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The long non-coding RNA metastasis-associated lung adenocarcinoma transcript-1
(MALAT1) was initially found to be overexpressed in early non-small cell lung cancer
(NSCLC). Accumulating studies have shown that MALAT1 is overexpressed in the tissue
or serum of NSCLC and plays a key role in its occurrence and development. In addition,
the expression level ofMALAT1 is significantly related to the tumor size, stage, metastasis,
and distant invasion of NSCLC. Therefore, MALAT1 could be used as a biomarker for the
early diagnosis, severity assessment, or prognosis evaluation of NSCLC patients. This
review describes the basic properties and biological functions ofMALAT1, focuses on the
specific molecular mechanism of MALAT1 as a microRNA sponge in the occurrence and
development of NSCLC in recent years, and emphasizes the application and potential
prospect of MALAT1 in molecular biological markers and targeted therapy of NSCLC.

Keywords: long non-coding RNA, metastasis-associated lung adenocarcinoma transcript-1, non-small cell lung
cancer, metastasis, invasion, microRNA
INTRODUCTION

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide
(1). Although great advances have been made in surgery, chemotherapy, and immunotherapy, the
5-year survival rate of patients with NSCLC is still only about 15% due to the high rate of distant
metastasis and recurrence (2, 3). Therefore, the invasion and the metastasis of cancer cells are
serious challenges in the treatment of NSCLC. In-depth understanding of the potential mechanisms
of the occurrence and development of NSCLC is of great significance in order to improve the effect
of clinical treatment.

Long non-coding RNA (lncRNA) is a transcript consisting of more than 200 nucleotides in
length (4). It is well known that lncRNA can regulate the expressions of many genes and participate
in the development of tumors (5). Metastasis-associated lung adenocarcinoma transcript-1
(MALAT1) was initially found to be overexpressed in early NSCLC, which is a type of non-
coding ribonucleic acid (6). Although there have been many studies on MALAT1 in the past, the
specific molecular mechanism ofMALAT1 regulation of NSCLC is still not very clear (7). In the past
decade, more and more studies have found that MALAT1 can regulate its downstream target
molecules by directly binding to microRNA (miRNA), thus playing an important role in the cell
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proliferation, metastasis, invasion, and treatment of drug
resistance in NSCLC (8–11). In this review, we first briefly
introduce the basic properties and biological functions of
MALAT1, focus on the molecular mechanism of MALAT1 as
an miRNA sponge in the occurrence and the development of
NSCLC, and highlight the application and potential prospect of
MALAT1 in molecular biological markers and targeted therapy
in NSCLC.
DISCOVERY OF LncRNA MALAT1

MALAT1 is also termed nuclear enriched abundant transcript 2
(NEAT2) (12). The structure and biogenesis of its genes are
located in human chromosome 11q13 and mouse chromosome
19qA (13, 14). The MALAT1 transcript is about 7 kb in humans
and 6.7 kb in mice (12, 15). Previously, MALAT1 was named
because of its clinical significance in predicting the metastasis
and survival of early NSCLC, but a subsequent study showed that
MALAT1 is widely expressed in normal tissues and is extremely
abundant and widely conserved in 33 species of mammals (6,
16), which indicates that MALAT1 may have potentially
important biological functions (17).

