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ABSTRACT Burkholderia pseudomultivorans MPSB1 was isolated from a copper mined-
out soil sample collected from Mogpog, Marinduque, Philippines. Here, we report the
draft genome sequence with predicted gene inventories supporting rhizosphere biore-
mediation, such as heavy metal tolerance, phosphate solubilization, and siderophore
production.

Plant growth-promoting rhizobacteria were isolated and characterized from biore-
mediated and heavy metal-contaminated environments such as mine sites in

Philippines (1–3). Members of the Burkholderia species that promote plant growth
activities and are normally isolated not from infected patients but from environmental
sources have increased remarkably (4). Here, we report the draft genome sequence of
Burkholderia pseudomultivorans strain MPSB1, isolated from a phytoremediated copper
mined-out site in Mogpog, Marinduque, Philippines. The strain was sequenced to pro-
vide insights to its potential utilization as a bioremediating inoculum in heavy metal
postmining sites in Philippines. A soil sample was taken from a 20-cm depth 10 cm
from Pterocarpus indicus, the plant used for bioremediation (5).

MPSB1 was isolated by spreading 0.1ml of 10-fold serial dilutions on National
Botanical Research Institutes phosphate (NBRIP) medium containing insoluble trical-
cium phosphate (6). The plates were incubated at 37°C for 14 days. Colonies showing
halo zones were purified by extensive subculturing on NBRIP medium (7), generating
axenic isolate MPSB1. The purity of the isolate was assessed by routine Gram staining,
16S rRNA gene sequencing, and electron microscopy analyses (transmission electron
microscopy [TEM] and scanning electron microscopy [SEM]). Genomic DNA was puri-
fied from a 48-h culture grown in tryptic soy broth (37°C with shaking at 200 rpm)
using the ZymoResearch Quick-DNA fungal/bacterial kit and quantified using
NanoDrop and Qubit v2.0. Nextera XT DNA libraries were created and sequenced
using the NextSeq reagent kit (2� 250 bp) (Illumina, San Diego, CA). FastQC v0.11.8
was used to inspect the quality of the sequences, and quality trimming was based
on Phred quality scoring 20 and SolexaQA v3.0 (8). Trimmed reads were de novo
assembled using IDBA-UD v1.1.1 (9) implemented in the Microbial Genome Atlas
(MiGA) pipeline v0.3.6.2 (10). Genome completeness was assessed using BUSCO
v4.1.4 (11). The draft genome sequence was annotated using the NCBI PGAP v4.8
(12). Taxonomic classification was established using the Type (Strain) Genome v0.90
(13) and Microbial Genome Atlas servers, calculating for the digital DNA:DNA
hybridization (dDDH) (14) and average nucleotide identity (ANI) (15), respectively.
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Secondary bioactive metabolites were predicted using antiSMASH v5.0 (16). Default
parameters were used for all software unless otherwise specified.

Paired-end sequencing yielded 1,097,695 reads at 165� coverage. The draft ge-
nome represented in 145 contigs (N50, 88,373 bp) has a G1C content of 67.38% and an
estimated size of 7,742,780 bp. The genome of MPSB1 showed an ANI of 95.45% with
the closest type strain, Burkholderia pseudomultivorans DSM 105103T.

Genome annotation detected 7,021 coding sequences, 2 rRNA genes, and 59 tRNAs. The
genome contains predicted genes supporting rhizosphere-associated processes, including
metal scavenging by siderophores, quorum sensing by homoserine lactone, heavy metal
efflux pumps, and phosphate solubilization. Table 1 highlights 6 of the 14 predicted biosyn-
thetic gene clusters. The genome also contains predicted biosynthetic gene clusters for the
production of bacteriocin (17), biopolymers (polyhydroxyalkanoate and exopolysaccharides)
(17, 18), and several terpenoids.

Data availability. The whole-genome project for Burkholderia pseudomultivor-
ans MPSB1 has been deposited in DDBJ/ENA/GenBank under accession number
JADKRM000000000. The version described in this paper is the first version
(JADKRM010000000), under BioProject number PRJNA674354, BioSample num-
ber SAMN16631211, and Sequence Read Archive (SRA) number SRR13060793.
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