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Abstract

Studies on diabetic nephropathy rarely take into account that the co-existence of diabetes

and hypertension is frequent and further aggravates the prognosis of renal dysfunction.

Adenosine can activate four subtypes of adenosine receptors (A1, A2A, A2B and A3) and has

been implicated in diabetic nephropathy. However, it is not known if, in hypertensive condi-

tions, diabetes alters the presence/distribution profile of renal adenosine receptors. The aim

of this work was to describe the presence/distribution profile of the four adenosine receptors

in six renal structures (superficial/deep glomeruli, proximal/distal tubules, loop of Henle, col-

lecting tubule) of the hypertensive kidney and to evaluate whether it is altered by diabetes.

Immunoreactivities against the adenosine receptors were analyzed in six renal structures

from spontaneously hypertensive rats (SHR, the control group) and from SHR rats with dia-

betes induced by streptozotocyin (SHR-STZ group). Data showed, for the first time, that all

adenosine receptors were present in the kidney of SHR rats, although the distribution pat-

tern was specific for each adenosine receptor subtype. Also, induction of diabetes in the

SHR was associated with downregulation of adenosine A2A receptors, which might be rele-

vant for the development of hypertensive diabetic nephropathy. This study highlights the

adenosine A2A receptors as a potential target to explore to prevent and/or treat early diabe-

tes-induced hyperfiltration, at least in hypertensive conditions.

Introduction

Diabetes Mellitus joins a group of metabolic diseases characterized by hyperglycemia and asso-

ciated with high morbidity and mortality rates. It has reached epidemic proportions; approxi-

mately 422 million people worldwide have diabetes[1] and this number will continue to

escalate, with predictions to rise up to 592 million by the year of 2035[2]. It is estimated that

almost 1/3 of all diabetic patients will develop diabetic nephropathy[3], the prime cause of
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end-stage renal disease which, therefore, has a great impact on the use of health resources and

associated costs[4]. In its initial stage, diabetic nephropathy is mainly characterized by glomer-

ular hyperfiltration and hypertrophy, basal membrane thickening and mesangial matrix

expansion that then progress to glomerulosclerosis, persistent proteinuria and decreased glo-

merular filtration rate (GFR)[3]. Early hyperfiltration is a good predictor for the development

of end-stage renal disease[5].

Diabetes and hypertension independently contribute to the development of diabetic

nephropathy and represent major causes of end-stage renal disease[4]. Also, the co-existence

of these two chronic diseases is extremely frequent[6]. However, studies on diabetic nephropa-

thy rarely take into account the co-existence of diabetes and hypertension, which further

aggravates the prognosis of renal dysfunction[7, 8].

The mechanisms underlying diabetic nephropathy are multifactorial[3, 9] although still not

fully characterized.

Adenosine regulates a wide range of physiological functions by activating four specific

membrane receptor subtypes: A1, A2A, A2B and A3, and has been implicated in diabetic

nephropathy[10, 11]. In the kidney, adenosine is crucial for the maintenance of proper hemo-

dynamics mainly through adenosine A1 receptor-mediated constriction of afferent arterioles

and glomerular mesangial cells, and adenosine A2A receptor-mediated vasodilation[12–15].

Moreover, adenosine A1 receptors also regulate tubular electrolyte transport and inhibit renin

secretion[16, 17] while adenosine A2A receptors contribute to maintain glomerular filtration

[18] and mediate anti-inflammatory and immunosuppressive effects[19], although they stimu-

late renin release[20]. Adenosine A2B receptors have been mainly associated with the produc-

tion of vascular endothelial growth factor (VEGF)[21, 22] and stimulation of profibrotic and

proinflammatory mediators[23]. The adenosine A3 receptors are known to induce mesangial

cells apoptosis, which may represent a potential mechanism to limit glomerular mesangial

expansion, an important histological feature of diabetic nephropathy[24].

In streptozotocin (STZ)-induced diabetes, it has been described an increased expression of

adenosine A1 receptor mRNA but conflicting data has been reported concerning protein

expression[21, 25, 26]. The adenosine A2A receptor mRNA and protein levels are increased in

the renal cortex of diabetic rats, and diabetes has also been associated with increased glomeru-

lar expression of adenosine A2B receptors[21, 25, 26] and increased cortical levels of the adeno-

sine A3 receptor protein[25]. The expression[25, 27–29] and function[11] of renal adenosine

receptors is altered in normotensive animals with experimental diabetes when compared with

normotensive controls. However, the coexistence of hypertension has never been addressed in

this context. As so, the distribution profile of adenosine receptors is not fully described in

hypertensive conditions neither is the impact of diabetes on a hypertensive background.

