
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12833  | https://doi.org/10.1038/s41598-022-15762-x

www.nature.com/scientificreports

NBBt‑test: a versatile method 
for differential analysis of multiple 
types of RNA‑seq data
Yuan‑De Tan1 & Chittibabu Guda1,2*

Rapid development of transcriptome sequencing technologies has resulted in a data revolution 
and emergence of new approaches to study transcriptomic regulation such as alternative splicing, 
alternative polyadenylation, CRISPR knockout screening in addition to the regular gene expression. 
A full characterization of the transcriptional landscape of different groups of cells or tissues holds 
enormous potential for both basic science as well as clinical applications. Although many methods 
have been developed in the realm of differential gene expression analysis, they all geared towards 
a particular type of sequencing data and failed to perform well when applied in different types of 
transcriptomic data. To fill this gap, we offer a negative beta binomial t‑test (NBBt‑test). NBBt‑test 
provides multiple functions to perform differential analyses of alternative splicing, polyadenylation, 
CRISPR knockout screening, and gene expression datasets. Both real and large‑scale simulation 
data show superior performance of NBBt‑test with higher efficiency, and lower type I error rate 
and FDR to identify differential isoforms and differentially expressed genes and differential CRISPR 
knockout screening genes with different sample sizes when compared against the current very popular 
statistical methods. An R‑package implementing NBBt‑test is available for downloading from CRAN 
(https:// CRAN.R‑ proje ct. org/ packa ge= NBBtt est).

It has been shown that alternative cleavage and polyadenylation (ACP) is a necessary step in the posttranscrip-
tional processing and a versatile mechanism for posttranscriptional regulation of eukaryotic gene  expression1–3. 
After transcription, a pre-mRNA is processed by capping at 5′ end, splicing, and cleaving in the 3′-untranslated 
region (3′UTR), which yields a new end for adding a polyadenylation (poly(A))  tail3,4. A poly(A) signal that is 
also referred to as poly(A) site is recognized and activated by a group of protein factors called polyadenylation 
 factors3–6. Alternative poly(A) sites significantly increase the complexity of transcriptomes and proteomes. All 
poly(A) sites are in the terminal exon of a transcription unit giving rise to a tandem untranslated region (tandem 
UTR), which are exploited by the directed 3′ end sequencing methodologies. For a given transcription unit, 
transcript variants derived from the first poly(A) site (called poly(A) site 1) are assumed to have a transcript 
from the transcriptional start site (TSS) to poly(A) site 1. Similarly, transcript variants derived from poly(A) 
sites 2, 3, … are assumed to be derived from the TSS to poly(A) sites 2, 3, …, respectively. Therefore, within the 
same transcription unit, the transcript variants or isoforms have one-to-one correspondence to the location of 
poly(A) sites on the transcript.

Alternative splicing (AS) of RNA is an evolutionary mechanism in eukaryotes to produce multiple protein 
isoforms from a single  gene7 to enhance the functional diversity of genes in a tissue-dependent and development-
dependent  manner8. Currently, AS events are observed in human, D. melanogaster, and C. elegans,  respectively9. 
Misregulation of alternative splicing is associated with several diseases including cancers, where abnormal expres-
sions or mutations in splicing factors are known to contribute to  tumorigenesis10. AS possibly occurs in two 
non-neighboring exons (cassette) resulting in skipping exon, 3′UTR or 5′UTR splice sites, or in multiple exons, 
leading to multiple skipped exons or multiple-exon  exclusion11. Intronic retention can result from mutations in 
splice sites or regulatory sequences.

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) sys-
tem has become a powerful tool for genome editing with many applications in the identification of cancer 
driver genes, drug-resistant genes, and others involved in metabolism in the mammalian  cells12–16. This system 
is constructed with a single-guide RNA (sgRNA) of a short nucleotide sequence complementary to a targeted 
DNA sequence region of a selected gene and Cas9 nucleases inducing double-strand break (DSB) in this region. 
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When a DSB is repaired by Cas9 in a non-homologous end-joining (NHEJ) way, a repairing error occurs with a 
high probability due to an insertion/deletion mutation that is likely to cause a codon frameshift, which leads to 
a premature stop  codon17. As a result, a targeted locus would be efficiently knocked out. A recently developed 
lentiviral delivery method has made it possible to create large-scale genome-wide CRISPR/Cas9 knockout librar-
ies targeting ~  104  genes18. These libraries allow both negative and positive selection screens to be conducted in 
mammalian cell lines in a cost-effective  manner16,18–21. All genome-wide CRISPR screens use cell growth as a 
phenotypic measure. Either a screen is referred to as positive selection screen in which gene knockout results in 
a selective advantage for cells such as drug or toxin resistance or a screen is a negative selection screen in which 
a gene knockout results in a selective disadvantage in that cell such as decreased proliferation in cancer cells.

In CRISPR/Cas9 knockout screens, genes targeted by set of multiple sgRNAs constitute a mutant pool. Cells 
that carry sgRNA targeting genes resisting to strong selection pressure would be enriched and the signals (RNA) 
becomes strong so that they are easily detected, while signals from negative selection are weak because of deple-
tion during screen. So, a lot of genes including those promoting cell growths and housekeeping genes are nega-
tively selected in screen. Detection of the genes targeted by sgRNAs and targeting sites could be resolved by 
high-throughput sequencing using libraries.

Therefore, ACP events, AS events and sgRNAs are all detectable by sequencing the transcriptome using 
RNA-seq where the short sequencing reads derived from different structural elements of genes can be mapped 
to corresponding regions and annotated using a given reference genome. There are many methods for differ-
ential expression analysis of RNA-seq data at the gene level, most of which use similar information across gene 
expression profiles to estimate  dispersion22–24. For example, popular methods such as  edgeR23–25 and  DESeq222 
model estimate of dispersion for each gene by using a common estimate across all genes with similar expression 
strength as a weighted conditional likelihood. The first version of  DESeq26 determines dispersion estimates by 
modeling the dependence of the dispersion on the average expression value over all samples.  BBSeq27 models 
the dispersion on the mean with absolute deviation of dispersion estimates by excluding the influence of outliers. 
 DSS28 is a Bayesian approach to estimate the expression dispersion of genes that accounts for the heterogene-
ity of dispersion values for different genes. As an improvement to DESeq, DESeq2 uses shrinkage estimation 
for dispersions and fold changes to improve the stability and interpretability of  estimates22. On the other hand, 
 ShrinkBayes29 and  baySeq30 estimate priors using a Bayesian model over all genes, and then provide posterior 
probabilities for differential expression. While these methods are suitable for determining gene-level expres-
sion profiles, they have severe limitations when used for differential splicing, differential polyadenylation, and 
differential sgRNA target analysis because RNA-seq count data for ACP, AS and CRISPR screens do not provide 
gene-level dispersion and their dispersion estimates are not accurate at sub-gene level. For this reason, a variety 
of methods exclusively for detecting differential splicing events have been developed. These methods fall under 
count-based methods and isoform resolution methods. Count-based methods include  DEXSeq31,  DSGseq32, 
 SplicingCompass33,  rMATS34,35, rDiff-parametric, and  SeqGSEA36, while  Cufflink37and  DiffSplice38 are examples 
of isoform resolution methods. For identifying differential CRISPR knockout screen, model-based analysis of 
gene-wide CRISPR/Cas9 knockout (MAGeCK)18 has recently been developed. MAGeCK performs at either 
sgRNA target level or gene level. The other algorithms such as RNAi gene enrichment ranking (RIGER)39, 
redundant siRNA activity (RSA)40, and permutation-based non-parametric analysis (PBNP)17 can be used to 
identify differential hits at gene level.