Different from the typical mechanism of cleavage and
polyadenylation, the MALAT1 3′ end lacks the structure of
poly(A) tail (18). With the cleavage of ribonuclease (RNase P),
the primary transcript of MALAT1 forms a mature transcript of
7 kb and a small transcript fragment at the 3′ end (Figure 1) (18).
The mature transcript is mainly located in nuclear bodies known
as nuclear speckles, which are subnuclear structures enriched
with RNA processing factors and poly(A)+ RNAs and involved in
posttranscriptional regulation of gene expression (19, 20). Its 3′
end is highly conserved and forms a unique triple-helix structure
that can protect it from the damage of 3′–5′ exonucleases, which
is beneficial to the stability of MALAT1 (21, 22). The small
transcript fragment is bound by ribonuclease Z (RNase Z) and
further cleaved and modified by the CCA-adding enzyme to
produce a 61-nt-long lncRNA called MALAT1-associated small
cytoplasmic RNA (mascRNA), then folds into the transfer RNA
(tRNA) cloverleaf structure and is exported to the cytoplasm
(Figure 1) (18). MALAT1 located in nuclear speckles can
Abbreviations: NSCLC, non-small-cell lung cancer; LncRNA, long non-coding
RNA;MALAT1, metastasis-associated lung adenocarcinoma transcript-1; NEAT2,
nuclear enriched abundant transcript 2; RNase, ribonuclease; FASLG, fas ligand;
TNF-a, tumor necrosis factor-a; IL-6, interleukin-6; QARS, glutaminyl-tRNA
synthetase; LTBP3, latent transforming growth factor beta binding protein 3;
TRF2, transcription of telomeric repeat-binding factor 2; H3K9me3,
trimethylation of histone 3 lysine 9; Suv39h1, suppressor of variegation 3–9
homolog 1; IQGAP1, IQ motif-containing GTPase-activating protein 1; hnRNPC,
heterogeneous nuclear ribonucleoprotein C; m6A,N6-methyladenosine; METTL3,
methyltransferase-like 3; DDP, cisplatin; p120-ctn, P120 catenin; EMT, epithelial–
mesenchymal transition; qRT-PCR, real-time quantitative PCR; PD-L1,
programmed death-ligand 1; KLF4, Kruppel-like factor 4; ERb, estrogen
receptor b; EREs, estrogen response elements; VM, vasculogenic mimicry;
SRSF7, serine/arginine-rich splicing factor 7; EGFR-TKI, epidermal growth
factor receptor tyrosine kinase inhibitor; PPI, polyphyllin I; ASOs, antisense
oligonucleotides; ZFN, zinc finger nuclease; MRE, miRNA response element;
RIP, RNA immunoprecipitation.
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regulate other physiological and pathological processes such as
embryonic development, tumor progression, cardiovascular
remodeling, and tissue inflammation mainly by affecting gene
transcription, interfering with messenger RNA (mRNA)
cleavage, regulating epigenetic changes, or acting as a
competitive endogenous RNA (23–28). There are few reports
on the role of mascRNA, which may participate in cardiovascular
innate immunity by affecting fas ligand (FASLG), tumor necrosis
factor-a (TNF-a), interleukin-6 (IL-6), etc. (29) It may also be
part of the molecular mechanism of function in cancer
to regulate the glutaminyl-tRNA synthetase (QARS) protein
levels and promote global protein translation and cell
proliferation (30).
THE PROPERTIES AND BIOLOGICAL
FUNCTIONS OF MALAT1

Previous studies have found thatMALAT1 can participate in the
regulation of biological function through the following main
mechanisms (Figure 2): 1) affecting the gene transcription.
MALAT1 can recruit Sp1, a transcription factor, in multiple
myeloma. Sp1 can activate and promote the secretion of growth
factor TGF-b by binding to the prompter of latent transforming
growth factor beta binding protein 3 (LTBP3) (31).MALAT1 can
promote the transcription of telomeric repeat-binding factor 2
(TRF2) by recruiting RNApol II, P300, and CRUPT to bind to
the promoter region of TRF2, which promotes the growth of liver
cancer stem cells (32). 2) Affecting the alternative splicing of pre-
mRNAs. MALAT1 is identified as a nuclear-retained regulatory
RNA that can interact with the serine- and arginine-rich (SR)
protein splicing factors such as SRSF1, SRSF2, and SRSF3, affect
the distribution of splicing factors in nuclear speckle domains,
and regulate alternative splicing of pre-mRNAs (33).
Additionally, MALAT1 can promote ovarian cancer
progression by regulating the splicing factor RBFOX2-
mediated alternative splicing (34). Furthermore, MALAT1 can
induct the oncogenic splicing factor SRSF1 and modulate the
alterative splicing of SK61 in hepatocellular carcinoma (35).
3) Regulating protein activity. MALAT1 can competitively bind
to SFPQ leading to PTBP2 release from the SFPQ/PTBP2
complex, which enhances the function of PTBP2 in promoting
tumor cell proliferation and migration (36). 4) Mediating
epigenetic changes. Malat1 can cause the trimethylation of
histone 3 lysine 9 (H3K9me3) by recruiting the suppressor of
variegation 3–9 homolog 1 (Suv39h1) to MyoD-binding loci.
This trimethylation suppresses the transcriptional activity of
MyoD, which represses myoblast differentiation (37). In
addition, the overexpression of MALAT1 could increase the
expression of acetyl-H4 histone in the IQ motif-containing
GTPase-activating protein 1 (IQGAP1) promoter, which may
promote the proliferation and invasion of thyroid cancer cells
(38). 5) Promoting the nuclear and cytoplasmic translocation of
cellular proteins. MALAT1 retains the serine/arginine-rich
proteins SF2/ASF from the cytoplasm to the nucleus, thus
promoting the development of gastric cancer cells (39).
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MALAT1 can bind to an abundant nuclear factor heterogeneous
nuclear ribonucleoprotein C (hnRNPC) protein, which could
transfer from the nucleus to the cytoplasm during cell division,
to assist its translocation (40). (6) Acting as an endogenous
miRNA sponge. MiRNAs play an important role in cell
proliferation, differentiation, apoptosis, and development.
Frontiers in Oncology | www.frontiersin.org 3
Recent evidence suggests that other RNAs such as lncRNA can
also compete with mRNAs by sponging miRNAs (41). Among
these lncRNAs, MALAT1 is one of the most studied RNAs
involved in various molecular processes such as endogenous
miRNA sponging (42). Here, we will focus on the potential
function of MALAT1 as a miRNA sponge in NSCLC (Table 1).
FIGURE 1 | MALAT1 biogenesis. The primary transcript of MALAT1 forms a mature transcript of 7 kb and a small transcript fragment at the 3′ end with the
cleavage of RNase P. The mature transcript is mainly located in nuclear speckles, and its 3′ end is highly conserved and forms a unique triple-helix structure that can
protect it from the damage of 3′–5′ exonucleases, which is beneficial to the stability of MALAT1. The small transcript fragment is bound by RNase Z and further
cleaved and modified by the CCA-adding enzyme to produce a 61-nt-long lncRNA called MALAT1-associated small cytoplasmic RNA (mascRNA), then folds into the
tRNA cloverleaf structure and is exported to the cytoplasm.
A B C

