
RESEARCH ARTICLE

Peripheral-neuron-like properties of

differentiated human dental pulp stem cells

(hDPSCs)

Yuki Arimura1☯, Yutaka ShindoID
1☯, Ryu Yamanaka1,2, Mai Mochizuki1,3,4,5, Kohji Hotta1,

Taka NakaharaID
4, Etsuro ItoID

5,6,7, Tohru Yoshioka5,7, Kotaro Oka1,5,7*

1 Faculty of Science and Technology, Department of Bioscience and Informatics, Keio University,

Kanagawa, Japan, 2 Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan,

3 Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan, 4 Department of

Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University,

Tokyo, Japan, 5 Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan,

6 Department of Biology, Waseda University, Tokyo, Japan, 7 Graduate Institute of Medicine, College of

Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

☯ These authors contributed equally to this work.

* oka@bio.keio.ac.jp

Abstract

Elucidating the mechanisms underlying human pain sensation requires the establishment of

an in vitro model of pain reception comprising human cells expressing pain-sensing recep-

tors and function properly as neurons. Human dental pulp stem cells (hDPSCs) are mesen-

chymal stem cells and a promising candidate for producing human neuronal cells, however,

the functional properties of differentiated hDPSCs have not yet been fully characterized. In

this study, we demonstrated neuronal differentiation of hDPSCs via both their expression of

neuronal marker proteins and their neuronal function examined using Ca2+ imaging. More-

over, to confirm the ability of nociception, Ca2+ responses in differentiated hDPSCs were

compared to those of rat dorsal root ganglion (DRG) neurons. Those cells showed similar

responses to glutamate, ATP and agonists of transient receptor potential (TRP) channels.

Since TRP channels are implicated in nociception, differentiated hDPSCs provide a useful

in vitro model of human peripheral neuron response to stimuli interpreted as pain.

Introduction

The peripheral nervous system (PNS) receives environmental information. Pain perception is

an important function that allows for the detection of noxious stimuli in order to protect the

body. In addition, relief of chronic pain is an important component of improving quality of

life [1]. Noxious stimuli are detected by skin tissue and the PNS, and the nociceptive signals

they produce are transmitted to the central nervous system (CNS), where they are recognized

as pain [2–4]. To elucidate the mechanisms of acute pain perception, it is important to under-

stand the sensation mechanisms present in skin cells and peripheral nerves, as well as the

information processing and modulation that take place in the PNS [5]. While experiments in
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model animals and in cultured dorsal root ganglion (DRG) neurons from mice and rats have

provided important insight into pain reactions [6–8], it is also required to establish an ade-

quate in vitro model of pain receptions in peripheral systems composed of human cells. To

achieve this, it is necessary to prepare human cells that have neuronal functions and express

receptors to receive nociceptive stimuli [9,10].

Although it is difficult to extract human peripheral neurons for experimental use, with stem

cells it is possible to establish cultured human tissues and neurons in vitro. Embryonic stem

(ES) cells and induced pluripotent stem (iPS) cells have the potential to differentiate toward

most cell types in the body [11,12], and it has been shown that these cells also have the poten-

tial to differentiate into peripheral neurons that can then be used in research on nociception

[13,14]. Despite the versatility of these cells, in some cases other kinds of stem cell are more

useful: they may not need reprogramming, and they may be easier to obtain, proliferate, and

differentiate toward a specific cell type [15,16]. Recent studies have shown that human dental

pulp stem cells (hDPSCs), a type of neural crest derived stem cells (NCSCs), are a strong candi-

date for this type of use [17,18]. NCSCs can be obtained even from adult tissues, including

bone marrow, cornea skin and dental pulp [19]. Because NCSCs could be applied to autolo-

gous transplantation, it has benefits not only for basic science but also for the purpose of

regenerative medicine and cell therapy [20]. In those, hDPSCs are mesenchymal stem cells iso-

lated from dental pulp tissue [21]. They can easily be obtained from extracted teeth and possess

a high proliferation ability [22,23]. Furthermore, they show multipotency, and it is easy to

induce them to differentiate toward osteoblasts, adipocytes, neuronal cells, or astrocytes by

culturing them in the appropriate differentiation medium [24–29]. In spite of their stemness,

hDPSCs do not readily form tumors in vivo [30], and they show more accurately preserved

DNA methylation patterns than ES and iPS cells [31]. They may therefore be a better stem cell

source for both disease modeling and regenerative therapies [32,33].