The aim of this work was to characterize the distribution profile of the four subtypes of

adenosine receptors in renal structures of spontaneously hypertensive rats (SHR, our control

group) and to evaluate whether it is altered by STZ-induced diabetes. We wanted to focus on

early diabetic nephropathy, which is associated with hyperfiltration[3], a good predictor of

end-stage renal disease[5]. As so, we decided to perform the experiments just 21 days after the

induction of diabetes with STZ, since by this time the animals show hyperfiltration[11] and

the associated renal disease mainly results from hyperglycemia and not of other putative con-

founding factors[30–32]. This study allowed us to describe, for the first time, the presence of

all adenosine receptors in the kidney of SHR, and a downregulation of the adenosine A2A

receptors in SHR with STZ-induced diabetes.

Renal adenosine receptors in diabetic-hypertensive rats
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Material and methods

Drugs

The following chemicals were used: STZ, Triton X-100 and DAB were obtained from Sigma

Aldrich (Sintra, Portugal). The following primary antibodies were bought from Santa Cruz

(Santa Cruz Biotechnology, CA, USA): rabbit polyclonal anti-A1, anti-A2A, anti-A2B, and anti-

A3. The rabbit biotinylated secondary antibody and the avidin-biotin complex reagents (ABC)

were obtained from Vectastain Elite ABC kit universal (Vector Laboratories, Burlingame, CA,

USA). All reagents were of analytical grade.

Animals and treatments

Male SHR animals (12 weeks; Charles River, Barcelona, Spain) were used. Animals had free

access to water and food and were housed under controlled conditions of temperature (22˚C),

humidity (60%) and light-dark cycle (12 h/12 h). All animal procedures were performed

according to the Portuguese DL n˚ 113/2013 and European Guidelines for humane and

responsible animal care (European Directive 2010/63). All experiments were performed in

accordance with the European Union guidelines for the protection of animals used for scien-

tific purposes (Directive 2010/63/EU). Protocols are in accordance with the ARRIVE guide-

lines for reporting experiments[33] and were approved by the Committee on the Ethics of

Animal Experiments of the Faculty of Pharmacy of the University of Porto (Permit Number

13/11/2013).

On day 0, SHR animals were randomly assigned to receive an intraperitoneal injection of

STZ (65 mg/kg; SHR-STZ group, n = 4) or vehicle (sodium citrate buffer pH 4.5; SHR control

group, n = 4). After 48 h, blood glucose concentration was determined using an autoanalyzer

(Abbott Diabetes Care Ltd, Santa Clara, CA, USA) and animals with blood glucose concentra-

tion above 300 mg/dL were considered diabetic. On day 21, animals were anesthetized with

pentobarbital sodium (50 mg/kg; i.p.) to minimize suffering, and the left kidney was excised

and processed for immunohistochemistry. With this, the death of the anesthetized animals

was ensured by exsanguination.

Immunohistochemistry

The kidneys were fixed in 4% formaldehyde overnight, dehydrated in a graded series of etha-

nol followed by benzoyl, and embedded in paraffin. Sequential 4-μm-thick renal sections were

obtained from each animal and mounted onto poly-L-lysine-coated slides.

Experiments were carried out in five batches using five levels, corresponding to 200 kidney

sections for both SHR control and SHR-STZ groups.

Immunohistochemistry was performed as previously described[34] with some modifica-

tions. Briefly, sections were dewaxed with toluene and rehydrated in a graded series of ethanol

at room temperature (RT). Endogenous peroxidase was blocked using 3% hydrogen peroxide

(H2O2) and non-specific protein binding was blocked with 2% serum in phosphate-buffered

saline [PBS (g/L): 8g NaCl; 0,201g KCl; 0,191g KH2PO4; 0,765g Na2HPO4.2H2O]. Sections

were then incubated with rabbit primary polyclonal antibodies, anti-A1 (1:50 dilution), anti-

A2A (1:250 dilution), anti-A2B (1:50 dilution), and anti-A3 (1:250 dilution). The specificity of

these primary antibodies has been previously tested by other authors by immunoprecipitation

of the protein or knockdown using siRNA[35–38] and by our group in SHR animals[39], by

pre-adsorbing individual primary antibody with a tenfold excess of its respective blocking pep-

tides, overnight, at 4˚C.

