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Abstract

Background: Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in
breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil
palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study,
we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed
dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important
breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest
selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per
palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and
single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine
learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits.

Results: The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the
highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with
accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20
achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F
and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F
(0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by
other methods.

Conclusion: Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS
dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed
other methods, but required parameters optimization for GS implementation.
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Background
Genomic selection (GS) is a form of marker assisted
selection (MAS) using markers distributed across the
entire genome. Unlike conventional MAS, GS does
not require a priori association between marker and
trait generated from linkage mapping and genome-
wide association study (GWAS). Genomic selection
was first implemented successfully in cattle, doubling
the rate of genetic gain in breeding programs [1, 2].
This method has recently been adapted for crops,
including maize, wheat and rice [3, 4]. In commercial
perennial crops, the application of GS has been pro-
posed for the selection of complex quantitative traits,
including oil yield related traits [5].
As the most efficient oilseed crop in the world, oil palm

is able to produce up to 10 times more than other leading
oil crops, and has surpassed soy oil since 2008 [6] as the
world’s most traded oil. Oil produced in the kernel and
mesocarp is suitable for both human consumption and for
oleo-chemical industries. The commercial oil palm plant-
ing material in Southeast Asia is mainly derived from Deli
dura x AVROS pisifera crosses, selected for high oil yield.
The potential reduction of genetic variation in the Deli
dura due to founder effects is a concern for oil palm
breeders. In addition, self-pollination (“selfing”) and sib-
mating, which are commonly practiced to concentrate the
desired agronomical traits in Deli dura populations, has
further reduced the genetic variation. This has resulted in
various symptoms of inbreeding depression, such as
abortive bunch formation, poor fruit set and oil yield de-
pression in Deli dura trials [7]. To address this problem,
Sime Darby Plantation R&D adopted introgression using
dura populations acquired from Nigeria to widen the gen-
etic base of the commercial Deli dura materials. Deli x Ni-
gerian progenies have improved fresh fruit bunch (FFB)
and oil-to-bunch ratio (O/B) values, with useful trait vari-
ation observed, resulting in a new series of mother palms
for future commercial material. Still, the emphasis placed
on the introgression program was low because of the slow
nature of breeding progress in oil palm, which is typically
10–12 years per selection cycle [8]. Hence, the ultimate
goal of GS is to expedite the breeding progress by maxi-
mizing the genetic gains per generation.
In oil palm, GS was first evaluated using simulated data

and a limited number of QTLs [9]. Another study using
SSRs supports the potential of this method in an oil palm
population with narrow genetic base [10, 11]. Although
SSRs are informative, the emergence of high-throughput
sequencing, which can detect genetic variations across the
whole genome, has shifted the preference of marker sys-
tem towards SNPs. This is because SNPs are generally
abundant in the genome and require less time and cost to
genotype. As an example, the Malaysian Palm Oil Board
(MPOB) has reported of several SNP loci capable of

distinguishing different fruit forms in oil palm, which is a
monogenic trait [12, 13]. For polygenic traits, including
O/B and oil content in mesocarp, genome-wide markers
are required to locate the multiple genetic components of
these quantitative traits. An example is the mesocarp oil
content trait, with multiple QTLs, mainly found in
Chromosome 5 [14].
A whole-genome OP200K SNP genotyping array [15]

capable of representing genomic information of main
breeding stock was developed by referring to the
published 1.8-Gb diploid genome of oil palm [16]. This,
together with the reduction in genotyping cost, has
made GS feasible in oil palm. Even though the use of
these genome-wide SNPs have also been proven to work
in trait prediction of tenera progenies [17], the selection
of mother dura palms is of more importance for oil
palm breeding programs. Before implementation of GS
in oil palm dura breeding programs, it is crucial to
evaluate different marker systems and GS modeling
methods. For this purpose, a full-sib family, consisting of
112 individuals, derived from Deli x Nigerian origin was
selected for development and assessment of GS models.
In total, eight methods, including two machine learning
approaches, and two marker systems, SSRs and SNPs
were evaluated. Prediction models built for the import-
ant yield-related traits were assessed. In general, indivi-
dual populations available for introgression or further
crossing are often small in oil palm. The development of
accurate models to guide future crossing and introgres-
sion is essential for efficiency development of traits into
commercially-relevant parental stock.

