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Greater tau pathology is associated 
with altered predictive coding
Klevest Gjini,1 Cameron Casey,2 Sean Tanabe,2 Amber Bo,2 Margaret Parker,2 

Marissa White,2 David Kunkel,2 Richard Lennertz,2 Robert A. Pearce,2 

Tobey Betthauser,3 Bradley T. Christian,4 Sterling C. Johnson,3 Barbara B. Bendlin3  

and Robert D. Sanders5,6,7

Altered predictive coding may underlie the reduced auditory mismatch negativity amplitude observed in patients with dementia. We 
hypothesized that accumulating dementia-associated pathologies, including amyloid and tau, lead to disturbed predictions of our sen
sory environment. This would manifest as increased reliance on ‘observed’ sensory information with an associated increase in feed
forward, and decrease in feedback, signalling. To test this hypothesis, we studied a cross-sectional cohort of participants who 
underwent PET imaging and high-density EEG during an oddball paradigm, and used dynamic casual modelling and Bayesian statis
tics to make inferences about the neuronal architectures (generators) and mechanisms (effective connectivity) underlying the observed 
auditory-evoked responses. Amyloid-β imaging with [C-11] Pittsburgh Compound-B PET was qualitatively rated using established 
criteria. Tau-positive PET scans, with [F-18]MK-6240, were defined by an MK-6240 standardized uptake value ratio positivity 
threshold at 2 standard deviations above the mean of the Amyloid(–) group in the entorhinal cortex (entorhinal MK-6240 standar
dized uptake value ratio > 1.27). The cross-sectional cohort included a total of 56 participants [9 and 13 participants in the Tau(+) and 
Amyloid(+) subgroups, respectively: age interquartile range of (73.50–75.34) and (70.5–75.34) years, 56 and 69% females, respect
ively; 46 and 43 participants in the Tau(−) and Amyloid(−) subgroups, respectively: age interquartile range of (62.72–72.5) and 
(62.64–72.48) years, 67 and 65% females, respectively]. Mismatch negativity amplitudes were significantly smaller in Tau+ subgroup 
than Tau− subgroup (cluster statistics corrected for multiple comparisons: P = 0.028). Dynamic causal modelling showed that tau 
pathology was associated with increased feedforward connectivity and decreased feedback connectivity, with increased excitability 
of superior temporal gyrus but not inferior frontal regions. This effect on superior temporal gyrus was consistent with the distribution 
of tau disease on PET in these participants, indicating that the observed differences in mismatch negativity reflect pathological changes 
evolving in preclinical dementia. Exclusion of participants with diagnosed mild cognitive impairment or dementia did not affect the 
results. These observational data provide proof of concept that abnormalities in predictive coding may be detected in the preclinical 
phase of Alzheimer’s disease. This framework also provides a construct to understand how progressive impairments lead to loss of 
orientation to the sensory world in dementia. Based on our modelling results, plus animal models indicating that Alzheimer’s disease 
pathologies produce hyperexcitability of higher cortical regions through local disinhibition, mismatch negativity might be a useful 
monitor to deploy as strategies that target interneuron dysfunction are developed.
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Graphical Abstract

Introduction
In the later stages of dementia due to Alzheimer’s disease, 
sufferers lose orientation in time, space and person, which 
is perhaps the most distressing of the dementia symptoms. 
There is suggestive evidence that these impairments may start 
accruing in preclinical stages.1 Presently, these disturbing 
symptoms are largely untreatable when they occur, driving 
interest in interventions in the preclinical stages of 
Alzheimer’s disease. Here, we frame this loss of orientation 
to the sensory environment using the framework of predict
ive coding,2 hypothesizing that within this model, accumu
lating Alzheimer’s disease pathologies would be associated 
with disturbance of brain function. In predictive coding, 
higher order cortical regions constantly make, and update, 