In summary, the current methods use a common dispersion estimator from the gene expression profile to 
model the dispersion estimate of each gene in RNA-seq data, which is not an ideal strategy because the range 
of gene expression is large across the genome and the gene expression profiles widely vary among different type 
of transcriptome measurement experiments. Hence the use of a common dispersion estimator strongly impacts 
the estimates of individual dispersions of genes, which affects the stability and interpretability of estimates. In 
addition, most of the current methods do not really consider the effects of small samples on differential analysis 
and we found from our heatmap analysis that many differentially expressed genes or isoforms detected by these 
statistical methods have larger null variation than biological variation. To address these issues, we here develop a 
novel statistical framework to do differential analysis of multiple types of RNA-seq experimental data. This new 
method named as negative beta binomial t-test (NBBt-test) expands the prior approaches of Beggerly et al.41 and 
Tan et al42. NBBt-test is a versatile method for identifying differential splicing events, differential adenylation 
events, differential CRISPR knockout screens and differentially expressed genes. This methodology incorporates 
t-test, fold-change and F-test so that it works well for both small and large sample sized datasets. We compared 
NBBt-test with the existing statistical methods using both experimental and large-scale simulated RNA-seq and 
CRISPR FACS datasets and found that our methodology is very robust with very low type I error rate or FDR, 
high power, high efficiency. An R-package implementing NBBt-test is available for downloading from CRAN 
(https:// CRAN.R- proje ct. org/ packa ge= NBBtt est).

Results
Inflation‑shrinkage variable. To address variance inflation and shrinkage issues raised in small-sample 
experiments, we here offer inflation-shrinkage variable (ρ) to express statistical effects of small samples. ρgi is 
defined as geometric mean of ϕgi and ζgi42:

To avoid infinity due to zero count, we modify ϕgi as

(1)ρgi =
√

ζgiϕgi .

https://CRAN.R-project.org/package=NBBttest
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 XgAi = xgAi1, ..., xgAinA and XgBi = xgBi1, ..., xgBinB . We also modify ζgi as

ϕgi is used to measure overlap between datasets A and B for sgRNA i targeting gene g or isoform i resulted from 
differentially splicing or adenylating within gene g and ζgi is used to measure homogeneity or dispersion of data 
within conditions where Xgi =

1
2
X
gAi

 , XgAi =
1
mA

SgAij and SgAi =
∑mA

j=1 xgAij where xgAij is the count of sgRNA 
i within gene g in sample j in condition A, SgAi is the sum of count of sgRNA i in condition A, XgAi and XgBi are, 
respectively, means of sgRNA i within gene g in conditions A and B. For the count data of RNA reads, xgAij ≥ 0 
and xgBij ≥ 0 . If XgAi = XgBi = 0 , then Xgi = 0 and ζgi = 0 . Both ϕgi and ζgi are defined in [ 0,∞ ]. For a given 
two-condition experiment, Eq. (2) indicates that if XgAi = {xgAi1, . . . , xgAinA} and XgBi = {xgBi1, . . . , xgBinB } do 
not overlap, then ϕgi > 1 , otherwise, ϕgi < 1 . ζgi < 1 defines large within-condition variation or noise while 
ζgi > 1 implicates that the noises are small, and observations are relatively consistent across replicates within 
conditions. ϕgi and ζgi are independent variables because ϕgi depends on maximum and minimum values of two 
datasets, while ζgi is determined by means and variances of these two datasets, maximum and minimum values 
are independent of means and variances. Hence, a measure for both data gap between two conditions and small 
null variation can be measured by ρ2

gi = ϕgiζgi , that is, if ϕgi > 1 and ζgi > 1 , then ρ2
gi > 1 . For example, XA = 

{4764, 4602, 4538} and XB = {7877, 7524, 7871} have gap and good homogeneity (small dispersion within condi-
tions). Our calculation shows ϕ = 1.579 > 1 and ζ = 1.691 , and ρ = 1.633 , indicating that data are relatively con-
sistent across all replicates within conditions, which is well agreeable with the observations. Another example is 
XA = {1390, 1482, 1561} and XB = {1540, 1270, 1217}. One can see that these two datasets overlap but also have 
poor homogeneity (large noises). Our calculation shows ϕ = 0.902 < 1 , ζ = 0.194 << 1 and hence 
ρ = 0.418 < 1 , which is again agreeable with the observations. Equation (2) shows that ϕgi is similar to fold 
change and from Eq. (3), ζgi is similar to F-statistic.

Model and estimation of parameters. Different from  DESeq222, NBBt-test begins with a count sub-
matrix with ng isoforms of gene g for rows and mk replicates in condition k for columns. The matrix entries 
indicate the number of sequencing reads that have been unambiguously mapped to a gene. For the sake of con-
venience, we begin with CRISPR read count data. Suppose we select G genes of interest. Gene g (g = 1, …, G) has 
ng sgRNAs to hit a DNA sequence in a screen experiment. Let xgij be a normalized or adjusted count (e.g., RPKM 
(Reads Per Kilobase Million) or FPKM (Fragments Per Kilobase Million) or TPM (Transcripts Per Kilobase Mil-
lion)) of RNA reads within gene g targeted by sgRNA i (i = 1, …, ng ) in experiment (biological replicate experi-
ment) j (j = 1, …, mk ) in condition k. For differential analysis, we here just consider two conditions such as 
treatment and control groups, so k = 1, 2. For the convenience, our NBBt-test is restricted to sgRNAs targeting a 
gene, in other words, count data of multiple RNA reads within a gene are used as a sub-matrix with rows for RNA 
within gene g targeted by a sgRNA and columns for samples or replicates. NBBt-test first works with a sub-
matrix and iterates G sub-matrices. Similar to  DESeq222, NBBt-test also assumes that the count of RNA reads 
follows a negative binomial distribution with a specific number r of failures to RNA sequencing reads in a RNA 
species and probability p of this RNA species (also called RNA isoform) to be sequenced. For the count data of 
CRIPSR knockout screen, p is estimated by proportion of sequencing RNA sequences from gene g targeted by a 
sgRNA. Different from DESeq2, we are interested in p instead of r. We here use pgij = xgij/Xg to initially estimate 
the proportion where Xg is the largest total count over all ng sgRNAs among m replicate experiments. Using Xg 
instead of Xgj to calculate pgij is because a set of sgRNAs are already designed before the experiment and hence 
difference among replicate experiments results from technical noise instead of biological system error. Using Xgj 
to calculate pgij would increase proportion of technical noise due to the fact that Xgj contains noise among m 
replicates. Our simulation also shows that pgij =

xgij
Xg

 is better than  pgij =
xgij
Xgj

 (results not shown). In the negative 
binomial distribution,pgij follows a beta  distribution43: p ∼ Beta (α,β) . Mean and variance of the proportion for 
a sgRNA targeting a gene are given by parameters α and β41. To consider the case that RNA experimental sample 
sizes are limited, we use weights to optimally estimate parameters across  replicates41,42 (see Supplementary Sta-
tistical methods for detail). Due to 

∑m
j=1 wgj = 1 , sum of weighted means over all replicates in a condition is 

expectation of the mean. With the weights, the proportion of sgRNA i targeting gene g in a condition is estimated 
by p̂gi =

∑m
j=1 wgjp̂gij and the variance is also unbiasedly estimated using  weights41,42 (see Supplementary Statis-

tical methods for detail). For poly(A) RNA-seq or splicing/exon RNA-seq, since RNA in an experiment is 
abstracted from a library, different libraries would have different total RNA amounts, that is, RNA amount is 
fixed by library size. To remove difference due to library sizes, pgij is defined as  pgij =

xgij
Xgj

 where Xgj =
∑ng

i=1
xgij .

Since we have weights for parameters ( α,β , p, and V), we use an iteration algorithm to optimally estimate 
these parameters driven by estimating weights. However, this iteration algorithm is not sensitive to count size, 
in all RNA-seq data many RNA isoforms or sgRNAs have small read counts. Small counts would result in 
high similarity of proportions among few replicates, which leads variances to be much smaller than differences 
between means so that the t-statistics are inflated. To avoid occurrence of this phenomenon, we propose another 
alternative estimate of p variance:

(2)ϕgi = max

[

min
(

XgAi

)

+ 1

max
(

XgBi

)

+ 1
,
min

(

XgBi

)

+ 1

max
(

XgAi

)

+ 1

]

(3)ζgi = ln

(

Xgiσ
2
gi + 1

XAgiσ
2
Agi + XBgiσ

2
Bgi + 1

)
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where Xgi =
∑m

j=1 xgij and Xg =
∑ng

i=1 Xgi . The variance for proportion (p) of sgRNA i targeting gene g or RNA 
isoform i within gene g would be given by choosing a bigger one from these two variances estimated by iteration 
algorithm (see Supplementary Statistical methods for detail) and by Eq. (4). Equation (4) shows that the lower 
bound of V̂gi is 1

X2
g

(

1− 1
Xg

)

 > 0 when Xgi = 0.