D E F

FIGURE 2 | Properties and biological functions of MALAT1. (A) Affects gene transcription. (B) Affects the alternative splicing of pre-mRNAs. (C) Regulates protein
activity. (D) Mediates epigenetic changes. (E) Promotes nuclear and cytoplasmic translocation of cellular proteins. (F) Acts as an endogenous miRNA sponge.
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MECHANISM OF MALAT1
IN NSCLC PROGRESSION AS
A MicroRNA SPONGE

miR-1914-3p
N6-methyladenosine (m6A) mRNA methylation initiated by
methyltransferase-like 3 (METTL3) promotes the translation of
YAP mRNA by recruiting YTHDF1/3 and eIF3b into the
translation initiation complex, so the expression of METTL3 is
positively correlated with the level of YAP protein (54). On the
other hand, METTL3 improved the m6A modification level of
the lncRNA MALAT1 and increased its stability. MALAT1
sponging miR-1914-3p weakens the ability of miR-1914-3p to
target and inhibit YAP, thus increasing the expression of YAP in
NSCLC (54). The increased expression and activity of YAP lead
to cisplatin (DDP) resistance and metastasis of NSCLC (54).
Therefore, the increased activity of the METTL3/MALAT1/miR-
1914-3p/YAP axis promotes the metastasis and drug resistance
of NSCLC.

miR-197-3p
The high expressions of MALAT1 and miR-197-3p were closely
related to the survival and growth of NSCLC (43). Luciferase
activity assay showed thatMALAT1 was complementary to miR-
197-3p at certain sites. P120 catenin (p120-ctn) regulates the
proliferation of cancer cells by regulating cell adhesion and the
cell cycle (55). Yang et al. found that p120-ctn was confirmed to
be a targeted downstreammolecule ofMALAT1 and miR-197-3p
(43). Reducing the expression of p120-ctn can repress the
epithelial–mesenchymal transition (EMT) and the survival and
proliferation ability of NSCLC, while it enhances the apoptosis
rate of cancer cells. Moreover, p120-ctn can mediate the role of
Frontiers in Oncology | www.frontiersin.org 4
MALAT1 and miR-197-3p in promoting the progression and
chemotherapy resistance of NSCLC cells (43). The results of
in vivo experiments using NSCLC mouse models showed that a
low expression of MALAT1, miR-197-3p, or p120-ctn can
decrease the tumor volume and weight compared with the
control group (43). Consequently, the MALAT1/miR-197-3p/
p120-ctn axis may play a potential role in the regulation of
NSCLC, which will provide a direction for improving the
prognosis of NSCLC patients after chemotherapy.