hypotheses about the sensory environment that are then 
matched to the actual sensory signals at lower levels of the 
corticothalamic hierarchy.2–4 When there is discordance in 
the information (i.e. a mismatch in the prediction and the 
‘observed’ sensory world), this information is fed up the cor
tical hierarchy and the higher order prediction is updated. 
Predictive coding is proposed to provide an explanation for 
the rapid processing of sensory information as well as how 
various sensory illusions can occur. Furthermore, predictive 
coding may explain information processing across a wide 
range of systems such as sensory, motor and higher order 
cognitive networks.3 However, while theoretically pro
posed,4 associations between predictive coding hypotheses 
and dementia have not been formally tested. Nor, to our 
knowledge, has the concept that abnormalities in predictive 
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coding are associated with dementia pathology diagnosed by 
positron emission tomography (PET).

In dementia, there is already evidence for a breakdown in 
these predictive coding mechanisms. In particular, a prior 
study has shown reduced mismatch negativity (MMN) in 
auditory oddball paradigms.5 However, the neural basis 
for these findings is not yet understood. We hypothesized 
that accumulating Alzheimer’s disease pathology, namely 
tau (and amyloid), would be associated with a breakdown 
in predictive coding. Amyloid accumulates in early disease 
stages, particularly during the ‘silent’ or asymptomatic phase 
of Alzheimer’s disease. Tau pathology is considered to 
accumulate once amyloid burden is present, and level of 
tau burden correlates with cognitive decline6 and increased 
excitability of neuronal circuits through disinhibition (loss 
of GABAergic interneuron driven control of signalling).7,8

Given that tau pathology represents more advanced disease 
and more closely linked with network dysfunction, we 
hypothesized that accumulation of tau would be associated 
with abnormalities in predictive coding through local 
disinhibition of higher order cortical regions with impaired 
generation of predictions,9 and hence reduced feedback 
connectivity,9 and an associated increase in feedforward sig
nalling (due to reliance purely on ‘observed’ sensory infor
mation, a relatively inefficient method). If proved, this 
would support models of interneuron dysfunction associated 
with tau7 and mechanisms through which tau may transduce 
neurodegeneration. As such, this phenotyping may pave the 
way for identification of individuals who require augmented 
interneuron function to improve their symptoms.

To test these hypotheses, we employed dynamic causal 
modelling (DCM) applied to auditory event-related poten
tials (ERPs) measured with high-density electroencephalog
raphy (EEG).10 DCM has been used to make inferences 
about the neuronal architectures that generate the electro
physiological signals in the brain. DCM employs a generative 
neural mass model describing how the electrophysiological 
signals are produced at the neuronal level and Bayesian statis
tics to infer the neuronal mechanisms (discretized as effective 
connectivity) underlying observed evoked electrophysiologic
al responses.10 Using a roving oddball paradigm that controls 
for changes in the physical features of the stimulus,11 DCM 
has suggested important changes in neuronal connectivity 
and excitability in pharmacological12 and most importantly 
disease states.13

Materials and methods
Fifty-six participants (>45 years old) were recruited from two 
on-going cohort studies: 42 participants from the Wisconsin 
Registry for Alzheimer’s Prevention and 14 participants from 
the Alzheimer’s Disease Research Center, where brain imaging 
(PET) data were collected. The inclusion and exclusion criteria 
are included in the Supplementary Material. The study was ap
proved by the University of Wisconsin-Madison Institutional 
Review Board and all participants provided informed consent. 

Participants volunteered for resting state14 and roving oddball 
auditory stimulation collection of EEG data.

PET imaging analysis
Amyloid-β imaging with [C-11] Pittsburgh Compound-B 
(PiB) PET employed a dynamic 70-min protocol15 and were 
qualitatively rated using established criteria.15 Tau PET im
aging, with [F-18]MK-6240, was acquired from ∼70- to 
110-min post injection.16,17 Tau-positive PET scans were de
fined by an MK-6240 standardized uptake value ratio (SUVR) 
positivity threshold at 2 standard deviations above the mean 
of the PiB(–) group in the entorhinal cortex (entorhinal 
MK-6240 SUVR > 1.27) as in Betthauser et al.16).