T‑test for differential expression of RNA isoforms or sgRNAs. With p̂Agi , p̂Bgi , V̂Agi , V̂Bgi , and ρ 
given in conditions A and B, a new t-statistic is defined as tαgi =

ρg
ωα

tgi for differential screens of the ith sgRNA 
targeting gene g or tαgi =

ρgi
ωα

tgi for differential expression of the ith RNA isoform of gene g where tgi is t-statistic of 
Baggerly et al. (see Supplementary Statistical methods for details), ρg is gene-wise inflation-shrinkage variable at 
gene level and ρgi is isoform-wise inflation-shrinkage variable at RNA isoform level. ωα is a null ρ given by simu-
lation under significance level of α (see Supplementary statistical methods for details). Different from variance 
and fold change shrinkages of DESeq2, ρ/ωα has inflation or shrinkage function. ωα is due to false positive find-
ings under significance level of α by multiple null simulations and hence is used as a threshold for an observed 
ρ . This means that tαgi would be inflated ( tαgi > tgi ) when ρ > ωα , tαgi would be shrunken ( tαgi < tgi ) when ρ < ωα 
and tαgi = tgi when ρ = ωα . In practice, when two datasets have a gap and are consistent across replicates, we 
have ρ > ωα , however, if an isoform or a sgRNA has outlier and overlapped datasets or big noises, then ρ < ωα . 
Only in the small-sample experiments, the first case suggests that in probability these two datasets more possibly 
come from different distributions than from a distribution while in the second case, the two datasets are more 
likely sampled from a distribution. Hence, in most cases, true differences between conditions would be inflated 
so that true positives would be found and the differences between two conditions due to noises would be strongly 
shrunken to be very small so that false positive findings would be excluded.

Although CRISPR sgRNAs and RNA isoforms occur at sub-gene level, a set of CRISPR sgRNAs targeting a 
set of DNA sequences of a gene was already designed before experiment, the variation of RNA reads of sgRNAs 
is fixed or due to a fixed effect, while the variation of isoform RNA reads is uncertain, depends on gene structure 
such as alternative poly(A) sites, alternative splicing sites in UTR, exons, introns, in other words, due to the ran-
dom effect. This factor has not been considered in the current methods. To use the information on this factor, we 
introduce gene-wise ρg to adjust the difference in sgRNA counts targeting a gene between conditions A and B. 
RNA isoforms are derived from alternative splicing sites or alternative polyadenylation sites, hence, amounts of 
RNA isoforms are uncertain at sub-gene and gene levels, or depend on response of the gene to conditional effect, 
that is to say, variation of an RNA isoform is not fixed at either splicing sites or poly(A) sites and at gene level but 
due to random effect. For this reason, we introduce isoform-wise ρgi to adjust difference between two conditions.

T‑test for differential expression of genes. To test for differential expression of genes or dif-
ferential screen of genes targeted by a set of sgRNAs is the main purpose of NBBt-test. For doing so, 
we use sum of the read counts over all the designed sgRNAs targeting the DNA sequence of a gene as the 
read count of this gene. For CRISPR and RNA isoform data, we use the proportion ( pgj ) of read count of 
gene g in replicate experiment j to the total read count across all genes in a condition as initial estimate of 
parameter p of a negative binomial distribution: pgj = Xgj/Xj where Xgj =

∑ng
i=1 xgij and Xj =

∑G
g=1 Xgj

( j = 1, 2, . . . ,m, g = 1, 2, . . . ,G ). After normalizing the data, the total count over all genes is the same for all 
replicates, that is, X11 = · · · = X1m1

= X21 = · · · = X2m2
= X . For normalized RNA-seq data without RNA 

isoforms, Xgj is count of RNA reads for gene g in replicate j. We still assume that pgj follows beta distribution 
with alpha ( α ) and beta ( β) . Therefore, we use the iteration algorithm with weights (see Supplementary statistical 
methods) to estimate pg and Vg in a condition. With the estimated parameters, a new t-statistic for differential 
expression or screen of gene g is defined as tαg =

ρg
ωα

tg where tg is t-statistic of Baggerly et al. (see Supplementary 
statistical methods for detail),ρg is gene-wise inflation-shrinkage variable and ωα is a threshold for ρg . Therefore, 
at gene level, tαg  is inflated with ρg > ωα or shrunken with ρg < ωα.

Estimation of omega ( ωα). In new t-test definitions and in Eqs. (S27) and (S38) in Supplementary Sta-
tistical Methods, ωα is a null ρ-value detected at significance level of α , used as a threshold of ρgi . The ωα can be 
estimated by using null data by following the steps:

Step 1: Perform simulation using negative binomial distributions with parameters given by inputting dataset to 
produce a null count dataset consisting of the same sgRNAs or RNA isoforms and the same number of replicates 
in each condition with the original real dataset.

Step 2: Given significance level of α , perform beta t-test of Beggerly et al.41 on the simulated null dataset by 
setting ρ = 1 and ωα=1, and calculate new ρ values using Eqs. (1–3).

Step 3: Sort all p-values from largest to smallest ( p1 >, · · · ,> pi′ >, · · · ,> pS ) where i′ is in the order 
sequence of S p-values ( S =

∑G
g ng , g = 1, …, G), select sgRNAs with pi′≥j < α , and calculate ρ values ( ρj , . . . , ρS′ ) 

of these sgRNAs selected using the simulated null data. K = S–j sgRNAs are assumed to have p-values < α.
Step 4: Sort the K ρ values from smallest to largest ( ρ1 < ρ2, · · · ,< ρk′ <, · · · , ρK−1 < ρK ) and choose a 

ρ value at k
′

K ≥ 0.85 : ρ(α) = ρk′ where k′ is in the order sequence of K ρ values. k
′

K ≥ 0.85 suggests that at least 
85% false positives selected at significance level of α would be controlled. However, if K < 7, only K′=K has  
K′/K ≥ 0.85. In this case, we choose mean over K ρ values:ρ(α) = 1

K (
∑K

k=1ρk) . Another case that no null RNA 
species has p value < α also possibly occurs. In this case, we choose the largest ρ value among all K RNA species: 
ρ(α) = maxKk=1(ρk).

(4)Vgi =
1

X g

[

1+ Xgi

Xg

(

1−
1+ Xgi

Xg

)]
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Step 5: repeat from  step 1 to step 4 for s times and average ρ  values over s simulated null datasets: 
ωα =

1

s

∑s
r=1

ρr(α).

To verify the estimate of ωα, we simulated null expression data of 10,000 genes in two conditions in three cases: 
each condition has 3, 6 and 15 replicates and calculated ρ and applied the above estimation method to estimate 
ωα . The result is shown in Fig. 1d. Our simulation result shows that in the case of 3 replicates, ωα is 0.35 larger 
than ρ , in the case of 6 replicates, ωα is 0.15 larger than ρ , while when the sample size = 15, ωα is only 0.05 larger 
than ρ . This result is expected because the smaller the sample size, the larger the probability of gap occuring 
between two samples and the larger the ωα . When sample size is larger than or equal to 15, probability of gap 
occurring between two samples is zero when effect size is less than or equal to 30 (Fig. 1c).

The number of iterations of the simulation depends on the number of RNA species and α . This is akin to 
controlling false discovery rate because number of p-values < α is determined by gene number and α . For exam-
ple, 100 genes would have 5 false positives with 5 ρ values expected by α = 0.05, 1000 genes would have 50 false 
positives with 50 ρ values expected by α = 0.05 and 10,000 genes would produce 500 false positives with 500 ρ 
values expected by α = 0.05. In this sense, we expect that we will exclude 85% of 500 false positives detected at 
level of α in 10,000 genes so ωα would greatly control the false discovery rate.