Because many researches demonstrated that hDPSCs have a potential to differentiate

toward neurons, hDPSC expected to be used in therapies for neurodegenerative diseases and

in fundamental studies of human neural systems [32]. Expression of neuronal marker proteins

has been confirmed in neuronal differentiated hDPSCs [26,34]. Like conventional neurons,

they possess functional and active voltage-gated sodium and potassium channels [35,36], and,

in some cases, generate action potentials [37]. It has been reported that hDPSCs could differ-

entiate to dopaminergic, glutamatergic and GABAergic neuron-like cells [32]. Differentiated

hDPSCs have already been used in cellular and animal models for the study of CNS conditions

such as ischemia and neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases

[38–41]. These studies indicate that hDPSCs have the potential to differentiate toward neuron-

like cells that function in the CNS. On the other hand, some studies have reported that

hDPSCs also differentiated toward bipolar shape neuron-like cells similar to peripheral neu-

rons [36,42]. However, whether the differentiated hDPSCs have peripheral neuron-like char-

acteristics have not been investigated. To establish in vitro model of human nociception using

hDPSCs, it is needed that neuronal differentiated hDPSCs show peripheral neuron-like

responses. To confirm this, it is necessary to compare the responsiveness of neuronal differen-

tiated hDPSCs with PNS-derived neurons.

In this study, we observed the responses of differentiated hDPSCs by using Ca2+ imaging to

characterize the function of these cells by their activity patterns. By comparing the expression

of neuronal marker proteins and the Ca2+ responses of each cell, we further confirmed the dif-

ferentiation of hDPSCs toward neuronal cells. We also analyzed the Ca2+ responses to stimuli

relating to nociception and assessed the potential for using hDPSCs as an in vitro model of

peripheral neurons by comparing their responses to those of cultured DRG neurons.
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Materials and methods

Ethical approval

The use of human stem cells was approved by the ethics committees of the Nippon Dental

University School of Life Dentistry at Tokyo (permit number: NDU-T2013-10) and the

Department of Science and Technology, Keio University (permit numbers: 30–31 and 2020–

15). Written informed consent was obtained from all individual donors after fully explaining

the nature of the procedure and the intended use of the tissue obtained. All experiments were

carried out in accordance with relevant guidelines and regulations (Declaration of Helsinki) in

the manuscript.

All animal procedures were approved by the ethics committee of Keio University (permit

number: 09106(1)). All methods were carried out in accordance with relevant guidelines and

regulations in the manuscript.

Culture of hDPSCs

Isolation and culturing of hDPSCs were performed as previously described [43,44]. The cells

were plated at a density of 1–2 × 104 cells/mL onto glass-bottom dishes (AGC techno glass,

Tokyo, Japan). They were cultured in DMEM/F12 (Thermo Fisher Scientific, Waltham, MA,

USA) supplemented with 1 mL/L MEM NEAA (Thermo Fisher Scientific), 2.4 g/L NaHCO3, 1

mL/L Fungizone (GE Healthcare, Chicago, IL, USA), 500 μL/L GlutaMAX (Thermo Fisher

Scientific), 50 U/mL penicillin, and 50 μg/mL streptomycin (Nacalai tesque, Kyoto, Japan).

Cultures were maintained in a 5% CO2 incubator at 37˚C and the culture medium was

changed every three days.

hDPSCs were differentiated by culturing them in differentiation medium consisting of

DMEM/F12 supplemented with 5% FBS, 10 μM MEM-NEAAs, 2 mM glutamate (Nacalai tes-

que), 10 nM all trans-retinoic acids (Merck, Darmstadt, Germany), 50 μM ascorbic acid

(Tokyo Chemical Industry, Tokyo, Japan), 5 μM insulin (Cell Signaling Technology, Danvers,

MA, USA), 10 nM dexamethasone (FUJIFILM, Tokyo, Japan), 20 nM progesterone (Tokyo

Chemical Industry), 20 nM estradiol (FUJIFILM), 50 ng/mL nerve growth factor (NGF; Alo-

mone Labs, Jerusalem, Israel), 10 ng/mL thyroxine (T4; FUJIFILM), 50 U/mL penicillin,

50 μg/mL streptomycin, and 0.25 μg/mL Fungizone as described previously [42]. For fluores-

cence measurements, cells were cultured in glass-bottom dishes with or without grids (AGC

techno glass). The medium was changed every three days.

Dissociation culture of rat DRG neurons and rat hippocampal neurons

DRG were isolated from day 18 embryonic Wister rats (Charles River Laboratories, Wilming-

ton, MA, USA). Cells were extirpated from 4–8 embryos at a time and submerged in ice-cold

phosphate-buffered saline (PBS). DRG neurons were dissociated using trypsin and plated at a

density of 4 × 104 cells/mL onto poly-D-lysine and laminin (Merck) coated glass-bottom

dishes. The neurons were cultured in neurobasal medium containing B-27 (Thermo Fisher

Scientific), 50 ng/mL NGF, 50 U/mL penicillin, and 50 μg/mL streptomycin for five days.