Renal adenosine receptors in diabetic-hypertensive rats
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Incubation with individual adenosine receptor primary antibodies was done overnight, at

4˚C, in a humidified chamber. Sections were subsequently rinsed in PBT and incubated with a

biotinylated anti-rabbit secondary antibody (1:125 dilution in PBT) for 1h, at RT. Sections

were then rinsed in PBT and incubated with avidin-biotin complex reagent (ABC) for 1h, at

RT. After washing with PBS, sections were incubated with 3,3-diaminobenzidine tetrahy-

drochloride (DAB) activated with H2O2, used as a chromophore. The reaction was stopped by

washing sections with distilled water. Finally, sections were dehydrated in a graded series of

ethanol and xylene, and mounted with Eukitt mounting medium. For negative controls (con-

trols for non-specific binding of secondary antibody) primary antibodies were omitted (Fig 1).

Imaging

Micrographs of each immunostained section were acquired using a CDC camera (Leica

DFC295, Leica Microsystems, Heerbrugg Switzerland) mounted on the microscope Nikon

Eclipse E400 (objective 20x/0.5;1/0.17; WD 2.1; Nikon Corporation, Tokyo, Japan), using

software Leica Microsystems software version 3.5.0 (Leica Microsystems, Heerbrugg, Switzer-

land). Illumination conditions of the bright field optics and camera exposure were maintained

constant throughout the acquisition of all tissue sections, including control negative sections.

Fig 1. Negative controls of kidney transversal sections from SHR animals. Representative photomicrographs of

kidney sections from 4 SHR rats incubated in parallel with 10% normal horse serum instead of the primary antibody to

assess the level of background ascribed to nonspecific binding of the secondary antibody. A clean background was

obtained in superficial (SG) and deep (DG) glomeruli, proximal (PCT) and distal (DCT) convoluted tubule, loop of

Henle (LH) or collecting tubule (CT). Scale bar: 20 μm.

https://doi.org/10.1371/journal.pone.0217552.g001
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Acquired images (24 bit, 8 bits/color) with resolution of 3072x2304 pixels corresponded to

655.36x491.52 μm area on the original histological section (1 pixel = 0.21 μm, a calibration

micrometer slide was used to convert pixels into micrometers). These images were used both

for qualitative analysis and histomorphometry.

Histomorphometry

Histomorphometric analysis has been previously described as a valid methodology[40–42]

and can be as effective as PCR or WB for quantitative measurements. Therefore, quantitative

analysis and processing of digital images from DAB-immunostained sections were assessed

using the SACAIA method and the PAQI software (CEMUP, Porto, Portugal), as previously

described[43, 44]. Briefly, from RGB (red, green, blue) digital color images, only the blue com-

ponent was selected for analysis, due to its higher contrast. RGB color images from DAB-

immunostained sections (immunostained with anti-A1, anti-A2A, anti-A2B or anti-A3 antibod-

ies) were converted into their blue component and the renal structures were isolated. Bound-

aries were delineated to extract the object of interest and to set thresholds for automated DAB-

staining segmentation using image analysis. As immunohistochemistry can provide detailed

information concerning the location/presence/area of immunostaining, to make the analysis

more comprehensive, we evaluated the expression on six different renal structures: superficial

(SG) and deep (DG) glomeruli, proximal (PCT) and distal (DCT) collecting tubules, loop of

Henle (LH) and collecting tubule (CT).

To determine differences between stained and non-stained tissue, negative control sections

were imaged with the same microscope illumination and camera operating conditions, and

the average of stained level was determined: a value of 171 for a maximum of 255. This average

value was used for threshold segmentation of the stained areas of each kidney structure. The

level of immunostaining was obtained by quantifying the fraction of the tissue that stained

with DAB (stained fractional area) using digital images of DAB-labeled immunostains from

kidney sections.