Statistical effects of small samples. In small-sample experiments, data tend to have either smaller or 
larger null variances along with means (Fig. 1a). For example, in a dataset of 10,000 experiments with two con-
ditions randomly sampled from a negative binomial distribution NB(100, 50), 70% of the experiments with 4 
replicates (n = 4) per sample had smaller variances than those with 15 replicates (n = 15) per sample and 30% of 
experiments with 4 replicates per sample had much larger variances than those in two samples with 15 replicates 
per sample (Fig. 1b). If mean-distances between two samples are the same or approximate in these two cases, 
then 70% of t-statistics would be inflated due to small standard errors and 30% would be significantly shrunken 
by larger standard errors. The t-statistic inflation phenomenon has been noticed by Baldi and  Long44, Tusher 
et al45, Cui and  Churchill46 in high-throughput data. Another statistical effect of small samples is that there is a 
big chance in high-throughput experiments that a data gap event occurs between experimental conditions. For 

Figure 1.  Effects of small samples. Experimental data of 10,000 genes were respectively simulated with equal 
sample size = 4 and 15 from a negative binomal distribution NB (100, 50). (a) Variance distributions along mean 
where many variances of samples with equal sample size = 4 under green line are smaller than those with equal 
sample size = 15 and some variances of samples with 4 replicates per group above blue line are larger than those 
with equal sample size = 15 replicates per group. (b) Sorted variances distributions along experiments. (c) Four 
sets of two-sample data of 10,000 genes were randomly sampled with equal sample sizes of 4 and 15, effect size 
E = 10, 30, and 65 from normal distribution NB (100, 50) or NB(100+E, 50) with equal probability. (d) impact of 
sample size on ρ and estimate of ω.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12833  | https://doi.org/10.1038/s41598-022-15762-x

www.nature.com/scientificreports/

example, random sampling with equal sample size n = 4 and effect size E = 65 from NB(100,50) or NB(100+E, 
50) with equal probability for each of 10,000 experiments showed that 82.57% of experiments have a data gap 
between two conditions (Fig. 1c), while drawn with equal sample size n = 15, the gap probability was signifi-
cantly reduced to 27.02% (Fig. 1c). The probability decreases with decrement of effect size E. For instance, with 
effect size E = 30, the experiments with 4 and 15 replicates per group had gap probabilities of 30.63% and 0.23%, 
respectively (Fig. 1c). When effect size E = 10, the experiments with 4 and 15 replicates per sample had gap prob-
abilities of 5.83% and 0%, respectively.

Comparative benchmarks. We used both simulated and real RNA-seq datasets to test the performance of 
NBBt-test for differential analysis in comparison to the current popular methods such as  edgeR23,24,  DESeq222, 
 DEXSeq31, and  MAGeCK18. Love et al22 compared DESeq2 to  DSS28, EBSeq,  voom47 and the SAMseq method of 
the samr  package48. We therefore did not select DSS, EBSeq, voom and SMseq to compare NBBt-test. For all the 
selected methods, p-values from genes or isoforms or sgRNAs with non-zero read counts across samples were 
adjusted using the Benjamini–Hochberg procedure 49.

Differential polyadenylation RNA isoforms. We used the count data of polyadenylated (Poly(A)) 
RNA  reads3,4 from Jurkat T-cells of mouse non-stimulated (NS) and stimulated (48 h) with plate-bound anti-
bodies to perform DESeq2, edgeR, and NBBt-test and used a Venn diagram to compare the findings of these 
methods(Fig. 2a). The differentially expressed poly(A) isoforms detected by NBBt-test show highly consistent 

Figure 2.  Venn-diagram and heatmaps of differential expressions of mRNA isoforms targeted poly(A) RNAs 
identified by different statistical methods. Venn-diagram: Venn-diagram (a) of poly(A) isoforms differentially 
expressed (DE) between control (no stimulation, NS) and treatment (stimulation 48 h) found by statistical 
methods edgeR, DESeq2, and NBBt-test. Heatmaps: Heatmaps (b–h) of poly(A) isoforms in each Venn-diagram 
cell were made by using antilog2 to inverse target expression value (x) to the original expression value (y): 
y =  2× and normalizing isoform-wise expression value (y) across all replicates: nij = yij

max(y)
max(yi.)

 where max(y) is 
maximum among all isoforms and all replicates of two groups and max(yi.) is maximum among all replicates 
of two groups in isoform i. Value n has the same order of magnitude in all isoforms in a given Venn-diagram 
cell. (b) Heatmap of 425 DE isoforms identified by NBBt-test only. (c) Heatmap of 170 DE isoforms identified 
by DESeq2 only. (d) Heatmap of 252 DE isoforms identified by edgeR only. (e) Heatmap of 90 DE isoforms 
identified by NBBt-test and DESeq2 only. (f) Heatmap of 352 DE isoforms identified by edgeR and DESeq2 
only. (g) Heatmap of 128 DE isoforms identified by NBBt-test and edgeR only. (h) Heatmap of 436 DE isoforms 
identified by all three methods.
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expression across all replicates within each condition and distinct differences between the conditions (Fig. 2b,e,g 
and h), that is, Figs. 2b,e,g and h in heatmaps clearly show that differences in expression of all isoforms detected 
by NBBt-test between conditions 48 h stimulation and NS are definitely larger than those within conditions, 
while those detected by DESeq2 only (Fig. 2c), edgeR only (Fig. 2d), and commonly by both DESeq2 and edgeR 
(Fig. 2f) were not consistent across replicates within a condition because the differences in expression of many 
isoforms within conditions are larger than those between 48 h stimulation and NS.

Validation of qPCR experiments. To validate that NBBt-test indeed performs better than DESeq2 and 
edgeR in identifying differentially expressed (DE) poly(A) RNA isoforms, we used qPCR results from the previ-
ous  study42 to verify the predicted results obtained by applying these three methods to poly(A) RNA isoform 
data of genes TESK2, BC11B, UBL3, MST123, CD47, and KIAA0465. Gene TESK2 is a housekeeping gene with 
a single poly(A) site and the difference ��Ct between cell stimulation and rest statuses was not significant at 
α < 0.05 . Except for gene BC11B, the poly(A) RNA isoforms and qPCR result of all the other genes had the same 
expression directions (up- or down-expression) (Table 1). Gene UBL3 has three poly(A) sites and was detected 
by qPCR to have differential expression ( ��Ct = 0.54) . DESeq2 did not find DE isoforms at all three poly(A) 
sites using RNA-seq data, while edgeR and NBBt-test identified DE isoform at the third site (30,338,534 bp), 
therefore, the differential expression value of gene BC11B was due to differential expression of isoform at this 
poly(A) site. Gene MST123 also has three poly(A) RNA isoforms and was detected by qPCR to have stronger 
differential expression ( ��Ct = 2.42). DESeq2 found DE isoform at the first poly(A) site 38,270,255 bp, NBBt-
test identified the DE isoforms at the first and second poly(A) sites (38,270,255 bp and 38,270,363 bp), while 
edgeR detected DE isoforms at all these three sites. At the third poly(A) site, both NBBt-test and DESeq2 did not 
find DE isoform, hence it did not contribute to differential expression of the gene. Thus, stronger DE value of 
MST123 is likely attributed to differential expression at the first two poly(A) sites. Gene CD47 has two poly(A) 
sites. DESeq2 and NBBt-test found that these two isoforms were differentially expressed between cell stimulation 
and rest statuses, but edgeR did not find them. Therefore, differential expression of CD47 might be attributed 
to differential expression of these two isoforms. In gene KIAA0465, all the three methods found the first iso-
form differentially expressed. For the housekeeping gene, TESK2, both edgeR and DESeq2 identified differential 
expression while the NBBt-test did not find it. If a gene has significant qPCR difference (ΔΔCt) between cell 
stimulation and rest statuses under α = 0.05 and an RNA isoform within this gene is found to be differentially 
expressed by two or all these three methods under FDR = 0.05, then this isoform is determined to be very pos-
sibly truly differentially expressed, otherwise, DE of this isoform is false. Using this way, true DE isoforms were 
inferred and listed in the last column of Table 1. Compared findings of a statistical method to true DE isoforms 
in the last column in Table 1, we found that the ratio of true findings of NBBt-test is 100% (11/11) and the true 
finding ratios of DESeq2 and edgeR tests are 81.8% (9/11) and 72.7% (8/11), respectively.