miR-142-3p
The expression of miR-142-3p decreased, while b-catenin and
MALAT1 increased in NSCLC tissues. RT-PCR and luciferase
reporter assays showed that miR-142-3p negatively inhibited the
level of MALAT1 by directly binding to the 3′-UTR of MALAT1
mRNA (44). On the one hand, upregulation of miR-142-3p
mimic transfection can significantly reduce the proliferation and
migration of NSCLC H1299 cells while inducing G0/G1 phase
arrest and reducing that of the S phase; on the other hand, the
overexpression of miR-142-3p can downregulate the expression
of b-catenin in H1299 cells (44). In vivo experiments showed that
the upregulation of miR-142-3p and the downregulation of
b-catenin or MALAT1 could significantly reduce the
tumorigenicity of NSCLC cells (44). To sum up, miR-142-3p
can play a tumor-suppressing role in the progression of NSCLC
by inhibiting the MALAT1/b-catenin signaling pathway.

miR-206
Tang et al. detected the expression of MALAT1 in tumor tissues
and adjacent normal tissues in 36 cases of NSCLC using real-
time quantitative PCR (qRT-PCR) and found that the expression
ofMALAT1 was significantly upregulated in NSCLC tissues (45).
In addition, MALAT1 promoted EMT, cell migration, and
TABLE 1 | Mechanism and roles of the metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) in non-small cell lung cancer (NSCLC) progression.

miRNA Target genes of
miRNA

Downstream pathways Biological functions Reference

miR-1914-3p YAP METTL3/MALAT1/miR-1914-3p/
YAP

Promote drug resistance and tumor metastasis (11)

miR-197-3p p120-ctn MALAT1/miR-197-3p/p120-ctn Promote proliferation, viability, and EMT of NSCLC and depress
chemosensitivity and apoptosis

(43)

miR-142-3p b-catenin miR-142-3p/MALAT1/b-catenin Promote proliferation, invasion, and tumor formation and inhibit apoptosis (44)
miR-206 – MALAT1/miR-206/Akt/mTOR

signaling
Promote NSCLC cell migration and invasion (45)

miR-124 STAT3 MALAT1/miR-124/STAT3 Promote the progression of NSCLC (46)
miR-200a-3p PD-L1 MALAT1/miR-200a-3p/PD-L1 Promote proliferation, mobility, migration, and invasion (10)
miR-145 KLF4 MALAT1-miR-145-KLF4 Induce cisplatin resistance (47)
miR-185-5p MDM4 MALAT1/miR-185-5p/MDM4 Promote proliferation, migration, and invasion and impede apoptosis (48)
miR-515-5p EEF2 MALAT1/miR-515-5p/EEF2 Promote proliferation and invasion and reduce apoptosis (49)
miR-146a/
miR-216

BRCA1 MALAT1/miR-146a/miR-216/
BRCA1

Participate in the DNA repair process of NSCLC cells and attenuate cisplatin
sensitivity

(50)

miR-145-5p NEDD9 ERb/MALAT1/miR-145-5p/
NEDD9

Promote VM and cell invasion (51)

miR-374b-5p SRSF7 MALAT1/miR-374b-5p/SRSF7 Promote proliferation and migration and inhibit apoptosis (7)
miR-613 COMMD8 MALAT1/miR-613/COMMD8 Promote proliferation, colony formation, and glycolysis and attenuate

apoptosis
(52)

miR-101-3p MALAT1 miR-101-3p/MALAT1/PI3K/AKT
signaling

Promote growth and metastasis of NSCLC (53)
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invasion by activating the Akt/mTOR signals in A549 and H1299
cells. MiR-206 is the direct downstream target of MALAT1 in
NSCLC, and there was a negative correlation between the
expressions of MALAT1 and miR-206 in NSCLC (45).
MALAT1 promoted cell migration and invasion in NSCLC
cells by sponging miR-206. In addition, miR-206 could also
inhibit the activation of the Akt/mTOR signal mediated by
MALAT1 in A549 and H1299 cells (45). Taken together,
MALAT1 can promote the migration and invasion of NSCLC
by targeting miR-206 and activating the Akt/mTOR signaling
pathway, which provides a molecular basis for the metastasis of
MALAT1 in NSCLC.