Statistical analysis

Immunostaining was expressed as percentage of the tissue total area. Results were presented as

median and 25th-75th percentiles (P25-P75); n denotes the number of animals used in each

group. In the SHR control group and for each adenosine receptor subtype, the differences in

immunostaining observed between the different renal structures analyzed were compared

with Kruskal-Wallis with Dunn’s multiple comparisons test. Also, for each renal structure

studied (SG, DG, PCT, DCT, LH and CD), the Mann-Whitney test was used to compare the

immunostaining against each receptor between SHR control and SHR-STZ groups. In any

case, GraphPad Prism 7 software was used for the statistical analysis and a p value <0.05 was

considered significant.

Results

The presence/distribution profile of the adenosine receptor subtypes A1, A2A, A2B and A3 was

characterized in kidney nephron of the SHR (our control group; a well-known hypertensive

animal model[45, 46]) and compared to that observed in the SHR with STZ-induced diabetes.

Renal adenosine receptors in diabetic-hypertensive rats
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Distribution profile of adenosine receptors along the renal structures of the

SHR group

Representative images of the immunoreactivity observed against each of the four adenosine

receptor subtypes studied (A1, A2A, A2B and A3) in the renal structures of SHR control rats are

depicted in Fig 2 and Fig 3. Immunoreactivity against the four adenosine receptor subtypes

was observed in all the kidney structures studied: SG, DG, PCT, DCT, LH and CT.

In SHR control animals, the SG was the structure that showed the highest immunoreactivity

against the adenosine A1 receptor (Fig 2, left panels and Fig 4). The distribution of adenosine

A1-receptor immunoreactivity was variable along glomerular cells, with higher immunoreac-

tivity in mesangial cells and lower in podocytes. The parietal layer of the Bowman’s capsule

also showed some adenosine A1 receptor immunoreactivity. Adenosine A1 receptor immuno-

reactivity was also present in the other kidney structures (Fig 2, left panels and Fig 4). In the

DG, it was located mainly in mesangial cells; the PCT was the renal structure presenting less

adenosine A1 receptor immunoreactivity (Fig 2, left panels and Fig 4); in DCT, LH and CT,

adenosine A1 receptor immunoreactivity was distributed along the basal border of the tubular

cells, mostly located in the vasa recta (Fig 2, left panels and Fig 4).

Immunoreactivity against the adenosine A2A receptor was lower in the glomeruli than in

the renal tubular structures (PCT, DCT, LH and CT) (Fig 3, left panels and Fig 4). SG and DG

presented similar levels of adenosine A2A receptor immunoreactivity, which was found to be

distributed mainly in mesangial cells although it was also observed in both the parietal and vis-

ceral (podocytes) layers of the Bowman’s capsule (Fig 3, left panels). In tubular structures,

adenosine A2A receptor immunostaining was observed in the nuclei and membrane of tubular

cells.

Conversely, the kidney structures with higher adenosine A2B receptor immunoreactivity

were the glomeruli (SG and DG) followed by DCT and, much less, the other tubular structures

(PCT, LH and CT) (Fig 3, right panels and Fig 4). Among glomeruli, the immunoreactivity

against the adenosine A2B receptor was distributed between mesangial and podocytes, but was

almost absent in the parietal layer of the Bowman’s capsule (Fig 3, right panels). In the LH,

immunoreactivity against the adenosine A2B receptor was present in the vicinity of the basal

border of cells, in the vasa recta (Fig 3, right panels).

Adenosine A3 receptor immunoreactivity was weaker than that observed for the other

adenosine receptors in every kidney structure studied (Fig 2, right panels). Immunoreactivity

against the adenosine A3 receptor was located both in the nuclei and membrane of the cells. In

the glomeruli (both SG and DG) it was mainly found within the nuclei of mesangial cells and

in the Bowman’s capsule, where although sparse, it was primarily present in the parietal layer

(Fig 2, right panels). As for the other kidney structures, the PCT showed the lowest adenosine

A3 receptor immunoreactivity while DCT and CT were the structures presenting the highest

adenosine A3 receptor immunoreactivity (Fig 2, right panels and Fig 4).