Identification of differential splicing events. After mapping Arabidopsis RNA-seq  data50 to TAIR10 
genome using STAR  aligner51, we ran  Spladder11 on the bam files to produce read coverage data of RNA isoforms. 

Table 1.  qPCR validation of 6 genes with differential poly(A) sites found by statistical methods. 
��Ct = �CTT −�CTC where �CTT = TT −HT and �CTC = TC −HC . Here TT and TC are, 
respectively, qPCR values of tested gene in treatment and control experiments; HT and HC are, respectively, 
qPCR values of tested gene and housekeeping gene in treatment and control experiments. Statistic of each 
method was obtained from count data of RNA reads involving poly(A) sites within each gene. qPCR data was 
provided by Dr. Neilson. *Difference between stimulated (48 h) and rest status of T-cells is significant under 
α = 0.05. a If a gene has significant qPCR(ΔΔCt) under α = 0.05 and two of three methods also find that a RNA 
isoform within this gene is differentially expressed between stimulated and rest statuses under FDR = 0.05, then 
this isoform is defined as differentially expressed (DE).

Gene
Poly(A) site 
(bp)

qPCR 
(ΔΔCt)

edgeR DESeq2 NBBt-test
Inferred true 
DE

Statistic FDR < 0.05 Statistic FDR < 0.05 Statistic FDR < 0.05 Isoformsa

UBL3

30,339,396

0.54*

1.096 No 0.832 No 0.965 NO No

30,339,747 1.196 No 1.388 No 4.465 NO No

30,338,534 1.638 Yes 2.868 No 13.939 Yes Yes

MST123

38,270,255

2.42*

3.536 Yes 6.678 Yes 10.363 Yes Yes

38,270,363 2.234 Yes 2.784 No 16.892 Yes Yes

38,268,658 2.189 Yes 2.493 No 3.794 No No

CD47
107,765,916

− 0.32*
− 1.391 No − 4.637 Yes − 5.874 Yes Yes

107,762,147 − 1.150 No − 3.293 Yes − 4.757 Yes Yes

BCL11B
99,635,630

3.84*
− 1.272 No − 4.629 Yes − 7.429 Yes NA

99,637,753 − 1.364 No − 3.667 Yes − 6.669 Yes NA

KIAA0465
39,952,652

1.57*
1.519 Yes 3.589 Yes 12.246 Yes Yes

39,951,895 1.134 No 2.223 No 2.466 No No

TESK2 45,809,556 0.21 2.412 Yes 3.032 Yes 3.088 No No



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12833  | https://doi.org/10.1038/s41598-022-15762-x

www.nature.com/scientificreports/

We used NBBt-test to test for differential splicing events at 3′UTR, 5′UTR, skipping exon, intron retention and 
multiple skipping exons. As an example, NBBt-test found a skipping exon between 2,244,500 and 2,244,750 bp 
within gene AT3G07090 in the heat shock samples (Fig. 3b) compared to control samples (Fig. 3a), while DEX-
Seq did not find it.

We performed  DEXSeq31 and NBBt-test on exon count data obtained by applying  HTseq52 to map RNA-seq 
 reads53 to D.melanogaster genome. As examples, we here just displayed exon expression profiles of genes Ald, 
Ant2, lmpL3, and bmm using NBBplot: pasilla counts of knockdown and control replicates in DE exon E1 (red 
box) within gene Ald identified by DEXSeq only are not separated (Fig. 4a). However, in gene lmpL3 (Fig. 4c), 
DE exon E2 (red box) found by NBBt-test only shows clear separation replicate counts between control and 
pasilla groups. DE exons E1, E2 and E3 (red boxes) in gene Ant2 (Fig. 4b) and exon E2 (red box) within gene 
bmm (Fig. 4d) identified by both DEXSeq and NBBt-test show significantly more counts of reads in the three 
pasilla knockdown replicates than in the four control replicates. The differential expression of exons E1, E2, and 
E3 within gene Ant2 and of E2 within gene bmm were validated by  qPCR53. Similarly, Fig. 5 displays big differ-
ences between NBBt-test and DEXSeq in the identification of differentially expressed exons within Arabidopsis 
genes, AT5G26780 and AT1G0914055. Gene AT5G26780 has 20 exons, except for exons E12, E17, E19, and E20, 
NBBt-test found that the other 16 exons showed differential expression between control and heat shock groups 
(Fig. 5a), while in DEXSeq findings, only exon E17 had differential expression (Fig. 5b). However, the observed 
data show that exon E17 had no difference between the control and heat shock groups. Figure 6b shows that gene 
AT5G26780 had higher read coverage in the control group (186, 205, 207) than in the heat shock group (54, 102, 
57), which are well consistent with read counts of exons shown in Fig. 5a or b. In gene AT1G09140 (Fig. 6a), 
NBBt-test found that all 13 exons had differential expression (Fig. 5c) and the read coverage data (Fig. 6a) show 
this result that three heat shock(HS) replicates had many more read counts (3422, 3652, 4274) than three rep-
licates (973, 877, 1325) of control group (CTL) but DEXSeq was able to find only three DE exons (E3, E12 and 
E13) (Fig. 5d) while NBBt-test found them all (Fig. 5c). Differential splicing events of these two Arabidopsis 
genes were previously validated by qPCR  experiment54.

Differential CRISPR screen analysis. For the differential CRISPR knockout screens, we used datasets 
from Evers et al55 that have two spike-in datasets RT112 and UMUC3 where there are 93 genes each targeted 
by 10 sgRNAs and 48 of 93 genes were known to be essential genes. Along with NBBt-test, the other four sta-
tistical methods were chosen to perform differential analysis of CRISPR knockout screens. These methods are 
 edgeR23,24, Baggerly et al.’s beta t-test (called Baggerly)41,  DESeq222, NBBt-test and  MAGeCK18. DESeq2, edgeR 
and Baggerly are general methods for differential analysis of RNA-seq data while MAGeCK was specifically 
developed for testing differential CRISPR knockout screens at either gene or sgRNA levels. For RT112 data, 
the essential genes are clearly separated from non-essential genes (Supplementary Fig. S1a), receiver operating 
characteristic (ROC) curves showed that NBBt-test had the best performance among these five methods, while 
the edgeR had the poorest performance (Fig. 7a). Figure 8a shows that NBBt-test had the highest F1-score (see 
Methods section), followed by MAGeCK, suggesting that NBBt-test had the highest precision and the highest 
recall among these methods. Baggerly and ibb methods reported the lowest scores. However, for UMUC3 data, 

Figure 3.  An example of exon splicing event within the gene, AT3G07090 found by spladder-NBBt-test in 
Arabidopsis RNA-seq data using TAIR10 reference genome. The RNA-seq coverage and splicing pattern for 
both the control (a) and heat shock (b) samples are shown along with the annotated transcript model where 
dark grey lines are introns, blue cylinders are exons and green cylinder is a spliced exon in heat shock samples.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12833  | https://doi.org/10.1038/s41598-022-15762-x

www.nature.com/scientificreports/

there is no significant difference in the performance among these methods (Fig.  7b) but NBBt-test still had 
the highest F1-score across − log10(FDR) = 1 to 2 even though the F1-scores are less than 0.7. MAGeCK and 
DESeqa2 had the same F1-score (Fig. 8b). This is probably due to low quality of the UMUC3 data where 135 
of 486 essential sgRNA targets are false and mixed up with the non-essential sgRNA targets (Supplementary 
Fig. S1b). This is also seen at gene level (Supplementary Fig. S2): For RT112, all these five methods had a perfect 
performance (Supplementary Fig. S2a) but in UMUC3 data, except that MAGeCK had a perfect performance, 
NBBt-test had the best performance among the other methods (Supplementary Fig. S2b). We created heatmaps 
(Fig. 9a,b) to display −  log2FDR profiles of these five statistical methods where in the essential column, gene had 
FDR = 0 (red) if it is essential, otherwise, FDR = 1(yellow). The heatmaps show that NBBt-test is the best method 
to find essential genes based on RT112 (Fig. 9a) and UMUC3 (Fig. 9b) data.