miR-124
It was found that the level of miR-124 in A549, H23, H522,
H1299, and H460 NSCLC cells was significantly downregulated
(46). Luciferase reporter assays showed that miR-124 is the direct
target ofMALAT1, and there was a potential negative correlation
between miR-124 and MALAT1. shMALAT1 can suppress the
proliferation, colony formation, and apoptosis of NSCLC cells,
while miR-124 inhibitors can reverse this effect. In addition, it
was also found that STAT3 is a new mRNA target of miR-124
(46). The downregulation of MALAT1 can inhibit the
development of NSCLC by enhancing the expression of miR-
124 and reducing the expression of STAT3 (46). In summary, it is
speculated that MALAT1 may participate in the occurrence and
development of NSCLC as an endogenous miRNA sponge
through the MALAT1/miR-124/STAT3 signaling axis.

miR-200a-3p
The targeting relationship between MALAT1 and miR-200a-3p
and programmed death-ligand 1 (PD-L1) was further verified by
qRT-PCR and dual-luciferase reporter gene detection (10). The
researchers found thatMALAT1 sponged miR-200a-3p, and PD-
L1 was identified as the target of miR-200a-3p and indirectly
regulated by MALAT1. Moreover, the level of MALAT1 was
negatively correlated with the expression of miR-200a-3p in
NSCLC, but positively correlated with the expression of PD-L1
(10). Furthermore, MALAT1 promoted the proliferation,
migration, and invasion of NSCLC cells through sponging
miR-200a-3p (10). Overall, MALAT1 promotes the progress of
NSCLC by regulating the miR-200a-3p/PD-L1 axis, which is of
positive significance to the selection of new targeted drugs and
the enrichment of therapeutic methods in the future.

miR-145
Kruppel-like factor 4 (KLF4) has been shown to be associated
with DDP resistance in some cancers (56, 57). KLF4 is negatively
regulated by miR-145 and positively regulated byMALAT1 at the
mRNA and protein levels in NSCLC A549 cells. Luciferase
reporter assay, qRT-RCR, and Western blotting confirmed that
MALAT1 indirectly regulated KLF4 by directly sponging miR-
145, suggesting that MALAT1 may be involved in DDP
resistance by regulating the level of KLF4 (47). In addition,
MALAT1 knockout reversed the resistance of A549rCDDP cells
to DDP. Collectively, the MALAT1/miR-145/KLF4 axis is an
Frontiers in Oncology | www.frontiersin.org 5
important inducer of DDP resistance in NSCLC (47). Therefore,
MALAT1 may serve as a promising predictor and therapeutic
target of DDP in patients with NSCLC.

miR-185-5p
Wang et al. found that the expressions of MALAT1 and MDM4
were significantly high in 30 cases of NSCLC, and MALAT1
could positively regulate the expression of MDM4 in NSCLCs
cells (48). The deletion of MALAT1 and MDM4 could
significantly decrease the proliferation and metastasis of
NSCLC cells and promote apoptosis. In addition, the binding
sites of miR-185-5p and MALAT1 or MDM4 were predicted
using a database, and their relationship was further confirmed by
dual-luciferase report assays. The results showed that miR-185-
5p can be a target of MALAT1 and could also directly regulate
MDM4, and its overexpression can obviously suppress NSCLC
cells (48). It was further confirmed that MALAT1 can promote
the proliferation, migration, invasion, and apoptosis of NSCLC
cells by regulating the expression of MDM4 mediated by miR-
185-5p (48). These results may provide not only a new regulatory
mechanism but also a new potential therapeutic target for the
treatment of NSCLC.

miR-146a/miR-216
It has been reported that MALAT1 is involved in the repair
pathway of DNA double-strand breaks, and targeting MALAT1
can induce apoptosis in myeloma cells (58). BRCA1 is a
multifunctional protein that plays a key role in the
homologous recombination DNA repair pathway (59).
Through the MALAT1 pull-down assay, the researchers found
that miR-146a and miR-216 directly interact with MALAT1 in
A549 and H1299 cells and that they can specifically inhibit the
expression of BRCA1 (50). By inhibiting MALAT1, miR-146a
and miR-216 can be released to further inhibit the expression of
BRCA1 and induce DNA damage. Therefore, MALAT1 can
participate in the DNA repair process of NSCLC cells by
regulating the miR-146a/miR-216/BRCA1 pathway. In
addition, targeting MALAT1 can also increase the sensitivity of
NSCLC cells to DDP (50). In summary,MALAT1may become a
new target for the treatment of NSCLC.