Hippocampi were isolated from day 18 embryonic Wister rats and dissociated using Nerve

Cell Dissociation Medium (Sumitomo Bakelite, Tokyo, Japan). They were plated at a density

of 20 × 104 cells/mL onto poly-D-lysine coated glass bottom dishes. The neurons were cultured

in neurobasal medium with B-27, 2 mM glutamine, 50 U/mL penicillin, and 50 μg/mL strepto-

mycin for twelve days.
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Immunofluorescence imaging

Immunofluorescence staining was performed according to the previously described method

[45]. Cultured cells were fixed in 4% paraformaldehyde (PFA; Nacalai tesque) diluted in PBS

for 20 min at room temperature. Samples were washed twice in PBS to remove residual PFA.

They were then permeabilized in PBS with 0.1% Triton X-100 (PBT) for 1 min and incubated

in PBT with 10% goat serum for 30 min for blocking. To compare the expression of βIII-tubu-

lin, nestin, and GFAP, mouse anti-βIII-tubulin (1:250, Merck), chicken anti-nestin (1:2000,

Abcam, Cambridge, UK) and rabbit anti-GFAP (1:1000, Abcam) were diluted in blocking

solution and applied to the samples for 60 min at room temperature. The samples were then

washed three times with PBT and incubated in blocking solution containing 40,6-diamidino-

2-phenylindole (DAPI; 1:1000, Dojindo laboratories, Tokyo, Japan) and Alexa Fluor 488 anti-

rabbit IgG, Alexa Fluor 546 anti-chicken IgG, and Alexa Fluor 633 anti-mouse IgG (each at

1:1000, Thermo Fisher Scientific) for 40 min at room temperature. The samples were washed

three times with PBT and then filled with PBS. To compare the expression of Brn-3a, TRPV1

and substance-P, mouse anti-Brn-3a (1:50, Santa Cruz Biotechnology, Dallas, TX, USA), rabbit

anti-TRPV1 (1:250, Abcam) and rat anti-substance-P (1:100, Abcam) were used as primary

antibodies, and the samples were stained with secondary antibodies, Alexa Fluor 488 anti-

mouse IgG, Alexa Fluor 546 anti-rabbit IgG, Alexa Fluor 633 anti-rat IgG (each at 1:1000,

Thermo Fisher Scientific), and DAPI.

To compare the expression of Brn-3a and substance-P after Ca2+ imaging (described

below), the samples fixed immediately after the Ca2+ imaging were probed with mouse anti-

Brn-3a and rat anti-substance-P and stained with Alexa Fluor 405 anti-mouse IgG and Alexa

Fluor 633 anti-rat IgG. To compare the expression of βIII-tubulin and GFAP after Ca2+ imag-

ing (described below), the samples fixed immediately after the Ca2+ imaging were probed with

mouse anti-βIII-tubulin and rabbit anti-GFAP and stained with Alexa Fluor 546 anti-mouse

IgG and Alexa Fluor 633 anti-rabbit IgG.

The samples were observed using a confocal laser scanning microscope system (Fluo-

ViewFV1000, OLYMPUS, Tokyo, Japan) mounted on an inverted microscope with ×20 or

×40 oil immersion objectives. DAPI or Alexa Fluor 405, Alexa Fluor 488, Alexa Fluor 546, and

Alexa Fluor 633 were sequentially excited with lasers at 405 nm, 488 nm, 559 nm and 635 nm,

respectively, and the fluorescence was observed at 425–475 nm for DAPI, 500–545 nm for

Alexa Fluor 488, 575–620 nm for Alexa Fluor 546, and 655–755 nm for Alexa Fluor 633. To

estimate differentiation-dependent changes in protein expression levels (Figs 1 and 2), we

summed the fluorescence intensities in a defined region of interest (ROI) containing the whole

cell body of each cell, and then compared averaged values for all cells in each condition. To

estimate the expression ratio of Brn-3a to substance-P or βIII-tubulin to GFAP in each cell

(Fig 3), averaged fluorescence intensities in each ROI were used.

Ca2+ imaging

For Ca2+ imaging, cells were incubated with 5 μM fluo-4 AM (Thermo Fisher Scientific) for 45

min at 37˚C. After incubation, the cells were washed twice with Hanks’ Balanced Salt Solution

(HBSS, Thermo Fisher Scientific, buffered by 10 mM HEPES and with pH adjusted to 7.4

using NaOH), and then further incubated for 15 min at 37˚C. The fluorescence of fluo-4 was

measured using a confocal laser scanning microscope system (FluoViewFV1000, OLYMPUS).

Fluo-4 was excited at 488 nm through a dichroic mirror (405/488), and fluorescence emission

was observed at 500–600 nm. For time lapse imaging, images were obtained every 5 s.