Simulation comparison. To fully evaluate our NBBt-test, we designed multiple scenarios to simulate 
poly(A) count data, splicing junction count data and FACS data of CRISPR screens as described in the Meth-
ods section. For the count data of poly(A) RNA reads, we designed four scenarios to simulate stimulated and 
normal statuses each having 3 replicates with 30% technical noise (or outliers). We used the simulated datasets 
in these four scenarios to compare NBBt-test to DESeq2, edgeR, and the Baggerly methods. The results show 
that NBBt-test had the best performance (ROC curves), the highest F1-score, the lowest type I error rate and 
the lowest  observed FDR among these four methods (Fig.  10). We also simulated data of two samples each 
having 5 replicates with 30% technical noise of 13,409 poly(A) sites scattered in 9,294 genes and each hav-
ing 3 replicates without technical noise in four scenarios (a: 10% of poly(A) sites were positively or negatively 
responded to 100U T-cell stimulation effect; b: 10% of poly(A) sites were responded to 300U stimulation effect; 
c: 30% of poly(A) sites were responded to 100U stimulation effect. d: 30% of poly(A) sites were responded to 
300U stimulation effect where U is a uniform variable, 0 < U ≤ 1 ). We used the first set of simulated datasets 
to compare NBBt-test, DESeq2, edgeR and Baggerly. The results are summarized in Supplementary Fig. S3. In 
these four scenarios with technical noise, NBBt-test had the highest performance among these five methods 
(Supplementary Fig. S3), the highest F1-scores, the lowest type I error rates and the lowest observed FDRs in all 
these four scenarios (Supplementary Fig. S3). For the second set of simulated data, both NBBt-test.RNA (test for 

Figure 4.  NBBplots for differential expression of exons within genes detected in Drosophila melanogaster. 
Top part in each panel is expression (count in y-axis) of exons within the gene where three red lines stand for 
three replicates of control (no pasilla knockdown) in the Drosophila melanogaster and four blue lines represent 
four replicates of pasilla knockdown. Bottom part of each panel is a map of exons and introns. Red box shows 
significant differential expression of the exon between knockdown and control samples found. In gene Ald (a), 
DE exon1 (E1) was identified by DEXSeq only. In gene sesB/Ant2 (b), both DEXSeq and NBBt-test identified 
exons E1, E2 and E3 differently expressed between control and pasilla knockdown. In gene lmpL3 (c), exon 
E2 was found by NBBt-test only to have differential expression. In gene bmm (d), exon E2 was found by both 
DEXSeq and NBBt-test to be differentially expressed. Genes sesB/Ant2 and bmm were validated by RT-PCR53. 
Data from Brooks et al.53. Red box represents differential expression exon and green box represents no 
differential expression exon.
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differential expression of RNA species or gene expressions), NBBt-test.isform (test for differential expression of 
RNA isoforms) also had the highest performance (ROC), the highest F1-score, the lowest type I error rate and 
the lowest observed FDR in all four scenarios (Supplementary Fig. S4) among these methods.

We also simulated FACS data of CRISPR knockout screen to compare NBBt-test, edgeR, DESeq2, Baggerly, 
and MAGeCK in 8 scenarios (see Methods section). Likewise, NBBt-test still had much better performance than 
the other four methods in all these 8 scenarios (Supplementary Fig. S5). Except for scenarios g and h, NBBt-test 
had the highest F1-score across − log10(α ) in the other 6 scenarios (Supplementary Fig. S6) and had type I error 
rate of 0 from α = 0.0 to α = 0.1 except that NBBt-test had type I error < 0.005 in scenarios a and b (Supplementary 
Fig. S7). MAGeCK, edgeR and DESeq2 also showed type I error rate = 0.0.

In another experiment, we simulated count data of splicing events in two samples using negative binomial 
generator in R environment based on pasilla exon splicing count data where there are 69,733 exons distrib-
uted within 14,206 Drosophila genes. Control sample has 4 biological replicates and knockdown sample has 3 
biological replicates. In the all four scenarios, NBBt-test outperformed DEXSeq and had F1-score = 100% and 
the observed FDR = 0 from FDR = 0 to 0.1 (Supplementary Fig. S8), while DEXSeq had F1-score = 44% and the 
observed FDR = 0.65 from FDR = 0 to 0.1(Supplementary Fig. S8).

Discussion
NBBt-test is designed to identify differential isoforms or CRISPR screen sgRNAs by taking advantage of three 
important features of RNA-seq data. In the first case, we assume that RNA sequencing is a negative binomial 
event with a probability (p) that follows beta distribution with parameters, α and β, which is generally accepted 
in RNA  sequencing23,24. We employed a modified algorithm of Baggerly et al.41 to estimate parameters, α, β and 
p. The second feature is that RNA-Seq experiments are mostly conducted in very small samples (mostly less 
than 8 biological replicates), while small samples easily result in data gaps between two different conditions. In 
theory, two count datasets that are separated with a gap have higher probability that they come from two different 
distributions than those that overlap. For this reason, we introduced a gene-specific or isoform-specific variable 
ρ into the beta t-test to control false discoveries. ρ is used to measure the overlap between two count datasets and 
data homogeneity. If two count datasets overlap more and/or have bigger within-condition variances, then ρ < 1, 

Figure 5.  NBBplots for differential expression of exons within genes AT5G26780 and AT1G09140 in 
Arabidopsis. Top part in each panel is expression (count of reads in y-axis) of exons within the gene where 
three red lines stand for three replicates of control in the Arabidopsis and three blue lines represent three 
replicates of heat shock. Bottom part is a map of exons and introns. Red box shows differential expression of 
the exon between heatshock and control samples found. (a) Differential expressions of exons E1–11, E14–E16, 
E18 within gene AT5G26780 between heat shock and control samples were identified by NBBt-test. (b) Exon 
E17 within gene AT5G26780 was identified by DEXseq to have differential expression between heat shock 
and control samples. (c) All 13 exons within gene AT1G09140 were identified to be differentially expressed 
between heat shock and control samples by NBBt-test. (d) Differential expression of exons E3, E12-E13 within 
gene AT1G09140 between heat shock and control samples were identified by DEXSeq. Genes AT5G26780 and 
AT1G09140 were validated to have exons differential expression by experiment.
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otherwise, ρ > 1 for separating and homogeneous data. Thus, ρ shrinks t-values for overlapped count datasets 
and inflates t-values for clearly separated count datasets with small noises. To consider sample size effect, we set 
a threshold ωα for ρ . That is, t-statistic is inflated with ρ > ω or shrunken with ρ < ωα . As the result, most of the 
t-values with ρ < ωα are compressed into small values while those with ρ > ωα are enlarged. Since p-value only 
depends on t-value given the degree of freedom, p-values with inflated t-values become smaller while those with 
shrunken t-values become larger, so very few false positives would be found. Threshold ωα is an estimate of null 
ρ value. ωα is a dependent of sample size and data quality. Our simulation shows that the smaller the sample size 
is, the larger the ωα is than ρ (Fig. 1d). However, when the sample size reaches 15 replicates, ωα is only slightly 
greater than ρ . These results are expected because in the case of sample size < 15, the probability that data gap 
occurs between conditions is inversely proportional to sample size (Fig. 1c), then ρ is smaller than ωα . ρ < ωα 
leads to a result that the new t-statistics < the old t-statistics, implicating that t-statistics is shrunken and p-value 
increases. In the case of sample size ≥ 15, however, the data gap is vanished, ρ ∼=  ωα , the new t-test is reduced 
to the old one. For the third feature, we used a gene-level statistic to furthermore correct bias of t-statistics. We 
used the sum count over all isoforms as count of a gene. We created a new t-statistic to test for differential expres-
sion of genes or isoforms. The new t-test includes three parts: classic t-test, fold change (FC), and F-like test. In 
Eq. (2), ϕgi is a strict fold change or nonparametric U-test for two overlapping data. Both are two components 
of ρ and in Eq. (3), ζgi is similar to F-statistic. ϕgi controls false discoveries or false positives by measuring data 
gaps between conditions while ζgi controls noise or within-group variations. These are the reasons why NBBt-
test outperforms the other differential methods. We can predict that even though ρ loses false discovery control 
in large samples (sample size m > 15), t-test would still have higher statistical power than the other compared 
methods. Therefore, t-test can find differential isoforms/sgRNAs or genes in either small samples or large samples 
with low type I error and high power.