miR-145-5p
Estrogen receptor beta (ERb) may affect the progression of
NSCLC (51). Yu et al. found that ERb can increase the
expression of MALAT1 by directly binding to the estrogen
response elements (EREs) located on the MALAT1 promoter,
thus inhibiting miR-145-5p. Because miR-145-5p directly targets
the 3′-UTR of the neural precursor cell expressed,
developmentally downregulated 9 (NEDD9) mRNA, increasing
the expression of MALAT1 can indirectly upregulate the protein
expression of NEDD9. Further experiments showed that ERb
could promote the vasculogenic mimicry (VM) formation and
cell invasion of NSCLC by the ERb/MALAT1/miR-145-5p/
NEDD9 signaling pathway (51). This may help in providing
new strategies to better inhibit the metastasis of NSCLC in
the future.
October 2021 | Volume 11 | Article 758653
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miR-374b-5p
The expressions of MALAT1 and serine/arginine-rich splicing
factor 7 (SRSF7) were upregulated and the expression of miR-
374b-5p was downregulated in NSCLC (7). The expression of
MALAT1 was negatively correlated with the expression of
miR374b-5p and positively correlated with the expression
of SRSF7. MiR-374b-5p is the target of MALAT1. Knockout of
MALAT1 and miR-374b-5p overexpression can inhibit the
proliferation, migration, and invasion of NSCLC cells and
induce apoptosis. In vivo experiments showed that the
overexpression of MALAT1 promoted the tumor growth of
NSCLC (7). SRSF7 is the downstream target molecule of miR-
374b-5p. The overexpression of SRSF7 reverses the effects of
MALAT1 gene knockout on the proliferation, apoptosis,
migration, and invasion of NSCLC cells (7). Therefore, it was
concluded that MALAT1 participates in the progress of NSCLC
through the MALAT1/miR-374b-5p/SRSF7 axis. This study may
provide a theoretical basis for the diagnosis and treatment
of NSCLC.

miR-613
The expressions of MALAT1 and COMMD8 were abnormally
increased in NSCLC tissues and cells (52). We found that miR-
613 is the target of MALAT1 and that it can bind to the 3′-UTR
of COMMD8. MALAT1 upregulated the level of COMMD8 by
competitively targeting miR-613, thus playing a carcinogenic role
in NSCLC (52).MALAT1 or COMMD8 gene knockout inhibited
cell proliferation, clone formation, and glycolysis, but promoted
cell apoptosis. In vivo experiments have shown that MALAT1
gene knockout reduced the tumor growth. In addition,
researchers also found that extracellular MALAT1 was released
by packaging into exosomes (52). These pieces of evidence
provide new insights into the treatment of NSCLC, and the
MALAT1/miR-613/COMMD8 axis will be a promising approach
for future treatment options.

miR-101-3p
The relative expression of miR-101-3p in NSCLC cells decreased
significantly, while the relative expression of MALAT1 increased
significantly (53). MiR-101-3p can significantly inactivate the
PI3K/AKT pathway; inhibit the expression of Bcl-2 and MMP-9;
and suppress the proliferation, migration, and invasion of
NSCLC cells by directly binding to MALAT1 (53). On the
contrary, the overexpression of MALAT1 reversed the
inhibitory effect of miR-101-3p on the activation of the PI3K/
AKT signaling pathway and the expressions of Bcl-2 and MMP-9
in NSCLC. These results suggest that miR-101-3p blocks the
PI3K/AKT signaling pathway by targeting the inhibition of
MALAT1, thus inhibiting the growth and metastasis of NSCLC
(53). Therefore, miR-101-3p is expected to become an effective
target for the prevention and treatment of NSCLC.
APPLICATION OF MALAT1 IN NSCLC

Although there are many methods for the diagnosis of NSCLC,
these may not fully meet the needs of early diagnosis of the
Frontiers in Oncology | www.frontiersin.org 6
cancer.MALAT1 is a relatively stable RNA transcript with a half-
life of 9–12 h, which may be due to its triple-helix structure at the
3′-end (21, 22, 60). This characteristic of having a long half-life
makes MALAT1 easy to detect in tumor tissues and body fluids.
Research has shown that MALAT1 can be used as a biomarker
for the diagnosis of many kinds of malignant tumors (61–63).
Especially in NSCLC, the high expression of MALAT1 was
significantly correlated with tumor node metastasis (TNM)
stage, vascular invasion, pathological differentiation, and
recurrence (64). Further studies have shown that the
overexpression of MALAT1 was significantly related to the
prognosis of lung squamous cell carcinoma, which is one type
of NSCLC (65). Moreover, different expression levels of
MALAT1 in peripheral blood were observed between cancer
patients and healthy controls (66).