Changes in the fluorescence of each cell were calculated as the mean intensity over a defined

ROI containing the cell body. The fluorescence data for each cell were analyzed using
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MATLAB (MathWorks, Natick, MA, USA). The fluorescence intensity (F) time-courses were

normalized by the initial fluorescence (F0) of each cell.

Response half-time was defined as the period during which the relative fluorescence inten-

sity (F/F0) remained higher than the half-maximum of the intensity of the Ca2+ transient

evoked by agonists of transient receptor potential (TRP) channels. Cells in which the fluores-

cence did not drop below the half-maximum of the intensity of the Ca2+ transient by the end

of the imaging period were eliminated from the analysis because their response half-time

could not be calculated.

Statistics

Significant differences were determined using t-tests and the levels of significance were

adjusted using Bonferroni correction.

Results

Differentiation toward neurons in terms of marker protein expression

After they had been cultured in differentiation medium, the differentiation of hDPSCs toward

neurons was confirmed based on the expression levels of βIII-tubulin, a neuron marker (Fig

1). In addition to the increase in expression levels with duration of culturing in differentiation

medium, from day 7, some hDPSCs had elongated βIII-tubulin-positive neurite-like processes

(arrowheads in Fig 1A). After day 14, some cells showed bipolar type neuron-like shapes (Fig

1A Day 14–28). We also checked the expression levels of βIII-tubulin during the

Fig 1. Immunofluorescence characterization of the neural differentiation of human dental pulp stem cells (hDPSCs).

(a) Representative confocal immunofluorescent images showing βIII-tubulin of hDPSCs cultured in differentiation medium

for 0, 7, 14, 21 or 28 days (Day 0, Day 7, Day 14, Day21 and Day28). Approximately similar changes in cell shape and βIII-

tubulin expression levels were shown in 4–5 different experiments for each differentiation stage. Arrowheads in the merged

images indicate βIII-tubulin-positive processes. Scale bar, 10 μm. (b) Changes in expression levels of βIII-tubulin during the

differentiation process (n = 124, 131, 63, 100, or 72 cells from 4–5 different dishes per differentiation stage). The values were

normalized by the averaged fluorescence intensity at Day 0. � P< 0.05 compared to Day 0. Error bars, standard error of the

mean.

https://doi.org/10.1371/journal.pone.0251356.g001
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Fig 2. Immunofluorescence characterization of the neural differentiation of hDPSCs by peripheral neuron

markers. (a) Confocal immunofluorescent images showing Brn-3a (green), TRPV1 (red), substance-P (white), and

merged (DAPI: Blue, Brn-3a: Green, TRPV1: Red, substance-P: White) images of hDPSCs cultured in differentiation

medium for 0, 7, 14, 21 or 28 days (Day 0, Day 7, Day 14, Day21 and Day28). Approximately similar changes in the

expression levels were shown in 3–4 different experiments for each differentiation stage. Scale bar, 10 μm. (b) Changes

in expression levels of Brn-3a, TRPV1, and substance-P during the differentiation process (n = 52, 53, 50, 52, or 48 cells

from 3–4 different dishes per differentiation stage, respectively). The values were normalized by the averaged
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differentiation process (Fig 1B) and confirmed the increase of its expression along the develop-

mental stages and saturation within Day 21.

To further elucidate that hDPSCs differentiated toward peripheral neuron-like calls, expres-

sion of Brn-3a, marker for peripheral neurons and retinal ganglion cells, TRPV1, one of the

nociceptors, and substance-P, a pain-mediating neurotransmitter, were examined. While

undifferentiated hDPSCs (Day 0) slightly expressed all three proteins, their expression levels

were significantly increased by differentiation (Fig 2). In addition, while few cells elongated

neurite-like processes on Day 0 (3/52 cell, 5.8%), the proportion of cells with elongated pro-

cesses also increased with differentiation (Day 7: 20/53 cells, 37.7%; Day 14: 32/50 cells, 64.0%;

Day 21: 32/52 cells, 61.5%; Day 28: 27/48 cells, 56.3%). Both marker expression and processes

elongation appeared to be saturated, in some extent, at Day 14. These results confirm that the

hDPSCs differentiated and matured toward peripheral neuronal cells at least in expression lev-

els of marker proteins as a result of being cultured in this medium for 14 days.

Differentiation toward neurons in terms of function, as revealed by Ca2+

imaging

Whether the differentiated cells that expressed neuronal marker protein patterns also showed

characteristic neuronal functions was still in question. To assess the neuron-like function in

hDPSCs, Ca2+ responses to high concentrations of KCl were observed. Conventional neurons

maintain their resting membrane potential via the equilibrium potential of K+, so an increase

in the extracellular K+ concentration depolarizes the membrane potential, and when this depo-

larization surpasses the excitation threshold, voltage-gated Na+ and Ca2+ channels open.