Methods
RNA‑seq data collection. Poly(A) RNA-seq data. Polyadenylated (Poly(A)) RNA sequence data were 
derived from Jurkat T-cells of mouse stimulated with plate-bound antibodies. Total RNA was harvested from 
resting and stimulated cells with Trizol reagent as per manufacturer instructions. Poly(A) RNA was isolated 
with the Poly(A)-Purist MAG kit as per manufacturer instructions. High-throughput sequencing libraries were 
generated essentially as described in  reference2, with the exception that “barcoded” linkers were used to facilitate 
multiplexing. Libraries were sequenced via 50 bp paired-end sequencing on an Illumina GAIIx. The data were 
derived from Tan et al42.

CRISPR knockout screen count data. Evers et  al.55 compared performances of CRISPR knockout screening, 
shRNA, and CRISPRi in discriminating hits from non-hits in functional genetic screens and published their 

Figure 6.  Mapping plots of Arabidopsis thaliana gene AT5G26780 and AT1G09140. Left panel is IGV plots 
of Arabidopsis thaliana gene AT5G26780 (a) where 16 exons in gene AT5G26780 show differential mapping 
of reads between control replicates and heat shock replicates. No exons E12 and E19 were found. Exon E17 is 
actually an intron between Exons E15 and E16. Control replicates have read counts in region of 180–207 while 
Heat shock replicates show 54–80 read counts. Right panel is IGV plots of Arabidopsis thaliana gene AT1G09140 
where 13 exons in gene AT1G09140 (b) show differential mapping of reads between control replicates and heat 
shock replicates. Exons E2 and E3 were connected together. Control replicates have read counts in region of 
180–207 while heat shock replicates show 54–80 read counts.
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CRISPR knockout screen data on RT-112 and UMUC-3 cell lines. This study chose 93 genes that consistently 
show low expression and do not affect phenotype upon knockdown for knockout screens. Of these 93 genes, 46 
selected from COP9 signalosome (7 genes), proteasome (10 genes), nuclear pore complex (5 genes), ribosomal 
complex (20 genes) and RNA polymerase complex (4 genes) were considered essential for both cell lines. From 
the non-essential genes identified by Hart et al.13,28. Genes that are expected to have very consistent phenotype 

Figure 7.  Performances of statistical methods in identifying differential knockout screening sgRNAs targeting 
genes. ROC curves display performances of the statistical methods edgeR, DESeq2, beta t-test of Baggerly et al. 
MAGeCK and NBBt-test for identifying truly differentially screening sgRNAs targeting genes between T1 and 
T0 in the CRISPR screen spike-in data from cell lines RT112 (a) and UMUC3 (b), respectively.

Figure 8.  F1-scores of statistical methods in identifying differential sgRNAs. F1-score is defined as the ratio 
between recall × precision to recall + precision (see Methods), or the harmonic mean of precision and recall. 
Panel a shows F1-scores of the selected methods edgeR, DESeq2, beta t-test of Baggerly et al. ibb, MAGeCK and 
NBBt-test in finding differential hits of sgRNAs targeting DNA sequences of genes detected in cell line RT112 
across − log10 = 1–2 and Panel b shows F1-scores of these six statistical methods in identifying differential hits of 
sgRNAs targeting DNA sequences of genes detected in cell line UMUC3.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12833  | https://doi.org/10.1038/s41598-022-15762-x

www.nature.com/scientificreports/

are defined as non-essential55. Each gene was hit by a set of 10 sgRNAs. These two CRISPR knockout screening 
count datasets were downloaded from Evers et al.55.

Heat shock RNA-seq data. RNA-seq data derived from Arabidopsis thaliana plants  subjected50 to heat shock 
treatment at time points T1 (heat shock period) and T2 (recover period) and control were downloaded 
from SR45a RNA-binding (RRM/RBD/RNP motifs) family protein [Arabidopsis thaliana (thale cress)] - Gene 
- NCBI (nih.gov)   and also from  https:// www. arabi dopsis. org/ servl ets/ TairO bject? type= gene& name= AT1G0 
7350.1.

Pasilla RNA-seq count data. The mammalian proteins, NOVA1 and NOVA2 (collectively named here as 
NOVA1/2) are perhaps the best-characterized splicing regulators to date. NOVA1/2 encodes RNA binding pro-
teins with three KH-domains that recognize clusters of YCAY  repeats53. The gene, pasilla (PS), the Drosophila 
melanogaster ortholog of mammalian NOVA1 and NOVA2, is well-studied for its splicing regulation. To study 
the impact of splicing regulators on splicing events, the gene pasilla, a splicing regulator in D. Melanogaster, was 
knocked down with RNAi. To explore PS-regulated exons, RNA-seq was used to identify splicing events that 
changed upon depletion of PS knocked down with RNAi. Libraries were prepared from RNA extracted from 
seven biologically independent D. melanogaster cell samples: three control samples and four PS knockdown 
samples and deep sequenced on an Illumina Genome Analyzer II (GAII), partly using single-end and partly 
paired-end patterns at various read  lengths53. The RNA-seq sequence reads are available for download from the 
NCBI Gene Expression Omnibus (http:// www. ncbi. nlm. nih. gov/ geo) using accession numbers GSM461176–
GSM461181. RNA-seq count data were downloaded from https:// genome. cshlp. org/ conte nt/ 21/2/ 193/ suppl/ 
DC1.

qPCR data for validating differential poly(A) isoforms. qPCR data for validating differential poly(A)  isoforms42 
were obtained by isolating total RNA from resting and stimulated (48 h) Jurkat T-cells and performing real-time 
PCR in triplicates with gene-specific primers and the Bio-Rad SYBR FAST iCycler qPCR kit (Kapa Biosys-
tems) on a Bio-Rad CFX96 real-time thermal cycler. Here 6 genes selected are UBL3, MST123, CD47, BCL11B, 
KIAA0465 and TESK2, among which genes UBL3 and MST123 have 3 poly(A) sites, CD47, BCL11B, and 
KIA0465 have two poly(A) sites and TESK2 without multiple poly(A) sites. The ΔΔCT method was used to 
calculate expression relative to TBP (ATA-box binding Protein). The qPCR data were derived from Tan et al42.

Figure 9.  Heatmaps for the observed −  log2(FDR) of the 6 statistical methods in identifying differential 
screening genes targeted by sgRNAs. Heatmaps for the observed −  log2(FDR) at which differential screening 
genes targeted by sgRNAs in cell lines RT112 (panel a) and UMUC3 (panel b) were identified by a statistical 
method.  Log2(FDR) = 0 means FDR = 1, − log2(FDR) = 2.995732 means FDR = 0.05, −  log2(FDR) = 6.643856 
means FDR = 0.01, and − log2(FDR) = 9.965784 means FDR = 0.001. To compare these 6 methods in identifying 
differential screen genes targeted by sgRNAs, we set −  log2(FDR) = 9.965784 if a gene is essential, −  log2(FDR) = 0, 
otherwise. Data obtained from Evers et al. (2015).

https://www.arabidopsis.org/servlets/TairObject?type=gene&name=AT1G07350.1
https://www.arabidopsis.org/servlets/TairObject?type=gene&name=AT1G07350.1
http://www.ncbi.nlm.nih.gov/geo
https://genome.cshlp.org/content/21/2/193/suppl/DC1
https://genome.cshlp.org/content/21/2/193/suppl/DC1


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12833  | https://doi.org/10.1038/s41598-022-15762-x

www.nature.com/scientificreports/

Simulation study. Simulation of poly(A) RNA count data. Since RNA sequencing was assumed to follow 
negative binomial distribution (NB), we used the NB pseudorandom generator to create poly(A) RNA isoform 
count datasets. Simulations were performed in R-environment by using NB(µ + τ,s) and NB(µ , s) where µ and 
s are respectively mean and dispersion parameter (here is variance) for per poly(A) RNA isoform solved from 
experimental poly(A) RNA isoform count data from Jurkat T-cell in two conditions (resting and stimulating 
statues) each having 3 replicated libraries, where 18,290 isoforms scattered in 9572 genes were collected. We 
set two levels (A = 100 and 300) of treatment effect impacting differential expression of poly(A) isoforms and 
linearly and randomly assigned effect size τ = UA to 10% and 30% null poly(A) isoforms where U is uniform 
variable ( U ∈ (0, 1] ), so τ is linearly distributed from > 0 to A. In addition, 30% of the null poly(A) isoforms were 
assigned with outliers (technical). Equal sample sizes were set as 3 and 5 replicate libraries.