Methods
Plant materials and phenotyping
Unopened spear leaves from 112 twenty-year-old
palms derived from a Deli x Nigerian family, planted
in a randomized complete block design trial and
maintained at Sime Darby Plantation R&D, Malaysia
were sampled [18]. The four years (4th to 8th year)
yield, bunch analysis and vegetative measurements
were recorded based on the standard industry proto-
cols [19] with modification [20]. From these records,
six important oil yield-related traits (fruit-to-bunch
(F/B), shell-to-fruit weight (S/F), kernel-to-fruit weight
(K/F), mesocarp-to-fruit weight (M/F), total oil yield
per palm (O/P) and oil weight-to-dry mesocarp
weight (O/DM)) were selected for study. All assayed
traits for this study were measured in percentage (%)
with the exception of O/P, which was in kg/palm/
year. Other traits were measured directly besides O/P.
The product of FFB and O/B was used to calculate
O/P (FFB * O/B). O/B itself was calculated based on
O/DM * DM/WM * M/F * F/B, where DM/WM is
the dry matter content of the mesocarp [21]. The
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phenotype data were averaged across 4 years. Pheno-
typic analysis was done using a modified “chart” func-
tion from the library “PerformanceAnalytics” [22]
under R version 3.0.0.

SSR and SNP genotyping
Total genomic DNA was isolated from 100 mg of each
leaf sample using the DNAeasy Plant Mini Kit (Qiagen,
Germany). For SSR genotyping, 135 markers from our
previous study were selected [18]. In the same study, we
have shown that these SSRs, from an average of 10 cM
mapping interval provided sufficient power for QTL de-
tection. The SSR amplification was carried out using a
M13-tailed forward primer with a four-color fluorescent
detection technique [23, 24]. The SSRs with more than
two alleles were interpreted as two or more markers in
order to convert all genotype values to −1, 0 or 1, an
approach similar as published [10], without loss of infor-
mation. Therefore, the informative SSRs used in this
study were represented as 221 markers.
SNP genotyping on the same family was carried out

using the OP200K array (170,860 SNPs) [15]. The
process was done on the Infinium iScan platform (Illu-
mina Inc., San Diego, CA) according to the manufac-
turer’s recommendations. The raw intensity SNP data
was analyzed and auto-clustered using GenomeStudio
version 20,011.1 (Illumina Inc., San Diego, CA) with
genotyping module version 1.8.4. A total of 46,933 SNPs
were identified to be polymorphic. These genotypes were
coded into −1 (AA), 0 (AB) and 1 (BB) format. Missing
genotype data were imputed using the na.roughfix func-
tion of the randomForest package [25] in R.

Genomic heritabilities and kinship coefficient estimates
Genomic heritabilities for the traits were calculated
using an in-house R script, based on a linear model
using all informative SNP markers [17, 26, 27]. The kin-
ship coefficients among the individuals was estimated
with the R package related [28] using 5000 SNPs se-
lected randomly from the full dataset, with estimation
method based on Li [29].

GS methods
This study was performed using an IBM System ×3850
X5 HPC, with 40 Intel (R) Xeon (R) CPU E7–8850
@2.00 GHz processors and 1 Tb of RAM. The methods
selected to perform GS in oil palm were RR-BLUP [30],
Bayes A [31], B [32],Cπ [32], LASSO [33], Ridge Regres-
sion [34]) and two machine learning methods (Support
Vector Machine (SVM) and random forest (RF)) [25].
All the methods mentioned were carried out with R
version 3.0.0.
RR-BLUP assumes that the marker effects are nor-