Therefore, if the differentiated hDPSCs express neuron-like ion channels, application of a high

concentration of KCl should induce a large increase in their intracellular Ca2+ concentration.

While KCl induced small and gradual increase in Ca2+ in undifferentiated hDPSCs (Day 0),

the Ca2+ responses became large, steep and transient with neuronal differentiation (Fig 3A and

3B). These data suggest that hDPSCs upregulated not only Ca2+ channel but also Ca2+ extru-

sion and storage mechanisms, and that maturation of excitatory Ca2+ regulation took more

than 28 days.

To evaluate the relationship between the hDPSCs’ expression of marker proteins and their

function, cells were fixed immediately after Ca2+ imaging, and expression levels of the marker

proteins in each cell were evaluated by immunofluorescence. The expression levels of Brn-3a

and substance-P in each undifferentiated (Day 0) and differentiated (Day 14) hDPSC were

plotted (Fig 3C and 3D). The cells were divided into two groups according to their Ca2+

response: large Ca2+ response (red; Fmax/F0 > 1.5), or small or no Ca2+ response (blue; Fmax/F0

< 1.5). Most of the undifferentiated cells exhibited a small or no Ca2+ response. Whereas both

Ca2+ responses and expression levels of both proteins were increased with differentiation, the

distribution of the plots for large Ca2+ response cells and that for small or no Ca2+ response

cells were almost the same (Fig 3C and 3D).

To further confirm the differentiation of hDPSCs in terms of neuronal function, the expres-

sion of voltage-gated Na+ channels was analyzed by Ca2+ imaging. Veratridine, an activator of

voltage-gated Na+ channels, elicited a small Ca2+ response in undifferentiated (Day 0)

hDPSCs, but in differentiated cells (Day 7 and Day 14), the amplitude of the Ca2+ response

was significantly greater (Fig 4). This indicates that hDPSCs increase their expression of Na+

fluorescence intensity at Day 0 for each protein. � P< 0.05 compared to Day 0 for each protein. Error bars, standard

error of the mean.

https://doi.org/10.1371/journal.pone.0251356.g002
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channels during the first seven days of differentiation toward neurons. From these data, we

can therefore confirm the differentiation of hDPSCs toward neurons based not only on the

expression levels of marker proteins, but also on neuronal functions.

Ca2+ response to other extracellular signals

To determine whether the differentiated hDPSCs would be responsive to extracellular signals

derived from other neurons and glial cells, Ca2+ response to glutamate, the most abundant

excitatory neurotransmitter in the CNS, and adenosine triphosphate (ATP), a major signal

between neurons and glial cells, were observed. In addition, we evaluated which neuron

responses the hDPSC responses resembled by comparing the responses to those of DRG and

hippocampal neurons, which are types of peripheral and central neurons, respectively. None

Fig 3. Relationship between neuronal marker expression and Ca2+ response. (a) Representative Ca2+ responses to high concentration

of KCl (60 mM) in undifferentiated hDPSCs (Day 0, upper) and hDPSCs differentiated for 14 days (Day 14, middle) or 28 days (Day 28,

bottom). (b) Comparison of the amplitude (Fmax/F0) of Ca2+ responses evoked by KCl in 1 min after application in Day 0, 14 and 28

hDPSCs (n = 69, 58, or 67 cells, respectively, from 3 different experiments for each condition). � P< 0.05 between the indicated pairs. The

cells were fixed immediately after Ca2+ imaging and immunostained. (c, d) Immunofluorescence intensity of substance-P and Brn-3a of

each cell cultured in differentiation medium for 0 days (Day 0, n = 69 cells) (c) and 14 days (Day 14, n = 58 cells) (d). In panels c and g, red

dots indicate cells that exhibited a large response to KCl (Fmax/F0 > 1.5); blue dots indicate cells that exhibited a small or no response to

KCl (Fmax/F0 < 1.5).

https://doi.org/10.1371/journal.pone.0251356.g003
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of the hDPSCs (Day 0–Day 28) exhibited more than a small response to glutamate (Fig 5A and

5B). Similarly, cultured rat DRG neurons exhibited only a small or no response to glutamate,

whereas cultured rat hippocampal neurons produced a large increase in Ca2+ increase in

response to glutamate application (Fig 5A). In contrast, while ATP elicited a small Ca2+

response in hDPSCs at Day 0, it elicited a large Ca2+ response at Day 7 and thereafter (Fig 5A

and 5C). Similar to the differentiated hDPSCs, both DRG and hippocampal neurons exhibited

a large Ca2+ response to ATP (Fig 5A and 5C). These data indicate that hDPSCs exhibit

peripheral-neuron-like responses rather than CNS-neuron-like responses to glutamate and

ATP.