Rong et al. found that the levels of MALAT1 in serum
exosomes were higher in patients with NSCLC, suggesting that
exosome-derived MALAT1 may also reflect the biological
changes of NSCLC cells (49). Zhang et al. found that the
expression of MALAT1 in serum exosomes of NSCLC patients
was upregulated and that the level of exosomal MALAT1 was
positively correlated with tumor stage and lymph node
metastasis (67). The above data suggest that MALAT1 in
exosomes may also be used as a serum-based tumor biomarker
to diagnose and predict NSCLC. Liquid biopsy provides the
opportunity of detecting and monitoring cancer in various body
fluids by detecting free circulating tumor cells, circulating tumor
DNA fragments, circulating RNA, and exosomes (68). Its
advantage lies in that it can reduce the harm of biopsy through
noninvasive sampling and has important significance for the
early diagnosis of cancer, but the low expression level of
MALAT1 in blood makes sensitive analysis difficult (66).
Although some progress has been made in the detection of
MALAT1 in blood with traditional RT-PCR, the procedure is
complicated, the amount of serum required is large, and the
equipment is expensive. A recent study by Chen et al. showed
that the detection of the levels of MALAT1 in blood was more
rapid, sensitive, and inexpensive when using a novel
ultrasensitive screen-printed carbon electrode (SPCE)-based
electrochemical biosensor that uses a Au nanocluster (NC)/
multi-walled carbon nanotube (MWCNT)–NH2 nanostructure
(69). This new methodology for the detection of MALAT1 will
increase its applicability to clinical diagnosis of NSCLC.

In addition, the expression level ofMALAT1 can also be used
as a biomarker of chemosensitivity in different cancers (43, 70–
72). Resistance to multiple drugs is the main cause of
chemotherapy failure in patients with lung cancer (73). Studies
have shown thatMALAT1 is also involved in the drug resistance
of NSCLC. For example, Fang et al. found that the expression of
MALAT1 was upregulated in DDP-resistant A549 cells.
MALAT1 upregulated MRP1 and MDR1 by activating STAT3,
thus reducing the sensitivity to DDP in vitro and in vivo (74).
NSCLC patients carrying epidermal growth factor receptor
(EGFR) mutations initially respond to EGFR tyrosine kinase
inhibitors (EGFR-TKIs) such as gefitinib, but gradually
developed acquired drug resistance (75, 76). It was found that
the overexpression of MALAT1 could eliminate not only the
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inhibitory effect of polyphyllin I (PPI) on the activity of gefitinib-
resistant NSCLC cells but also the apoptosis induced by PPI,
whileMALAT1 gene knockout could enhance the inhibition and
apoptosis induced by PPI (77). These data suggest thatMALAT1
may represent a candidate biomarker and therapeutic target for
chemotherapy drug resistance.

Due to the enrichment and high expression of MALAT1 in
the nucleus, its effect on traditional shRNAs or siRNAs may not
be ideal and prone to off-target effects (78). The application of
antisense oligonucleotides (ASOs) is a valuable method to
antagonize MALAT1. ASOs, which are small RNA/DNA-based
oligonucleotides capable of crossing cell membranes and binding
to the target RNA in the nucleus and cytoplasm, are divided into
two main categories: mixmeRs and gapmeRs (79, 80). Gutschner
et al. found that MALAT1 could be targeted with second-
generation ASOs, thus leading to the drastic reduction of lung
cancer metastasis in a pulmonary metastatic model in vivo (78).
Moreover, the same investigators achieved functional knockout
of MALAT1 through zinc finger nuclease (ZFN)-mediated site-
specific integration of RNA destabilizing elements into the
human genome, which showed efficient silencing of the highly
abundant MALAT1 in human lung cancer cells (78).
CONCLUSION AND PROSPECTS