mally distributed and that they explain the same amount

of variance [31]. Bayes A and Bayes B allow for different
variance across different markers. Bayes A models the
variance using a scaled inverted chi-square distribution
[31]. The additional feature of Bayes B compared to A is
that it allows for the variance of markers to be zero with
a probability of π [32]. The later Bayesian methods are
Cπ, Lasso and Ridge Regression: Cπ assumes that π fol-
lows a uniform distribution [32]; Bayesian Ridge Regres-
sion, on the other hand, uses a Gaussian prior and Lasso
[34] uses a Double-Exponential prior [33]. For both
SVM and Random Forest, no assumptions were made
regarding the markers.
For all methods, a 5-fold cross validation was carried

out across all traits, where a single subsample was used
as the validation set, and the remaining four samples
were used as the training set. This step was carried out
until all subsamples had been used for both training and
validation steps. RR-BLUP was implemented using the R
package rrBLUP [30], and Bayesian methods using the
BGLR package [35]. For Bayesian methods, the number
of inner iterations was optimized based an increasing it-
eration approach using Bayes A. For all traits, the
optimization graph became plateau before reaching
10000, indicating that this number of inner iterations
was more than sufficient for the estimation of marker
effects. The optimization graphs of S/F and O/P were
selected for illustration purpose (Additional file 1:
Figure S1). In addition, the first 2000 iterations were
used as “burn-in”. The same conditions were ex-
tended for all Bayesian methods. For Bayesian
LASSO, the lambda parameter was set to 25, type set
as gamma, rate parameter as 1e−4 and shape para-
meter as 0.55.
SVM was carried out using R package e1071.

Optimization of the parameters was carried out for each
iteration during cross validation using the tune.svm
function. Within the training set, another 10-fold cross-
validation was used to estimate the optimal parameters.
The gamma and cost factors for the SSR dataset were
optimized using an exponential range of 2−15 to 215 [36],
epsilon from 0 to 0.2 under the kernels of “linear”, “ra-
dial”, “polynomial” and “sigmoid”. For SNP-based pre-
diction, the gamma and cost factors were set from 2−30

to 215. Random forest was carried out using the random-
Forest package [25]. Optimization of the parameters
used the mlr library for each cross validation step. Like
SVM, 10-fold cross validation was used on the training
set. The range of mtry optimization range was set from
1 to 221, nodesize from 1 to 50 and ntree was from 500
to 1500 for SSRs. For SNPs, the mtry optimization range
was set at 1 to 500, ntree was set from 500 to 3000.
For each iteration, accuracy was defined as the predic-

tive ability, which was calculated as the Pearson correl-
ation coefficient of predicted trait value of the validation
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set, versus its observed trait value. The overall accuracy
was calculated as the mean of the predictive abilities
from all iterations. Genomic selection was performed
using SSRs, followed by SNPs. Representative regression
boxplots were generated for each trait using SNPs for
the best method. In order to test for linear assumption
made under RR-BLUP and Bayesian models, residuals
were calculated from the difference between the pre-
dicted trait values and the observed trait values. The re-
siduals were then standardized using the “rstandard”
function in R. The residual and Quantile-quantile (QQ)
plot were generated using the “plot” and the “qqnorm”
functions.

Results
Phenotypes, genomic heritabilities and kinship coefficient
estimates between individuals
The 4-year recordings for each trait were averaged, with
the mean for F/B being 67.37 (±3.74), S/F 33.89 (±2.61),
K/F 9.89 (±1.55), M/F 56.23 (±3.37), O/P 28.84 (±7.00)

and O/DM 75.44 (±2.54). Since these traits were all yield
related, many of them correlated with each other (Fig. 1).
In particular, M/F was negatively correlated with S/F
and K/F. O/P and O/DM were positively correlated with
M/F. The genomic heritabilities of all these traits are
shown in Fig. 2. S/F (0.35) and O/DM (0.29) have the
highest heritability, followed by M/F (0.27), K/F (0.15),
F/B (0.11) and O/P (0.07). The kinship coefficient be-
tween individuals in the Deli x Nigerian family ranged
from 0.35 to 0.62 with both mean and median at 0.48
(Additional file 1: Figure S2).