Out of the total of 56 participants, 9 showed evidence of 
brain tau pathology (Tau+ subgroup) and 46 without (Tau 
− subgroup)16,17; also 13 were with markers of amyloid 
beta pathology (PiB+ subgroup) and 43 without (PiB− sub
group)15 (Supplementary Fig. 1 and Supplementary 
Table 1). A further breakdown of demographic and neuro
psychological test data according to combined Tau and PiB 
status is provided in Supplementary Table 2. Five partici
pants had a diagnosis of dementia or mild cognitive impair
ment (Alzheimer’s disease/minimal cognitive impairment 
[MCI])). Three of these participants were Tau+/PiB+ and 
two were Tau−/PiB−. The primary outcome was the differ
ence in the DCM estimates of connectivity between Tau+ 
and Tau− subjects. As a secondary analysis, we investigated 
the impact of amyloid positivity on estimates of connectivity.

The auditory paradigm
The auditory roving ‘oddball’ paradigm (adapted from 
Garrido et al.18) consisted in the presentation of a sequence 
of pure sinusoidal tones, with a sporadically changing tone 
(Fig. 1). Each stimulus train was comprised of tones of one 
frequency followed by a train of tones of different frequen
cies. Deviants and standards had the same physical proper
ties given that the first tone of a train was a deviant and 
became a standard after few repetitions. The sequence of 
the auditory stimuli was delivered via a stimulus presenta
tion software (E-Prime; Psychology Software Tools, Inc., 
Pittsburgh, PA, USA). The subjects were awake and moni
tored during the presentation of the auditory paradigm. 
They were not required to focus their attention or perform 
any particular task as this could potentially lead to biases re
lated to how well subjects could attend to a task and retain 
information. As such instructions were not given to attend 
to any tone in particular or to complete a task.

EEG data acquisition, preprocessing 
and extraction of ERPs
High-density EEG data were acquired with a 250 Hz sam
pling rate using a 256-channel system (Electrical Geodesics, 
Inc., Eugene, OR, USA), capable of accepting eight-bit digital 
trigger input (i.e. TTL pulses). EEG data were processed in 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac209#supplementary-data
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EEGLAB (https://sccn.ucsd.edu/eeglab/), a toolbox running 
in MATLAB (https://www.mathworks.com/) and its plugin 
ERPLAB (https://erpinfo.org/erplab). EEGs were bandpass 
filtered between 1 and 30 Hz, data segments heavily com
promised by artefacts were detected by visual inspection 
and then removed (a concurrent display of 10 s windows 
of data from all sensors), the detected noisy channels were 
rejected and re-interpolated and non-neuronal artefactual 
components (due to eye movements, muscle activity and car
diac electric field) were detected and rejected using inde
pendent component analysis (ICA). More specifically, the 
applied ICA-based artefact detection and rejection do not 
reject whole segments of data, only remove the ECG artefact 
(or any other type of identified physiological artefact) con
tamination to the data leaving the respective data length in
tact. Then EEG data were segmented to epochs of interest 
[(−100 to 400 ms) from stimulus onset at 0 ms] separately 
for deviant (first stimulus in a train of at least six tones of 
the same frequency) and standard stimuli (sixth stimulus 
in the trains with same characteristics as mentioned for de
viants), and bad epochs were manually flagged for rejection. 
Finally, in each individual subject the auditory ERPs 
for standard and deviant stimuli were obtained by the 
method of averaging of the previously obtained epochs fol
lowed by baseline correction [i.e. subtraction of the mean 
amplitude during the baseline (−100 to 0 ms) interval]. 
Difference waves were calculated by subtracting the aver
aged ERP of standard stimuli from the averaged ERP to de
viant stimuli. MMN amplitudes were obtained from the 
difference waves at each time point as well as mean scores 
at intervals of interest post-stimulus onset [(148–160 ms) 

and (148–200 ms)]. Grand averages for ERPs of standard, 
deviant and MMN waveforms in Tau+, Tau−, PiB+ and 
PiB− subject subgroups were obtained by averaging respect
ive individual subject ERPs. No significant differences were 
found in the accepted number of trials for standard and de
viant stimuli between the Tau+ and Tau− subgroups (inde
pendent samples t-test: P > 0.05).