Distribution profile of adenosine receptors along the renal structures of the

SHR-STZ group

In SHR-STZ animals, immunoreactivity against the four adenosine receptor subtypes was also

observed in all the kidney structures studied: SG, DG, PCT, LH, DCT and CT. The SG was the

structure that showed the highest immunoreactivity against the A1 receptor, the difference

being statistically different for PCT and LH (Fig 5, left panels and Fig 6). Also, the glomeruli

(both SG and DG) were the kidney structures with more marked A2B immunoreactivity (Fig 7,

right panels and Fig 6). Immunoreactivity against the adenosine A2A receptor was similar

between SG and DG but it was lower in the glomeruli than in the renal tubular structures (Fig

Renal adenosine receptors in diabetic-hypertensive rats
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6 and Fig 7, left panels). Likewise, immunoreactivity against the adenosine A3 receptor was

also similar between SG and DG and it was lower in the glomeruli than in the tubular struc-

tures, namely the LH and CT (Fig 5, right panels and Fig 6). The immunoreactivity against the

adenosine A3 receptor was also very low in the PCT compared with the other renal tubular

structures (Fig 5, right panels and Fig 6). Generally, A3 receptor immunoreactivity was weaker

than that observed for the other adenosine receptors (Fig 5, right panels and Fig 6).

STZ-induced diabetes altered the renal distribution profile of adenosine

receptors of the SHR

We found that adenosine A1 receptor immunoreactivity was numerically higher in DG and

lower in DCT from SHR-STZ (Table 1) comparatively to the correspondent structures of SHR

control animals. The adenosine A2A receptor immunoreactivity found in DG, PCT and DCT

of SHR-STZ animals was lower than that found in the correspondent structures of SHR con-

trols (Table 1). Concerning the immunoreactivities against adenosine A2B (Table 1) and A3

(Table 1) receptors, there were no differences between renal structures of SHR-STZ and SHR

control animals except for a tendency for a lower immunoreactivity against the adenosine A2B

receptor in the PCT of SHR-STZ.

Discussion

The results of the present study reveal, for the first time, a differential expression and distribu-

tion pattern of the four adenosine receptor subtypes along the nephron of the SHR. Addition-

ally and also innovative, this study uncovers a downregulation of renal adenosine A2A

receptors caused by STZ-induced diabetes in hypertensive conditions.

Expression of adenosine receptors along the nephron in the SHR control

group

Our results indicate that adenosine A1 receptors are mostly present in SG and DCT, while its

presence in DG and in the other tubular structures studied is less marked and similar between

them. This differential staining between SG and DG was only found for this adenosine recep-

tor subtype and probably reflects the adenosine A1 receptor-mediated afferent vasoconstric-

tion that is crucial for renal autoregulation of blood flow that predominates in the renal

superficial cortex[47]. In our study, with hypertensive rats, adenosine A1 receptor was more

markedly present in mesangial cells, which contract[12] and contribute to renal autoregulation

of blood flow[48]. Differently, in a study with normotensive rats, the adenosine A1 receptor

was described in mesangial cells[27] but mostly in the epithelial cells of the glomeruli[25]. The

immunolocalization and/or mRNA expression of adenosine A1 receptors in the normal kidney

has already been reported in all renal structures[22, 25, 27–29, 49]. Its presence in the PCT is

not so consensual[28, 29, 49–52]. We confirm the presence of the adenosine A1 receptor in

PCT although this was the less marked renal structure.

In our study with SHR animals, the presence of adenosine A2A receptor was more marked

in the renal tubular structures than the glomeruli. In the renal tubules, adenosine A2A recep-

tors inhibit tubular sodium reabsorption in the distal nephron[53], thus causing diuretic and

Fig 2. Immunoreactivity against the adenosine A1 and A3 receptors in the SHR control group. Representative

photomicrographs of kidney sections from 4 SHR control rats incubated with a primary antibody against the

adenosine A1 (left panels) and A3 (right panels) receptors. The six renal structures studied in separate are represented:

superficial (SG) and deep glomeruli (DG), proximal (PCT) and distal (DCT) convoluted tubule, loop of Henle (LH)

and collecting tubule (CT). Scale bars: 20 μm.

https://doi.org/10.1371/journal.pone.0217552.g002
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natriuretic effects, and increase distal Mg2+ uptake[54]. Again differently, in the normotensive

kidney, adenosine A2A receptors have been described to be mainly located in the vasculature

and the glomeruli, with lower expression reported within the tubular structures of cortex and

medulla[29], which is consistent with the vasodilatory role of the adenosine A2A receptor,

especially in the deep renal cortex and medulla[13].