GS accuracy for SSR-based models
On average, the trait with the highest accuracy was F/B
(0.28), followed by S/F (0.25), K/F (0.19) and O/DM
(0.19), O/P (0.18) and M/F (0.18). Averaging across all
traits, machine learning methods out-performed all
other methods, albeit only slightly. SVM having the
highest accuracy for F/B (0.30), S/F (0.30) and O/P
(0.28), and RF having the highest accuracy for K/F

Fig. 1 Plot representing phenotypic distribution and correlation for the traits of F/B (%), S/F (%), K/F (%), M/F (%), O/P (kg/palm/year) and O/DM
(%) in the Deli x Nigerian family. Diagonal of the plot shows the histograms and the distribution of the observed phenotypes values. The lower
off-diagonal is the scatterplot between traits, whereas the upper off-diagonal represents the correlation value between traits. Significant correla-
tions are tagged with the asterisk (*) symbol
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(0.24), M/F (0.34) and O/DM (0.28). However, SVM also
has the lowest accuracy for K/F (0.14), RF has the lowest
accuracy for F/B (0.19) and O/P (0.14) (Table 1).

GS accuracy for SNP-based models
Accuracy of the GS model was improved drastically for
all traits when SNPs were used (Table 2 & Fig. 3). The
improvement was the largest for S/F, M/F and O/DM.
Averaging across methods, the trait with the highest ac-
curacy was O/DM (0.43), S/F (0.39), followed by F/B
(0.31) and by M/F (0.30). Averaging across traits, similar
to SSRs, the performance of all methods were almost
equal, with machine learning methods having a marginal
advantage (0.32) over other methods (0.31). For individ-
ual traits, machine learning methods have the highest
accuracy for all traits besides F/B, with SVM having the
highest accuracy for S/F (0.47) and K/F (0.28), and RF
having the highest accuracy for M/F (0.37), O/P (0.30)
and O/DM (0.47). However, SVM also has the lowest ac-
curacy M/F (0.26), RF has the lowest accuracy for F/B
(0.24) and S/F (0.23). Residual analysis carried out for
RR-BLUP and Bayesian methods showed that the points

in a residual plot were randomly dispersed around the
horizontal axis, and the points in QQ plot were almost
in a straight line for all traits (Additional file 1: Figure
S3 & Figure S4). Therefore, the underlying mixed linear
model used was suitable.

Discussion
Perennial crops, including oil palm, have long life and
crop cycles, require lengthy periods to reach maturity.
Thus, important agricultural traits, such as oil yield can
only be evaluated after years of field planting. With the
planted materials remaining in production over long
time frames, small differences in yield have a large im-
pact. The introduction of genomic selection will enable
early selection of the best performing parents without
field evaluation, eventually expediting genetic gains in
perennial crops. For oil palm, early trait prediction of
the best performing Deli x Nigerian dura allows
breeders to prioritize the best dura candidates to be pro-
geny tested with the commercial AVROS pollen donors.
The traits evaluated ranged from simple quantitative
traits, which are controlled by fewer genes, including S/
F [15] and O/DM [37], to the more complex quantitative
trait controlled by more genes, O/P. From the statistical
analysis of the traits in this study, M/F was inversely cor-
related with S/F and K/F, which was expected because
the thicker the shell and kernel, the thinner the meso-
carp, and vice versa. With crude palm oil accumulating
in the mesocarp, fruits with thicker mesocarp are often
preferred. As for the complex trait O/P, it was calculated
from a few simple quantitative traits. Therefore positive
correlations between O/P with M/F and O/DM were ob-
served. Unlike annual crops, traits measured for a single
year are not useful because oil palm yields vary greatly
from year to year [38]. In comparison, The four-year
mean (4th – 8th years of planting) for oil palm traits,
such as FFB, provides higher heritability [39] and also
highly correlates to later yields (11th – 16th years of