While approximately 20% of the undifferentiated hDPSCs exhibited a large response to

ATP, after seven days of differentiation approximately 70% of the cells did so, and some

showed oscillating Ca2+ increases (Fig 5A). Here, a large response was defined as Fmax/F0 >

1.5, and Ca2+ oscillation was defined as more than two Ca2+ transients in response to ATP

application. The response rate to ATP was nearly saturated at Day7, and hDPSCs maintained

this high level of responsiveness to ATP during further differentiation (Fig 6A). To examine

the mechanism of the Ca2+ response to ATP, Ca2+ responses were observed in the presence of

suramin, a substance with a broad spectrum of effects including inhibition of several types of

P2 purinergic receptors, or in Ca2+-free medium. Neither suramin nor the Ca2+-free medium

had a significant effect on the responsiveness of differentiated hDPSCs (Day 7) to ATP (Fig

6B), indicating that the ATP was received by a suramin-insensitive receptor that induced the

release of Ca2+ from intracellular stores. In the differentiated hDPSCs, 40–70% of the cells

exhibited Ca2+ oscillations in response to ATP application, whereas almost none of the undif-

ferentiated cells showed this response (Fig 6C). Suramin had no effect on the oscillation rate

(Fig 6D). In the Ca2+-free condition, although the transient increase in Ca2+ was not affected

Fig 4. Ca2+ response to the voltage-gated Na+ channel activator veratridine. (a) Representative Ca2+ responses to

veratridine (30 μM), an activator of voltage-gated Na+ channels, in undifferentiated (Day 0) and differentiated (Day 7)

hDPSCs. (b) Comparison of the amplitude (Fmax/F0) of Ca2+ responses evoked by veratridine in Day 0, 7 and 14 hDPSCs

(n = 180, 152, or 84 cells, respectively, from 5–8 different experiments for each condition). Error bars, standard error of the

mean. � P< 0.05 compared to Day 0.

https://doi.org/10.1371/journal.pone.0251356.g004
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(Fig 6B), the Ca2+ oscillation that followed was completely abolished (Fig 6D). These data indi-

cate that in the first transient response and in the following oscillations, Ca2+ is mobilized

from different sources, and only the oscillations require extracellular Ca2+. From Figs 5 and 6,

we concluded that the responses of hDPSCs to extracellular signals are fully differentiated in 7

days. Combined with the expression of peripheral neuron markers, hDPSCs differentiated for

14 days were considered as maturated peripheral neurons.

Ca2+ response to TRP channel activation

To further test the hypothesis that differentiated hDPSCs would be useful as a model of human

peripheral neurons, we observed Ca2+ responses to TRP channel activators. In general, TRP

channels are characterized by responses to several types of physicochemical stimulation: tem-

perature, osmotic pressure, the redox state of cells, and foreign chemical substances, such as

capsaicin and menthol [46,47]. In particular, the TRPV1 and TRPA1 channels are important

components of the pain reception system in the PNS and have attracted attention as drug tar-

gets for the treatment of pain [10,48,49]. We therefore examined Ca2+ responses to capsaicin,

an agonist of the TRPV1 channel, and allyl isothiocyanate (AITC), an agonist of the TRPA1

channel. Since hSPSCs acquired the peripheral neuron-like properties within 14 days, the

responses of hDPSCs to the TRP channel activators were observed on Day 14 and compared

with the responses of DRG neurons. In addition, changes in response with differentiation were

Fig 5. Ca2+ responses of hDPSCs, DRG and hippocampal neurons. (a) Representative Ca2+ responses to glutamate (20 μM) and ATP (20 μM)

application in undifferentiated (Day 0) and differentiated (Day 7) hDPSCs and cultured rat DRG and hippocampal neurons. Comparison of the

response amplitudes (Fmax/F0) to glutamate (b) and ATP (c) in hDPSCs differentiated for the indicated days, DRG neurons, and hippocampal

neurons (n = 210, 84, 35, 78, 94, 43, or 33 cells, respectively, from 2–5 different experiments for each condition). Error bars, standard error of the

mean. � P< 0.05 compared to Day 0.

https://doi.org/10.1371/journal.pone.0251356.g005
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also investigated by comparing the responses on Day 14 with Day 0 and 7. Both capsaicin and

AITC induced Ca2+ increases in undifferentiated (Day 0) and differentiated (Day 7 and Day

14) hDPSCs and DRG neurons, indicating that all of these cells expressed both types of TRP

channel (Fig 7A and 7D). Although the amplitude of the response to capsaicin was similar in

all the cell types, the response half-time was shorter in Day 14 hDPSCs, and their Ca2+ tran-

sients were sharper and more like those of DRG neurons (Fig 7A–7C). In contrast, while the

half-time of the response to AITC treatment did not differ between cell types, the response

amplitude decreased with increasing duration of differentiation (Fig 7D–7F). The shapes of

the Ca2+ responses to both capsaicin and AITC in Day 14 hDPSCs were similar to those of cul-

tured rat DRG neurons (Fig 7A and 7D).