Similarly to what was observed for the adenosine A1 receptor, the adenosine A2B receptor

was markedly present in glomeruli and DCT when compared with the other renal tubular

structures. Adenosine A2B receptors increase VEGF production[21, 22] and release[22] in glo-

merular mesangial cells and podocytes. Although the mRNA for the adenosine A2B receptor is

Fig 3. Immunoreactivity against the adenosine A2A and A2B receptors receptors in the SHR control group.

Representative photomicrographs of kidney sections from 4 SHR control rats incubated with a primary antibody

against the adenosine A2A (left panels) and A2B (right panels) receptors. The six renal structures studied in separate are

represented: superficial (SG) and deep glomeruli (DG), proximal (PCT) and distal (DCT) convoluted tubule, loop of

Henle (LH) and collecting tubule (CT). Scale bars: 20 μm.

https://doi.org/10.1371/journal.pone.0217552.g003

Fig 4. Quantitative immunostaining for A1, A2A, A2B, and A3 adenosine receptors in the renal structures from SHR

control rats. Quantitative analysis of the immunostaining (staining fractional area in percentage of the tissue total area;

using the SACAIA method) for the adenosine A1, A2A, A2B, and A3 receptors in the six renal structures from SHR control

rats. Superficial (SG) and deep (DG) glomeruli, proximal (PCT) and distal (DCT) convoluted tubule, loop of Henle (LH)

and collecting tubule (CT). Values are median and 25th-75th percentiles (P25-P75) from 4 rats. � p<0.05 vs corresponding

PCT; # p<0.05 vs corresponding DG; § p<0.05 vs corresponding SG and DG; & p<0.05 vs corresponding LH.

https://doi.org/10.1371/journal.pone.0217552.g004
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Fig 5. Immunoreactivity against the adenosine A1 and A3 receptors in rats simultaneously having hypertension

and diabetes. Representative photomicrographs of kidney sections from 4 SHR-STZ rats incubated with a primary

antibody against the adenosine A1 (left panels) and A3 (right panels) receptors. The six renal structures studied in

separate are represented: superficial (SG) and deep glomeruli (DG), proximal (PCT) and distal (DCT) convoluted

tubule, loop of Henle (LH) and collecting tubule (CT). Scale bars: 20 μm.

https://doi.org/10.1371/journal.pone.0217552.g005

Fig 6. Quantitative immunostaining for A1, A2A, A2B, and A3 adenosine receptors in the renal structures from SHR-STZ rats. Quantitative analysis of the

immunostaining (staining fractional area in percentage of the tissue total area; using the SACAIA method) for the adenosine A1, A2A, A2B, and A3 receptors in

the six renal structures from SHR-STZ rats. Superficial (SG) and deep (DG) glomeruli, proximal (PCT) and distal (DCT) convoluted tubule, loop of Henle

(LH) and collecting tubule (CT). Values are median and 25th-75th percentiles (P25-P75) from 4 rats. � p<0.05 vs corresponding PCT; # p<0.05 vs
corresponding DG; § p<0.05 vs corresponding SG and DG; & p<0.05 vs corresponding LH.

https://doi.org/10.1371/journal.pone.0217552.g006
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mostly found in the DCT[29], we also found adenosine A2B receptors in CT, where they stimu-

late chloride secretion[55]. PCT and LH were the structures with the lowest immunoreactivity

against the adenosine A2B receptor and their putative function has not been studied yet.

Immunoreactivity against the adenosine A3 receptor was the weakest of all adenosine recep-

tors studied. Still, structures of the distal nephron were more markedly stained. Accordingly,

mRNA for the adenosine A3 receptor has already been found in the whole kidney of normo-

tensive Wistar rats although with a low expression[29], but so far, no distinct intrarenal locali-

zation has been reported. Also, very little is known about this receptor and its functions along

Fig 7. Immunoreactivity against the adenosine A2A and A2B receptors in rats simultaneously having hypertension

and diabetes. Representative photomicrographs of kidney sections from 4 SHR-STZ rats incubated with a primary

antibody against the adenosine A2A (left panels) and A2B (right panels) receptors. The six renal structures studied in

separate are represented: superficial (SG) and deep glomeruli (DG), proximal (PCT) and distal (DCT) convoluted

tubule, loop of Henle (LH) and collecting tubule (CT). Scale bars: 20 μm.

https://doi.org/10.1371/journal.pone.0217552.g007

Table 1. Immunostaining (% of the tissue total area) for A1, A2A, A2B, and A3 adenosine receptors in the renal

structures from SHR control and SHR-STZ groups.