Table 1 Mean accuracy of traits based on different SSR-based
GS methods

GS Method F/B S/F K/F M/F O/P O/DM Mean

RR-BLUP 0.28 0.25 0.17 0.14 0.17 0.14 0.19

BA 0.29 0.24 0.19 0.15 0.17 0.17 0.20

BB 0.29 0.24 0.21 0.14 0.16 0.16 0.20

BC 0.29 0.23 0.20 0.14 0.18 0.18 0.20

BL 0.28 0.24 0.17 0.14 0.17 0.16 0.19

BRR 0.29 0.23 0.18 0.13 0.18 0.19 0.20

SVM 0.30 0.30 0.14 0.22 0.28 0.22 0.24

RF 0.19 0.25 0.24 0.34 0.14 0.28 0.24

Mean 0.28 0.25 0.19 0.18 0.18 0.19

BL – Bayes Lasso, BRR – Bayes Ridge Regression, BA – Bayes A, BB – Bayes B,
BC – Bayes Cπ, SVM – support vector machine, RF – random forest

Table 2 Mean accuracy of traits based on different SNP-based
GS methods

GS Method F/B S/F K/F M/F O/P O/DM Mean

RR-BLUP 0.31 0.40 0.18 0.30 0.21 0.42 0.30

BA 0.33 0.40 0.20 0.30 0.20 0.43 0.31

BB 0.34 0.40 0.19 0.30 0.20 0.43 0.31

BC 0.33 0.40 0.20 0.29 0.20 0.42 0.31

BL 0.30 0.39 0.19 0.28 0.18 0.42 0.29

BRR 0.32 0.40 0.20 0.29 0.20 0.42 0.30

SVM 0.32 0.47 0.28 0.26 0.27 0.39 0.33

RF 0.24 0.23 0.27 0.37 0.30 0.47 0.31

Mean 0.31 0.39 0.21 0.30 0.22 0.43

BL – Bayes Lasso, BRR – Bayes Ridge Regression, BA – Bayes A, BB – Bayes B,
BC – Bayes Cπ, SVM – support vector machine, RF – random forest

Fig. 2 Bar plot showing the genomic heritabilities for the traits of F/
B, S/F, K/F, M/F, O/P and O/DM in the Deli x Nigerian family. S/F and
O/DM had the highest heritability, followed by M/F, K/F, F/B
and O/P
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planting) [40]. Consequently, the four-year mean was
used in this study for all traits.
The conventional MAS only requires a few major

QTLs for breeding prediction, but the genetic effects
of individual QTL can be small for complex traits,
with a limited amount of the trait variation explained
[41]. In such conditions, the genetic gains will remain
minimal or insignificant in the breeding program. The
variations of complex traits can be further improved
by consolidating the effects of all genes or chromo-
somal/genomic segments to estimate total breeding
value, which is essentially the GS approach [31]. Con-
ventionally, the thick-shelled dura as maternal parents
are field planted in small number. Yet even with a
small population, Cros [10] demonstrated that SSRs
can be used in the GS modeling for dura palms,
thereby enabling genomic predictions to be evaluated
as a method to improve desired traits.
Various methods developed for GS make different as-

sumptions regarding the markers. As compared to these
methods, the absence of such assumptions might allow
for machine learning to model the traits better. Among
the methods assessed, even though the difference in per-
formance was small, machine learning models did have
the highest accuracy, followed by Bayesian methods and

RR-BLUP. This slight increase in accuracy when using
machine learning methods, was however, at the cost of
longer computing times compared to Bayesian methods,
which in turn took longer than RR-BLUP. In addition,
machine learning methods gave inconsistent results
among traits in this study. Different parameters are re-
quired for different traits using machine learning
methods to maximize prediction accuracies. Determi-
nation of these parameters is again a computationally in-
tensive and time consuming process. When the number
of variables is large, such as in the case of high density
SNPs in predictive modeling, parameters optimization is
a challenging process. Nonetheless, given sufficient
optimization, machine learning has the potential to out-
perform other methods.
Overall, the accuracy using SSRs alone was low for

most of the traits, which is not in agreement to what
was reported by Cros [10]. This is probably due to the
lower kinship coefficient within the Deli x Nigerian
family of 0.48 (current study), compared to 0.58 in the
population used by Cros [10]. In addition, observed trait
data was used in this study, instead of deregressed
estimated breeding value derived from progeny testing.
Hence, the observed trait data probably increased the re-
sidual effects due to environmental effect, thus reducing