Statistics on scalp ERP data
First-level nonparametric t-statistics between the MMN am
plitudes from the compared subgroups (Tau+ versus Tau−, 
PiB+ versus PiB−) at each sensor of the 256-channel array 
(at individual time points and averages from time intervals 
of interest) were followed by second-level spatiotemporal 
cluster-based statistics were carried out in FieldTrip toolbox 
(https://www.fieldtriptoolbox.org/) running in MATLAB. 
The second-level test statistic (i.e. the maximum of the 
cluster-level summed t-values) is calculated on the observed 
experimental partition and on large number (5000) of ran
dom partitions. The resulting Monte Carlo significance 
probability, which is also called in this case a P-value, is cor
rected for ‘multiple comparisons’. The significance at both 
levels was set at P < 0.05.

Dynamic casual modelling and 
Bayesian model comparison
DCM module for ERPs in SPM12 (https://www.fil.ion.ucl. 
ac.uk/spm) is used to estimate effective connectivity be
tween brain regions and test the effect of experimental 

Figure 1 A schematic display of the auditory roving ‘oddball’ paradigm. The stimuli were pure sinusoidal tones belonging to seven 
frequencies varying from 500 to 800 Hz in steps of 50 Hz. They were presented in a sequence, with a roving, or sporadically changing tone. The 
duration of each tone was 70 ms (with 5 ms rise and fall times), and the interstimulus interval was set to 500 ms. The deviant (first tone in a train of 
at least six tones of the same frequency) and standard stimuli (sixth tone in the same train) are marked with grey and black arrows, respectively.

https://sccn.ucsd.edu/eeglab/
https://www.mathworks.com/
https://erpinfo.org/erplab
https://www.fieldtriptoolbox.org/
https://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm
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perturbations on coupling among the involved sources gen
erating the acquired ERP signals. The DCM general meth
odology when applied to ERP data supplements the 
conventional electromagnetic forward models with a model 
explaining how source activity is generated by neuronal dy
namics, and enables inference about both the spatial in
volvement of sources and the underlying neuronal 
architecture generating the signals.10 The selection of the 
involved brain areas as part of a given task are based on pre
vious studies reported in the literature.

DCM models: Eighteen DCMs (M1-M18) were used for 
Bayesian model comparison. Each model receives (para
meterized) subcortical input at the A1 sources, which elicit 
transient perturbations in the remaining sources. M1– 
M11 were identical to those run in Boly et al.13 Further ex
tensions in Models M13–M18 were based on network le
vel work on generation of auditory MMN.19 The 18 
different models are fitted to the individual data from the 
whole set of subjects and subgroups separately in order 
to obtain estimates of the parameters. Different DCM 
models include different numbers of sources (i.e. two, 
four, five, six). The models were generated using the entire 
post-stimulus window (0–400 ms) setting the prior for 
when the auditory cue is supposed to arrive at cortex to 
60 ms based on literature recommendations on what was 
used in previous DCM papers involving auditory oddball 
paradigms.

The random-effects Bayesian model selection was used to 
test which population-level best/winning model had the 
greatest evidence. The winning model (M18) was selected 
for subsequent quantitative analysis of effective connectivity 
across the two populations studied (Tau+ versus Tau− sub
group; PiB+ versus PiB− subgroup).

Parametric empirical Bayes
Parametric empirical Bayes (PEB) analyses (based on the ‘B’ 
modulation matrix in DCM module of SPM12) were done 
only with DCM data from the winning model (M18). The 
PEB model has parameters encoding the deviation from the 
mean due to the group difference. For the group difference, 
positive estimated parameters indicate stronger connectivity 
in (+) Tau or PiB group than (−) Tau or PiB group and nega
tive parameters indicate the opposite. The obtained posterior 
probabilities >95% correspond to a strong evidence level for 
the effect of interest.