Discussion

In this study, we have demonstrated differentiation of hDPSCs toward neurons both in terms

of their expression of marker proteins and in terms of their functions examined using Ca2+

imaging (Figs 1–4). In our experiments, βIII-tubulin-positive processes were observed in

hDPSCs after seven days in differentiation media, and bipolar type neuron-like cells with elon-

gated neurite-like processes were observed after fourteen days (Fig 1). Whereas differentiated

and undifferentiated hDPSCs also expresses a neuronal stem cell marker, nestin, and an

Fig 6. ATP-induced Ca2+ oscillation requires extracellular Ca2+. Comparison of the average percentage of

responding cells (response rate) (a) and the average percentage of cells exhibiting Ca2+ oscillations (oscillation rate) (c)

in response to ATP application in hDPSCs differentiated for the indicated days (n = 6, 5, 3, 3, or 2 cell populations for

each condition, respectively). Response rate (b) and oscillation rate (d) upon ATP application in control conditions, in

the presence of suramin (500 μM) or in Ca2+-free conditions for hDPSCs differentiated for seven days (n = 6, 3, or 3

cell populations for each condition, respectively). Error bars, standard error of the mean. � P< 0.05 compared to Day 0

or controls.

https://doi.org/10.1371/journal.pone.0251356.g006
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Fig 7. A transient receptor potential (TRP) channel agonist induces a Ca2+ response in hDPSCs. (a) Representative Ca2+ responses to capsaicin

(10 μM), an activator of TRPV1 channels, in undifferentiated (Day 0) and differentiated (Day 7 and Day 14) hDPSCs and in cultured DRG neurons.

(b) Amplitude of responses to capsaicin application in hDPSCs differentiated for the indicated days and in cultured DRG neurons (n = 92, 19, 51, or 23

cells, respectively, from 2–4 different experiments). (c) Response half-time of capsaicin-induced Ca2+ responses (n = 79, 16, 40, or 19 cells,

respectively). (d) Representative Ca2+ responses to allyl isothiocyanate (AITC, 10 μM), an activator of TRPA1 channels, in hDPSCs differentiated for

the indicated days and cultured DRG neurons. (e) Amplitude of responses to AITC application in hDPSCs differentiated for the indicated days and in

cultured DRG neurons (n = 78, 13, 35, or 27 cells, respectively, from 2–4 different experiments). (f) Response half-time of AITC-induced Ca2+

responses (n = 68, 13, 32, or 25 cells, respectively). Error bars, standard error of the mean. � P< 0.05 in a comparison of all combinations in each

graph.

https://doi.org/10.1371/journal.pone.0251356.g007
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astrocyte marker, glial fibrillary acidic protein (GFAP) (S1 Fig and also reported from other

laboratories [37,50]), we have demonstrated that the mRNA expression level of GFAP is much

lower than that of βIII-tubulin in undifferentiated and differentiated hDPSC [51]. Therefore,

βIII-tubulin predominates over GFAP in hDPSCs. Although the expression of nestin was

detected in differentiated hDPSCs, expression levels of Brn-3a, a peripheral neuron marker,

TRPV1, one of the nociceptors, and substance-P, a pain-mediating neurotransmitter,

increased with differentiation and almost saturated on Day 14 (Fig 2). These indicate that

hDPSCs differentiated toward peripheral neurons and that peripheral marker expressions

matured to some extent within 14 days, although they are not yet mature neurons. The differ-

entiated hDPSCs may sustain capability for further differentiation, at least, on Day 14 as the

expression level of Brn-3a increased again on Day 28. To assess whether there was a correlation

between the levels of marker expression and neuronal function, we observed the expression of

marker proteins and Ca2+ responses to high concentrations of KCl in the same cells. The

hDPSCs differentiated for 14 days increased all of Brn-3a and substance-P expression and Ca2

+ response, while there was no difference in the distribution of expression levels between the

no or small Ca2+ response group and the large Ca2+ response group (Fig 3). This suggests that

hDPSCs differentiate in a different manner in the marker expression and in the function. We

also confirmed an increase in voltage-gated Na+ channels in seven days differentiation using

Ca2+ imaging (Fig 4). These data indicate that hDPSCs differentiate toward neurons, and also

that cells with neuron-like protein expression patterns show neuron-like functions within 14

days of differentiation. To the best of our knowledge, this is the first report that demonstrates

the differentiation of hDPSCs toward neuron-like cells in terms of both their marker protein

expression and their function.

Next, we evaluated the possibility of using hDPSCs as an in vitro cell model of peripheral

neurons. Although they had differentiated toward neuron-like cells, they exhibited only small

or no responses to glutamate, which is a major excitatory neurotransmitter in the CNS (Fig 5).