Fig. 3 Regression boxplot illustrating predicted trait values vs. observed trait values for F/B, S/F, K/F, M/F, O/P and O/DM, selected by best GS method
for each trait. The observed trait values were split into three classes. The prediction accuracy was written on the top left corner for each plot
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the accuracy. To be accurate, GS requires every QTL in
the genome to be represented by at least one marker [42].
Even though it is possible to have genome-wide represen-
tation of SSRs, this is usually not done in practice due to
the large amount of workload and the high cost required
for genotyping. Therefore, usually it is insufficient for
SSRs to cover all possible loci affecting a complex trait,
and thus for use in GS of traits at underrepresented loci.
In soybean, the accuracy of GS using low density markers
has been reported to reach 0.69 [43]. However, the high
accuracy might due to the use of trait-associated markers.
In this case, the assayed SSRs in this study were randomly
mined from the genome, thus no a priori association was
known. As compared to SSRs, the introduction of high-
throughput SNP genotyping has made whole-genomic
genotyping possible at a low cost.
When genome-wide SNPs were introduced into the GS

models, accuracy for all traits improved, with the greatest
improvement for S/F, M/F and O/DM. This can be attrib-
uted to the fact that the OP200K array provides high gen-
omic resolution [15]. With most of the QTL being
represented by at least one SNP, most of the important
genetic variations relative to the traits in study would have
been captured. Representing SNP as marker effect, the
model built from the genome-wide SNPs therefore better
explained the observed trait variations. In addition to
marker density, another important factor that affects ac-
curacy is trait heritability. The genomic heritabilities cal-
culated for the traits in this study were in the descending
order of S/F, O/DM, M/F, K/F, F/B and lastly O/P. The
fruit traits, including S/F, M/F, K/F and O/DM were re-
ported to be highly heritable in an introgressed Deli dura
x Nigerian dura population, while F/B and O/P were re-
ported to have comparatively lower heritability [44].
Therefore, the calculated genomic heritabilities agreed
with the literature rather well. Among the highly heritable
traits, K/F had the lowest genomic heritability, which co-
incided with it having the lowest accuracy among the
highly heritable traits. The low heritability and accuracy
were probably due to the low phenotypic variation of K/F
in the assayed family. Another important factor is the
training population size. Even though further improve-
ment in accuracy can easily be achieved through the incre-
ment in the training population size [45], the dura
maternal population size is usually small in breeding
programs, as they are often accommodated in commercial
estates. In these estates, tenera palms (the hybrids used for
oil production) are predominantly planted, together with a
small number of mother (dura) palms, which are used
solely for seed production for new planting materials. The
small training population size in this study therefore re-
flects the reality of dura mother palm breeding. Even with
this condition, we have found the application of GS in
dura breeding programs to be promising.

Conclusion
For outcrossing perennial crops such as oil palm, the con-
ventional breeding selection of mother palms for progeny
testing is partially random and is phenotype-dependent.
The ability to select for the best mother palms will exped-
ite the production of high-yielding progenies as future
commercial planting materials. Despite having a small
training population, which is a usual case for mother
palms, GS using SSRs has reasonable accuracy, which can
be much improved by using dense SNPs that afford better
coverage of the genome and hence the desirable QTL.
From our results, the differences in accuracies between
the methods evaluated for SSRs and SNPs were small. In
general machine learning methods slightly outperformed
the other methods, and with sufficient parameter
optimization machine learning could become a powerful
tool to support selection of optimal materials for breeding
programs of oil palm and other perennial crops.

Additional file

Additional file 1: Figure S1. Estimation of optimal MCMC iterations
required for Bayes A - S/F and O/P. Figure S2. Distribution of kinship
coefficients for 112 Deli x Nigerian individuals used in this study. Figure
S3. Residual plots for different prediction models for all traits. Figure S4.
QQ plots for different prediction models for all traits (PDF 640 kb)
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