Sample size
An a priori sample size was not conducted, as these data were 
collected as part of a study that also collected resting state 
EEG that is already published.14 All available data from 
the cohort study were included in this work.

Data availability
Data are available from the authors on reasonable request 
and adhered to local ethics.

Results
Sensor ERP data
At sensor level, MMN amplitudes were found to be signifi
cantly smaller in the Tau+ subgroup than the Tau− subgroup. 
Figure 2A displays grandaverage ERPs for Tau+ and Tau− 
subject groups (overlaying the standard, deviant and differ
ence waves) from a representative sensor (E15/Fz), and shows 
topographical plots of first-level nonparametric permutation 
statistics comparing the mean MMN for time interval (148– 
200 ms) from stimulus presentation onset between Tau+ and 
Tau− subject groups; the same is shown for PiB+ and PiB− 
participant groups in Fig. 2B. The sensors showing significant 
differences (P < 0.05, uncorrected for multiple comparisons) 
in mean MMNs between (+) and (−) subjects in the evaluated 
time interval are highlighted with magenta asterisks.

The second-level spatiotemporal cluster-based permuta
tion statistics (correcting for multiple comparisons) of 
mean MMNs between Tau+ and Tau− participants during 
the interval of (148–200 ms) showed a statistically signifi
cant difference (P = 0.028), with sensors belonging to the 
cluster with the largest differences in MMN between (+) 
and (−) participants highlighted with magenta asterisks in 
Fig. 3A. As a secondary analysis, we conducted a similar ana
lysis for amyloid disease. No significant differences were 
found for the same comparison of mean MMNs between 
PiB+ and PiB− groups (Fig. 3B). Additional information on 
scalp ERPs is provided in Supplementary Figs 2–5.

DCM, Bayesian model comparison 
and PEB analysis
The random-effects Bayesian model selection method 
showed that the fully connected model (M18) had the great
est evidence and this model was selected for subsequent 
quantitative analysis of effective connectivity between the re
spective subgroups with positive (+) or negative (−) presence 
of pathology biomarkers. Furthermore, the family-wise 
Bayesian model selection procedure, in the two populations 
studied, showed that the best models included two frontal re
gions (bilateral) and the presence of both backward and for
ward connections, as well as lateral connections. Finally, the 
random-effects Bayesian model selection showed that a mod
el representing a fully connected original M18 model with 
modulation of intrinsic/self-connection at each node had 
greater evidence compared to the original M18 model with
out modulation of intrinsic/self-connection at each node, and 
the resulting winning model was selected for subsequent 
quantitative analysis of effective connectivity across the 
two populations (Supplementary Fig. 7A–C).

Results from PEB analysis (done only with DCM data 
from the ‘winning’ fully connected M18 model including 
modulation of intrinsic/self-connection at each node; 
Fig. 4A) showed significant increases/decreases in connection 
strength in group differences of the deviant stimulus effect 
between Tau+ and Tau− subjects (Fig. 4B). Results show 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac209#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac209#supplementary-data
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Figure 2 Grandaverage ERPs and MMN topographies. (A) Display of grandaverage ERPs for Tau+ (MK-6240+) and Tau− (MK-6240−) 
participants (standard, deviant and difference waves) from a representative sensor (E15/Fz) highlighted with the small black rectangle in the 
topoplot, and topographical plots of independent samples t-statistics values for comparison of the mean MMN amplitudes between MK-6240+ and 
MK-6240− participants for the time interval (148–200 ms) from stimulus presentation onset. (B) The same shown for data from amyloid scanning 
(PiB+ and PiB−) participants. In the topoplots, sensors showing significant differences (P < 0.05, uncorrected for multiple comparisons) in the 
mentioned interval mean MMNs between (+) and (−) subjects in each of the evaluated time intervals are highlighted with magenta asterisks.
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increased feedforward connectivity in tau pathology with im
paired feedback connectivity and increased excitability of su
perior temporal gyrus, but not inferior frontal regions. As a 
secondary analysis, we showed significant increases/decreases 
in connection strength in group differences of the deviant 
stimulus effect between PiB+ and PiB− groups as well (Fig. 4C).