Cultured rat DRG neurons also exhibited small or no increases in Ca2+ in response to gluta-

mate, unlike cultured rat hippocampal neurons. On the other hand, whereas undifferentiated

hDPSCs also only exhibited small responses to ATP, the differentiated hDPSCs exhibited large

responses, similar to those of DRG and hippocampal neurons (Fig 5). This suggests that the

hDPSCs differentiated in the medium we used behaved as peripheral neurons rather than cen-

tral neurons, which makes sense given the peripheral-tissue origin of hDPSCs [21]. To further

investigate the peripheral-neuron-like responses of hDPSCs, we analyzed their Ca2+ responses

with respect to nociception. The Ca2+ increase evoked by ATP was not suppressed by suramin

or Ca2+-free conditions (Fig 6), suggesting that ATP mobilizes Ca2+ from intracellular stores

via metabotropic P2Y-type receptors. In peripheral neurons, Ca2+ is mobilized from the endo-

plasmic reticulum via the activation of P2Y receptors that are involved in nociception [52]. In

addition, the agonists of the TRPV1 and TRPA1 channels elicited Ca2+ responses in both dif-

ferentiated and undifferentiated hDPSCs, as well as in DRG neurons, and the shapes of the

Ca2+ responses became more similar to those of DRG neurons over 14 days of differentiation

(Fig 7). Although the expression level of TPRV1 channel in hDPSC was increased with differ-

entiation (Fig 2), the amplitude of the response to capsaicin was not increased but it became

transient in hDPSC (Fig 7A–7C). Considering that the response to KCl also became transient

with differentiation (Fig 3A), hDPSCs would upregulate not only Ca2+ channels but also Ca2+

extrusion and storage mechanisms. Upregulation of plasma membrane Ca2+ ATPase (PMCA)

activity, which accelerates Ca2+ extrusion from cytosol, is observed in the developing stage of

brain and during synaptogenesis in neurons [53]. PMCA is one of the principal mechanism of

Ca2+ extrusion in DRG neurons [54], and increased Ca2+ efflux via PMCA after application of

capsaicin in cultured DRG neurons has been reported [55]. These reports indicate that not
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only the mechanism for increasing Ca2+ mobilization but also the one for Ca2+ clearance are

important for neuronal development and maturation [54,56]. This alteration might be respon-

sible for the transient Ca2+ responses without changing its amplitude in hDPSC, which turns

Ca2+ increase into a sharp signal similar to that observed in DRG neurons (Fig 7). Also, this

could be the reason why the Ca2+ responses were independent of marker expression (Fig 3).

The amplitude and half-time of the Ca2+ response did not correlate with the expression of dif-

ferentiation marker, probably due to the variety of the expression of Ca2+ mobilization and

clearance mechanisms in each cell, even though averaged Ca2+ response became grater and

sharper with neuronal differentiation. TRP channels are implicated in nociception, and in par-

ticular, TRPV1 and TRPA1 play important roles in the PNS [10,48,49]. Therefore, our results

indicate that hDPSCs are a promising candidate for an in vitro cell model of peripheral neu-

rons in experiments involving nociception and subsequent pain response. The neuronal matu-

ration of differentiated hDPSCs in each aspect was summarized in Fig 8. To the best of our

knowledge, this is the first report that demonstrates the peripheral neuron-like response of

neuronally differentiated hDSPCs to extracellular stimuli.

In this study, we have demonstrated that differentiated hDPSCs are a candidate for in vitro
modeling of human peripheral neurons. While hDPSCs have been used in fundamental stud-

ies and in regenerative medicine focused on neurodegenerative CNS diseases in animal models

[38–41], our findings indicate that they will also be useful for studies of the PNS. While ES and

iPS cells also have the potential to differentiate toward peripheral neurons [13,14], hDPSCs

would become more convenient model cells. The relief of pain is an important aspect of

improving quality of life. Using hDPSCs as an in vitro experimental model of pain sensation

would provide a powerful tool for uncovering the mechanisms underlying human

nociception.

Supporting information

S1 Fig. Immunofluorescence images of the GFAP and nestin in undifferentiated and dif-

ferentiated human dental pulp stem cells (hDPSCs). Confocal immunofluorescence images

showing GFAP (green) and nestin (white) of hDPSCs cultured in differentiation medium for

Fig 8. Summary of the differentiation of hDPSCs to peripheral neurons in each aspect revealed in this study.

https://doi.org/10.1371/journal.pone.0251356.g008
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0, 7, 14, 21 or 28 days (Day 0, Day 7, Day 14, Day21 and Day28). Scale bar, 10 μm.

(TIF)

S1 Data.

(XLSX)
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