region
on SSCX (2–2.8 Mb) explained the most of variance for MCV (1.57%), MCH (2.72%) and
RDW (3.16%); the locus was physically linked with the transcript of neuroligin 4, X-linked
(NLGN4X) (Table 3). Furthermore, we identified single-markers on SSC16 (glutamate ionotro-
pic receptor AMPA type subunit 1(GRIA1), SSC4 (Fc receptor like 3 (FCRL3) and SSC14
(fibronectin type III and ankyrin repeat domains 1 (FANK1) associated with MCHC. In con-
trast, multi-marker analysis of MCHC revealed QTL on SSC7 (40–41 Mb) and SSC15 (140.0–
140.9 Mb) which cover KN motif and ankyrin repeat domains 4 (KANK4) and eukaryotic
translation initiation factor 2B subunit alpha (EIF2B1).
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Platelet traits
We performed GWAS for three platelet traits: PLT, MPV and PCT. In total, we found 29 PLT
loci, 16 MPV loci and 21 PCT loci (See: S1 Table and Fig 1) for single-marker GWAS. The most
significant SNPs associated with MPV were MARC0044698 and ALGA0066401 of SSC12 (42.6
Mb) with p = 3.7x10-7 and p = 9.1x10-8. By multi-marker analysis, QTL with the largest effect
identified was on SSC18 at 0–1 Mb, follow by SSC1 at 284–285 Mb which explained 1.23% and
1.14% of the additive genetic variance of MPV, respectively. The SNP ASGA0030815 on bone
morphogenetic protein 6 (BMP6) (SSC7) and MIGA0002922 on zinc finger, GATA-like protein
1 (ZGLP1) (SSC2) were associated with both PLT and PCT. Moreover, the region on SSC2
(69.1–69.8 Mb) was also confirmed by multi-marker analysis (Table 3). It should be noted that
two loci significantly associated with PCT hosted candidate genes with biologically plausible
functions. The M1GA0000623 SNP within the insulin like growth factor 2 receptor (IGF2R)
gene (SSC1) was highly associated with PCT with p = 6.7x10-7; this region (SSC1, 9–10 Mb)
was also confirmed by the multi-marker analysis with the greatest effect that explained 5.13% of
the additive genetic variance and hosting 2 interesting transcripts IGF2R and MAS1 proto-
oncogene (MAS1) (Table 3).

Discussion
The proportion of phenotypic variance explained by markers is considered as a measure of her-
itability and therefore indicates whether these traits are heritable. Heritability estimates for hae-
matological traits in our study were shown to be moderate for WBC (0.23) which is in line with
previous studies in Large White and Yorkshire pigs [18, 19]. Our findings showed that erythro-
cyte-related traits RBC, HCT, HGB, and RDW were moderately heritable (0.34 to 0.48) com-
pared to MCV, MCH and MCHC which were highly heritable (0.67–0.69). However, in
another genetic background RBC and HCT were highly heritable (0.56–0.62) compared to
MCV and MCH which were moderately heritable (0.37–0.47), as reported by Mpetile and col-
league [19]. The discrepancies of heritability estimation could be due to genetic differences in
the breeds studied and the age of the animals when the phenotypic variance was measured.

In total, the single-marker GWAS by GLM analysis revealed 252 SNPs associated with 12
haematological traits at significance levels of 5% FDR, whereas the Bayesian approach detected
altogether 102 QTL regions across the genome for 12 haematological traits using a 1- Mb win-
dow and the genetic variance above 0.5%. The multi-markers method was challenged to avoid
false positives and overestimation of QTL effects derived from single-SNP analysis; accord-
ingly, Bayesian approaches involving SNP-windows to reflect QTL have been applied in many
studies before [20–22]. To take advantage of the Bayesian approach and to enhance the power
of finding potential candidate genes, we combined the results from both methods by overlaying
the derived QTL.The integration of both methods resulted in 24 overlapping QTL regions. For
lymphocyte count, two overlapping regions from both methods located on SSCX (44.1–46.0
Mb) at KDM6A, miR-221 and miR-222, and SSC14 (77–79 Mb) at STOX1 and DDX21.
KDM6A (histone 3 lysine 27 demethylase UTX) was identified as a novel regulator for haema-
topoietic cell migration by using haematopoietic stem and progenitor cell [23]. Consistency of
results between both methods was also found for WBC on SSC17 (51–52 Mb) at TOX2. TOX2
is a transcription factor belonging to the TOX family that shares a highly conserved high
mobility group DNA-binding domain with the other TOX members. As recently reported,
TOX2 regulates human natural killer cell development by controlling T-BET expression [24].
Recently, a study demonstrated that transcriptional regulator TOX is required for the in vivo
differentiation of common lymphoid progenitors into innate lymphoid cells [25]. All together
there is growing evidence promoting TOX2 as a candidate gene for WBC counts.
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QTL for MCH and MCV were reported in many pig chromosomes in particular on SSC2 at
55–60 Mb [11] and SSC8 at 42–73 Mb which covers the KIT gene [9, 10, 26]. KIT regulatory
mutations are responsible for the dominant white phenotype in pigs [27] and have profound
pleiotropic effects on peripheral blood cell measures in Western commercial crossbred pigs
and experimental crosses [6, 28, 29]. Inconsistently, others have not found any significant asso-
ciation between the KIT mutations and haematological parameters [30, 31]. Also, in our study,
no significant associations with red blood cell traits were detected for both of these regions, in
particular not of the KIT region. Landrace pigs have solid white coat color phenotypes and are
usually homozygous for the dominant white allele (I) at the KIT gene. Thus there is not QTL
segregating; consequently there are no significant SNPs found around the KIT region.