SHR control SHR-STZ p

Adenosine A1 receptor

SG 73.92 (45.52–79.07) 73.73 (59.53–80.82) 0.772

DG 36.05 (21.57–52.23) 54.31 (27.32–68.69) 0.081

PCT 28.95 (10.39–59.51) 28.05 (8.82–54.82) 0.772

DCT 63.23 (44.93–70.23) 48.04 (23.43–63.49) 0.079

LH 48.23 (40.44–55.78) 47.24 (39.53–58.24) 0.982

CT 52.81 (45.86–56.19) 49.71 (42.95–61.29) 0.959

Adenosine A2A receptor

SG 32.15 (26.46–37.37) 24.03 (13.09–36.5) 0.115

DG 33.32 (22.75–40.90) 21.26 (15.82–31.88) 0.032

PCT 75.98 (63.23–82.24) 50.06 (31.65–68.38) 0.001

DCT 72.26 (63.05–76.99) 63.22 (55.90–72.37) 0.049

LH 70.21 (66.60–74.07) 62.64 (53.59–76.94) 0.200

CT 64.73 (51.12–70.26) 63.39 (60.15–72.25) 0.392

Adenosine A2B receptor

SG 74.06 (70.70–79.73) 74.94 (61.10–80.16) 0.984

DG 68.32 (61.39–75.78) 69.02 (60.16–74.04) 0.855

PCT 30.84 (17.53–52.23) 8.06 (1.82–42.92) 0.078

DCT 60.22 (49.48–73.84) 52.38 (21.83–69.54) 0.102

LH 44.27 (36.32–48.34) 39.81 (33.22–50.03) 0.525

CT 53.60 (42.96–57.01) 45.74 (34.95–57.54) 0.262

Adenosine A3 receptor

SG 11.89 (6.75–31.51) 12.18 (5.88–31.87) 0.886

DG 10.32 (4.02–20.26) 10.73 (5.48–28.27) 0.568

PCT 4.14 (0.54–27.16) 6.32 (1.91–15.77) 0.539

DCT 39.32 (13.38–71.46) 26.26 (15.99–61.62) 0.822

LH 53.78 (26.42–82.10) 43.55 (33.41–63.19) 0.140

CT 52.67 (16.27–78.15) 62.05 (34.18–76.89) 0.328

Values are median (P25-P75) from 4 rats. SG = superficial glomeruli; DG = deep glomeruli; PCT = proximal

convoluted tubule; DCT = distal convoluted tubule; LH = loop of Henle; CT = collecting tubule.

https://doi.org/10.1371/journal.pone.0217552.t001

Renal adenosine receptors in diabetic-hypertensive rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0217552 May 31, 2019 14 / 20

https://doi.org/10.1371/journal.pone.0217552.g007
https://doi.org/10.1371/journal.pone.0217552.t001
https://doi.org/10.1371/journal.pone.0217552


the nephron. Even though it has been suggested that, in basal physiological conditions, adeno-

sine A3 receptors do not play a role in the regulation of renal fluid and transport[56], in distal

nephron A6 cells, activation of adenosine A3 receptors promotes Cl- secretion trough an

increase in the influx of Ca2+[57]. Also, adenosine A3 receptors have been associated with

mesangial cell apoptosis[24] and with direct[58] or transforming growth factor beta (TGB-β)-

induced[59] expression of fibrosis markers in proximal tubule cells.