As an important and highly conserved lncRNA, MALAT1 has
been widely studied, especially its role in tumorigenesis,
metastasis, drug resistance, and clinical prognosis (81–83).
However, the specific role of MALAT1 in the occurrence and
development of NSCLC has not been fully elucidated. Based on
the basic biological properties of MALAT1, more and more
studies have shown that it can be used as a bait for miRNA to
share miRNA response elements (MREs) with mRNAs, which
indirectly affects the expression of some specific downstream
genes, thus promoting the proliferation, invasion, apoptosis,
drug resistance, and tumor growth of NSCLC. In general,
MALAT1 is mostly known to be enriched in nuclear speckles,
and we also agree that cytoplasmic P-bodies are the localizing site
of the RNA-induced silencing complex (RISC) effector proteins
Ago1–4 and the functional site of miRNA-mediated gene
silencing (84). The vast majority of researchers used to apply
bioinformatics program such as ChipBase, LncRNAdb, and
StarBase to predict the interaction between MALAT1 and
miRNA in previous research on MALAT1 as a miRNA sponge
in NSCLC. Subsequently, they verified the direct interaction using
luciferase reporter, RNA immunoprecipitation (RIP), and
MALAT1 pull-down assays. However, there was little focus on
the sites (cytoplasm or nucleus) where these interactions occur.
On the contrary, Jin et al. demonstrated that MALAT1 and miR-
1914-3p are abundant and stable in the cellular cytoplasm using
RNA fluorescence in situ hybridization assay and confirmed that
MALAT1 directly binds miR-1914-3p using luciferase reporter
assay, RIP for argonaute 2 (Ago2) in A549 cells, and RNA pull-
down assay (54). Additionally, Leucci et al. showed that miR-9
targets MALAT1 for degradation in the nucleus by directly
Frontiers in Oncology | www.frontiersin.org 7
binding to two miRNA binding sites (85). Furthermore, Wu
et al. found that Ago2 was expressed both in the nucleus and
cytoplasm of sw480 cells (86). Moreover, Gagnon et al. reported
that 75% of the miRNAs in the cytoplasm could shuttle into the
nucleus and then bind to nuclear Ago2 (87). These studies showed
that the distribution of MALAT1 or miRNA is not limited to the
nucleus or cytoplasm. Hence, we wondered whetherMALAT1 or
miRNA might be involved in some cases with nucleoplasmic
translocation. Additionally, the locations ofMALAT1 and various
miRNA interactions in NSCLC cells need to be further verified
and explored.

Taken together, based on the literature, some miRNAs such
as miR-142-3p and miR-101-3p can target MALAT1 for
degradation, thereby negatively inhibiting the lever of
MALAT1 in NSCLC (44, 53). On the contrary, MALAT1 can
also act as a miRNA sponge by sequestering the target miRNAs
and affecting downstream gene expression, and the expression
level of MALAT1 was negatively correlated with the expressions
of miRNAs in NSCLC (53). Whether miRNA is degraded or
recycled remains to be investigated. It also has been reported that
MALAT1 and some miRNAs were more abundant in the Ago2
pellet than in the immunoglobulin G (IgG) pellet by conducting
an RIP assay, which suggested thatMALAT1might be a target of
miRNA through an Ago2-dependent manner.

Intriguingly, there is an exosome-derived MALAT1 in the
serum of NSCLC patients, and the expression of MALAT1 in
exosomes is highly correlated with the TNM stage and lymphatic
metastasis of NSCLC. However, at present, the mechanism of
MALAT1 in the exosomes of NSCLC patients remains in the
preliminary research stage and needs to be further clarified. It is
interesting to note that, due to the enrichment and high
expression of MALAT1 in the nucleus, the specific mechanism
of MALAT1 packing into exosomes that are rarely reported
remains to be explored in the future, although it is common for
lncRNA as a cargo to be loaded into exosomes. Moreover,
MALAT1 may be a key actor in the hallmark of resisting cell
death as it can decrease the levels of cleaved CASP3 in NSCLCs,
which leads to escaping apoptosis (77, 88). On the contrary,
whether MALAT1 detection in serum due to cell death may
involve complex mechanisms needs to be further studied.

In addition, MALAT1 knockout mice did not cause obvious
phenotype in development, gene expression, and physiological
function, which is not consistent with MALAT1 being involved
in the occurrence and development of NSCLC in vitro, so this
also needs to be further explored (89). In-depth understanding of
the function and regulatory mechanism of MALAT1 in NSCLC
may provide a new breakthrough for the diagnosis and targeted
therapy of NSCLC in the future.
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