In this study, a region on SSC8 at 128 Mb was found significantly associated with MCV by
means of single-marker analysis. Interestingly, Bayesian approaches persistently detected an
associated effect for MCV, MCH, and RDW on SSC1, SSC13 and SSCX which constitute some
plausible candidate genes contributing to red blood cell traits via haematopoietic mechanisms
including EFNB1, TLE4 and OPA1. In particular, identified regions on SSCX at 2.0–2.8 Mb and
62.1–62.7 Mb include NLGN4X and EFNB1 as interesting candidate genes. NLGN4X encodes a
protein which belongs to a family of neuronal cell surface and causal factors for monogenic
autism as well as directly impacts neurodevelopmental processes during the formation of neu-
rons and their connections [32, 33]. EFNB1 encodes a membrane protein that acts as a ligand
for Ephrin receptor tyrosine kinases and thus play a potential role in modulating blood pres-
sure [34]. EFNB1 was detected in leukaemia cell lines and bone marrow and was shown to be
involved in normal haematopoietic development and tumorigenesis [35, 36]. The other candi-
date gene located on SSC1 which involved in the complex processes of haematopoiesis was
TLE4. The TLE family of genes is a group of highly conserved transcriptional corepressors that
are involved in myeloid cell proliferation and survival [37]. Tle4 knockout mice exhibit leuko-
cytopenia, B cell lymphopenia, and significant reductions in haematopoietic stem and progeni-
tor cells [38]. Another plausible candidate locus contributing to red blood cell traits via energy
metabolism of erythropoiesis was OPA1 located on SSC13 (140–140.9 Mb).This locus explains
1.7 and 4.7% of the additive genetic variance for MCV and RDW. Erythropoiesis is highly
dependent of mitochondrial metabolism through multiple ways [39]. The OPA1 gene encodes
a dynamin-like mitochondrial GTPase OPA1and plays a significant role in mitochondrial
structure, maintenance and fusion. In addition, OPA1 –is involved in the regulation of ener-
getic metabolism and cell death, which underscores its multiple physiological roles [40].
Recently, it was reported that when erythropoietic cells are copper deprived,MFN2 and OPA1
become up-regulated and functional to promote fusion [41].

In a previous study, the QTLs for RBC were mapped on the end of SSC1 [9]. Regarding the
present study, one of common candidate genes in SSC1 (305.1–306 Mb) that associated with
HCT and RBC, was NUP214. The gene is a member of the FG-repeat-containing nucleoporins
and known to be fused with the DEK gene on chromosome 6 in a t(6,9)-translocation associ-
ated with acute myeloid leukemia and myelodysplastic syndrome [42].

The highly significant SNPs and regions, that both approaches detected s to be associated
with platelet traits (PCT), were physically linked to the IGF2R gene (SSC1, 9–10 Mb). The IGFs
have an important role in physiologic and neoplastic processes as well as normal and malignant
development of the haematopoietic system [43, 44]. Recently, it was reported that deletion of
the insulin receptor in murine resulted in an increases platelets count and volume, and blocked
the action of insulin on platelet signalling and function [45]. ZGLP1 (zinc finger, GATA-like
protein 1) is a strong positional candidate gene for both PCT and PLT but there is still limited
knowledge about the function of this gene. GWAS of PLT further revealed the BMP6 gene
which is the key endogenous regulator of hepcidin, an iron homeostasis gene [46]. In this
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context, it was also reported that iron deficiency increases megakaryopoietic differentiation
and alters platelet phenotype [47].

Conclusions
In summary, our study provides insights into the genetic architecture of haematological traits
and opens new opportunities to the application of haematological parameters as a monitoring
indicator for health and infection in pigs. Taking the advantages of Bayesian GWAS approach,
combined with a GLM single-marker approach, we were able to provide a list of promising
QTL regions and plausible candidate genes that carry common genetic variants associated with
RBC, WBC, and platelet phenotypes. Further validation and identification of the causal muta-
tions are necessary. This study provides an additional step towards the understanding of the
molecular basis of blood cell phenotypes and could be used as a model for many diseases which
might be simpler for blood cell traits rather than most other complex phenotype.
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