STZ-induced diabetes altered the renal expression of adenosine receptors

of the SHR

In our study, SHR with STZ-induced diabetes had a markedly higher expression of the adeno-

sine A1 receptor in the DG when compared to the control SHR group. Although this effect

(50% increase) did not reach statistical significance, it is in the opposite direction as that

reported in normotensive Sprague-Dawley rats, where STZ-induced diabetes decreased adeno-

sine A1 receptor immunostaining[21]. Although only speculative for now, since the adenosine

A1 receptor is associated with glomerular constriction[60], this tendency to increase could rep-

resent an attempt to restraint intraglomerular pressure (and GFR). We have previously

reported that these SHR-STZ rats show decreased SBP when compared with their SHR con-

trols[61] but, even though this was associated with a decrease in renal cortical oxidative dys-

function, early diabetic renal damage was still evident, as indicated by increased GFR and

proteinuria[61]. Overall, this suggests that, at least regarding adenosine regulation in the con-

text of diabetes and hypertension, alterations in glomerular adenosine A1 receptors are trig-

gered but are not enough to normalize renal hemodynamics. Interestingly, the increase in

glomerular adenosine A1 receptor immunoreactivity would also decrease the blood output

through the postglomerular afferent arterioles, compromising the already low blood supply to

the renal medulla, thus aggravating the renal damage, which was confirmed by the clear pres-

ence of medullary oxidative stress[61].

Moreover, STZ-induced diabetes in SHR animals was associated with downregulation of

the adenosine A2A receptors in DG and PCT when compared to the SHR control group. Given

the known vasodilator effects of adenosine A2A receptor in the kidney[13, 61], the decreased

glomerular expression in the DG of SHR-STZ animals (comparing to that of SHR controls)

might favor a rise in intraglomerular pressure, thus contributing to the increased GFR that is

observed in early SHR-STZ diabetic rats[61]. Adenosine can stimulate the Na+/K+-ATPase in

PCT[60] through activation of adenosine A2A receptors[62]. So, the downregulation of adeno-

sine A2A receptors observed in the PCT of SHR-STZ animals when compared with the SHR

group might decrease adenosine A2A receptor-mediated sodium reabsorption, promoting

diuresis and natriuresis, which we have previously reported in these SHR-STZ animals[61].

The SHR-STZ group also showed lower expression of adenosine A2A receptors in DCT

when compared with the SHR control group. In the distal nephron, adenosine regulates Mg2+

homeostasis through decreased reabsorption via an adenosine A1-receptor mediated mecha-

nism and increased reabsorption through activation of adenosine A2A receptors[54]. We did

not measure Mg2+ levels but published data and the results of this study are consistent with a

role of adenosine as an important regulator of magnesium homeostasis, which is relevant from

a translational perspective. Indeed, hypomagnesemia has been implicated in the progression of

diabetic and hypertensive chronic kidney disease[63].

Most studies on the impact of diabetes on the expression and function of renal adenosine

receptors have focused on the adenosine A2B receptor and showed overexpression[21, 26].

Unexpectedly, our study showed similar expression of adenosine A2B receptors between

SHR-STZ rats and control SHR rats suggesting that in hypertensive animals this adenosine
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receptor subtype is not implicated in early STZ-diabetic nephropathy. To our knowledge, the

immunolocalization of the adenosine A2B receptor in the PCT has never been previously

reported and its effects on this renal structure have not been studied yet. However, based in

our observations, adenosine A2B receptors might influence renal function in diabetes-associ-

ated with hypertension since its expression was almost abolished in SHR-STZ rats, although

the difference was not statistically different from control SHR rats. The adenosine adenosine

A2B receptor has been reported to be relevant in the early stages of diabetic nephropathy for

restraining mesangial cell growth[64]. However, it has also been implicated in later detrimental

effects, namely renal fibrosis and glomerulosclerosis, through IL-6 formation[65] and the

release of VEGF[21, 22] and TGF-β1[26].

In our experimental conditions, there was no difference in the expression of adenosine A3

receptors between SHR-STZ rats and control SHR rats, which suggests that adenosine A3

receptor-mediated mechanisms are non-operating in the early hyperfiltration conditions of

diabetes associated with hypertension.

In conclusion, the four adenosine receptor subtypes (A1, A2A, A2B and A3) are expressed in

the kidney of SHR rats, although the distribution pattern is specific for each receptor subtype.

Furthermore, STZ-induced diabetes in SHR rats affects their distribution mostly by downregu-

lating the expression of A2A receptors, which might be relevant for the development of early

diabetes-associated hyperfiltration. Future studies will address whether endogenous or exoge-

nous adenosine levels are relevant for the expression of renal adenosine receptors in the con-

text of diabetes associated with hypertension.
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