Supplementary Fig. 8A and B displays the grandaveraged 
source waveforms during the interval (0–400 ms) for 

standard, deviant and difference waves from data belonging 
to Tau+ and Tau−, and PiB+ and PiB− groups, respectively.

Discussion
These data suggest that tau pathology is associated with 
changes in the auditory-evoked response, indicative of 

Figure 3 Statistical comparison of MMNs (Tau+ versus Tau−; PiB+ versus PiB−). (A) Display of the second-level cluster-based 
permutation statistics (correcting for multiple comparisons) for comparison of mean MMNs between Tau+ (MK-6240+) and Tau− (MK-6240−) 
participants, and (B) amyloid scanning (PiB+ and PiB−) participants. Sensors belonging to the cluster with the largest differences in MMN between 
(+) and (−) subjects are highlighted with magenta asterisks.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac209#supplementary-data


8 | BRAIN COMMUNICATIONS 2022: Page 8 of 10                                                                                                                 K. Gjini et al.

Figure 4 PEB modelling results. Display of the results of the second-level PEB analysis following the DCM-based estimation (i.e. fitting the 
Winning Model A to the individual data, to get estimates of the parameters). The PEB model has parameters encoding the deviation from the mean 
due to the group difference (Covariate 2). For the group difference, positive estimated parameters indicate stronger connectivity in (+) Tau 
(MK-6240) or PiB group than (−) Tau or PiB group and negative parameters indicate the opposite. Posterior probabilities >95% (corresponding to 
a strong evidence level) for the deviance detection effect of interest are shown. (A) Sources in the left view of the cortex as (1) left A1—in blue; (2) 
left IFG—in red; (3) left STG—in green; sources in the right view of the brain as (4) right A2—in blue; (5) right IFG—in red; (6) right STG—in 
green. The schematic view of the winning model M18 (including modulation of intrinsic connections) displays the intrinsic, feedforward, lateral and 
feedback connections with orange, red, black and blue curved line arrows, respectively. (B) PEB [Tau+ MMN versus Tau− MMN] results 
interpretation (increase/decrease in connection strength): (3,3) left STG (decreased self-inhibition in Tau+); (3,1) left A1 → left STG (increased in 
Tau+); (2,3) left STG → left IFG (increased in Tau+); (2,5) right IFG → left IFG (increased in Tau+); (3,6) right STG → left STG (decreased in Tau+); 
(1,3) left STG → left A1 (decreased in Tau+); (6,5) right IFG → right STG (decreased in Tau+). (C) PEB (PiB+ MMN versus PiB− MMN) results 
interpretation (increase/decrease in connection strength): (3,3) left STG (decreased self-inhibition in PiB+); (3,1) left A1 → left STG (increased in 
PiB+); (2,3) left STG → left IFG (increased in PiB+); (5,6) right STG → right IFG (decreased in PiB+); (5,2) left IFG → right IFG (increased in PiB+); 
(2,5) right IFG → left IFG (increased in PiB+); (1,3) left STG → left A1 (decreased in PiB+); (6,5) right IFG → right STG (decreased in PiB+); (4,6) 
right STG → right A1 (decreased in PiB+). Connections: (x, y) are interpreted as y → x.



Tau disease and predictive coding                                                                                   BRAIN COMMUNICATIONS 2022: Page 9 of 10 | 9

impairments of predictive coding, with associated alterations 
in hierarchical connectivity and regional excitability. Of 
note, these data are consistent with prior studies of dementia 
focusing on scalp EEG.20 They also suggest that the predictive 
coding framework may provide a useful construct for under
standing dementia pathogenesis in the preclinical phase, par
ticularly through identification of changes in neuronal 
excitation and connectivity. As amyloid pathology is a defin
ing feature of Alzheimer’s disease dementia and is known to 
disturb cellular excitability, secondary analyses examined 
the effect of amyloid on predictive coding. It is important to 
note that in our secondary analysis, we did not find robust 
scalp level changes related to amyloid disease in this study, 
but did find some similar changes in effective connectivity, 
suggesting that in this earlier stage of disease, there may be 
some functional compensation. Our scalp level sensitivity ana
lyses did support the notion that the signal was not entirely dri
ven by symptomatic individuals with MCI/Alzheimer’s disease 
but rather reflects associations with Alzheimer’s disease path
ology. In turn, an inference is that accumulating pathology 
leads to an alteration in predictive coding prior to substantial 
changes in cognition. However, we note that the current sam
ple was small, so we propose that larger studies in preclinical 
Alzheimer’s disease are needed to confirm this. While, by def
inition, we were not underpowered to identify significant ef
fects in this cohort, future larger studies are required to 
validate and identify the generalizability of our findings.

Prior studies have linked dementia to disabled predictive 
coding via impairments in MMN,5 with theoretical argu
ments advanced for why predictive coding is a useful frame
work for understanding dementia.4 To our knowledge 
studies have not linked in situ pathologies in humans to these 
abnormalities, though it is established that dementia sufferers 
exhibit reduced MMN in oddball paradigms similar to the 
one we have used. The demonstration that there is increased 
excitability of superior temporal gyrus, a higher order cortical 
region, is consistent with animal evidence from tau and amyl
oid disease models21 and as a possible mechanism of excito
toxic neurodegeneration. We have previously identified tau 
disease in temporal lobe, but not inferior frontal regions, in 
our subjects.16 Hence, our DCM results showing increased ex
citability of temporal, but not frontal, regions are consistent 
with in situ tau pathologies disturbing cellular excitability. 
This provides further plausibility for our results.

Our results of increased feedforward connectivity, with 
impaired feedback connectivity, are consistent with our a 
priori hypotheses. In essence, this represents a shift from pre
dictive coding models of sensory perception to more ‘classic
al’ feedforward models.2 A proposed disadvantage of these 
classical models is their relative inefficiency of information 
processing. A shift to a more inefficient mechanism of infor
mation processing would be consistent with cognitive failure 
and progressive disorientation to the sensory world. Our 
data are also consistent with various animal models suggest
ing a critical role of interneuron dysfunction in dementia 
pathogenesis7,8 and provide impetus to developing selective 
therapies in that domain.

We note some important limitations of our work. These data 
are observational and, due to the small sample size, they can be 
considered proof of concept, but not definitive. Future valid
ation in a larger cohort is warranted. Similarly, future studies 
should look for a biological gradient between changes in excit
ability and connectivity of regions and absolute load of disease 
as quantified in PET. Corresponding studies in animals would 
also be beneficial to help establish causality. It is also unclear 
why we observed predominantly left hemispheric effects on 
connectivity, this may be due to a combination of some or all 
of: (i) predominant left hemispheric disease or metabolic failure 
at the disease stages we study,22 (ii) different signal to noise ra
tios in detecting EEG changes for left and right hemispheres and 
(iii) the small sample size. Future research, with larger sample 
sizes, should investigate if PET changes are only associated 
with left hemispheric changes, whether this is merely a nuance 
of our data set or whether this reflects the underlying disease at 
difference stages of disease progression. Ultimately, while this 
work uses established modelling techniques to estimate 
changes in neuronal function, only interventional studies, per
haps targeting interneurons who critically regulate local excita
tion and feedforward and feedback connectivity, can establish 
the underlying mechanisms. Designing those studies and devel
oping therapies targeting interneurons is a significant challenge 
and hence these in-human data supporting such an ambitious 
task are critical to the field.
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