Simulation of exon count data. Similarly, we still assumed that exon RNA sequencing follows negative bino-
mial distribution. In R-environment, we used NB pseudorandom generator to create exon RNA isoform count 
datasets. The simulation was conducted by using parameters per exon RNA isoform solved from experimental 
exon RNA isoform count data from D. Melanogaster in two conditions (control and PS knockdown) where 
control has 4 replicate libraries and PS knockdown has 3 replicate libraries and 69,733 exons were scattered in 
16,206 annotated Drosophila genes. We set two levels (A = 100 and 300) of PS knockdown effect on differential 
splicing events and linearly and randomly assigned the effect size τ = UA to null exon isoforms with 10 and 30% 
probabilities, where U is uniform variable ( U ∈ (0, 1] ), switch ratio = 0. Thus, we simulated 4 scenarios: Scenario 
a: knockdown effect size A = 100U, 10% of exons were differentially spliced; Scenario b: knockdown effect size 
A = 100U, 30% of exons were differentially spliced; Scenario c: Knockdown effect size A = 300U, 10% of exons 
were differentially spliced; Scenario d: Knockdown effect size A = 300U, 30% of exons were differentially spliced.

Figure 10.  Performance, F1-score, and type I error rate of statistical methods in finding differential 
polyadenylation sites. ROC curve, F1-score and type I error rate and observed FDR of a method were given by 
performing this method on the simulated poly(A) count data. F1-score and type I error rate were calculated 
based on single-test results. The observed FDR (FDR(o)) under significant cutoff is used to compare theoretical 
FDR(FDR(t)). In an ideal case, FDR(o) = FDR(t), the line is a diagonal line, suggesting that FDR is correctly 
estimated. So, if the line is over the diagonal line, then, the FDR is underestimated, more false discoveries 
were not estimated. If the line is below diagonal line, then the FDR is overestimated, that is, estimated false 
discoveries are more than true false positives. The simulated poly(A) count data were generated by using 
negative binomial distribution on the Jurkat T-cell poly(A) count data. We simulated four scenarios A, B, C and 
D. Each scenario had two samples with equal sample size of 3 and 13. 409 poly(A) sites were scattered in 9294 
genes and 30% artificial noise (or outliers). (a) 10% of poly(A) sites were positively or negatively responded to 
100U stimulation effect. (b) 10% of poly(A) sites were positively or negatively responded to 300U stimulation 
effect. (c) 30% of poly(A) sites were positively or negatively responded to 100U stimulation effect. (d) 30% of 
poly(A) sites were positively or negatively responded to 300U stimulation effect where 0 < U ≤ 1.
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Simulation of data of CRISPR FACS screen. Genetic screening is a powerful discovery tool that provides an 
important functional complement to observational genomics. Several platforms for mammalian cell screens have 
been developed based on CRISPR  technology18,56. For example, CRISPR nuclease (CRISPRn)  screens15,19,20,57 
interfere gene function by targeting Cas9 nuclease programmed by a sgRNA to the coding region of a gene of 
interest in a genome, and followed by error-prone repair through the cellular non-homologous end-joining 
pathway, while CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa)  screens58 repress or activate 
gene transcription by exploiting a catalytically dead Cas9 to recruit transcriptional repressors or activators to 
their transcription start sites, as directed by sgRNAs. There are two distinct strategies for phenotypic selection: 
Fluorescence activated cells sorting (FACS)-based screens in which cell populations are separated based on a 
fluorescent reporter signal that is a function of the phenotype. Another strategy is growth screens in which 
the pooled screens are conducted to select genes with growth phenotype by comparing cell populations at an 
early time point with cells grown in the absence or presence of selective pressures, such as drugs or toxins. To 
evaluate these differential methods for identifying differential hits of sgRNAs, we here simulated data of CRISPR 
FACS screens using CRISPulator  tool59 in 8 scenarios consisting of combinations of three parameters each with 
two levels: FACS bins (0.1, 0.25), noises (0.5, 1.0), phenotype proportions (0.2, 0.4). The FACS bin is percent of 
cells in “low” and “high” population. Noise indicates deviation of Gaussian distribution, for example, noise = 0.5 
means σ = 0.5, a normal distribution with deviation of 0.5. Phenotype proportion is fraction of genes with nega-
tive and positive phenotypes; for example, phenotype proportion = 0.2 means that 20% of genes show negative 
and positive phenotype and 80% of genes show null (or neutral) phenotype. In each scenario, we set number of 
genes = 1000, coverage (number of sgRNAs per gene) = 10 and two conditions each having equal sample size of 4. 
After simulation, we implemented  MAGeCK18 to map the RNA sequence reads to a reference genome, annotate 
genes with phenotypes, and create hit count data.

Computational programs and pipeline analysis of RNA‑seq data. Figure 11a summarized work-
flow of NBBt-test. As a differential analysis tool, NBBt-test can perform differential analysis of poly(A) RNA-seq, 
CRISPR knockout screen RNA-seq, splicing RNA-seq, differential exons, RNA-seq(shRNA-seq, mRNA-seq). 
Figure 11b displays an overview of the computational procedure of the NBBt-test.

Figure 11.  Computational procedures and workflow of NBBt-test. (a) Workflow of NBBt-test. RNA-seq data 
have two types: RNA-seq reads and CRISPR-seq reads. RNA-seq reads are mapped to a reference genome 
such as mm9 or mm10 in mice, or hg19(GRCh37) or GRCh38 in human. Currently, popular aligners are 
STAR, Tophat, BWA, and Boetie. STAR can use RNA-seq data such as fastq and fasta to map RAN-seq reads 
to reference genome with STAR index. STAR outputs count data of genes, and sorted bam data, For studying 
splicing, one needs another tool such as spladder, rMATS, cufflinks, to remap bam file to annotated genome file 
such as hg.gtf or hg.gff3. CRISPR-seq reads are mapped to genomes by MAGeCK to generate count data. (b) 
Computational procedures. In this workflow, first, the count data (RPKM, FPKM or TPM) is normalized with 
log2, or proportion transformation (library size is the same across all individuals). Normalized count data are 
used to estimate ρ and ω and α and β, variance V, and proportion p. Finally, new t-statistics and p-values are 
calculated to perform multiple tests or adjust p-values.
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Analysis pipeline for poly(A) RNA‑seq data. The paired end RNA reads were mapped to the mouse 
genome (mm9) using the paired-end mapping module of  bwa60 with default alignment parameters. Non-map-
ping reads were remapped to the UCSC KnownGene reference and then projected back to mm9. Individual 
reads were condensed to tags based on their 3′ coordinate by sliding 20-nucleotide window using the frequency-
weighted median 3′ coordinate as the tag identifier. Tags were then filtered using a progressive filtering strategy 
assessing adenosine and guanine composition in the five, ten, and fifteen bases followed the tag-mapping site 
and then assigned to individual transcription units. For each transcription unit, the aggregate tags mapping to 
the unit were ranked based on frequency. Tags were extracted from the highest frequency to the lowest until 
the extracted tags excessed 90% of the aggregate frequency for the gene or isoform. The remaining tags were 
 discarded42. All reads derived from an annotated transcription unit were considered as an individual entity. After 
that, counts of reads were obtained for an RNA isoform. This pipeline analysis was implemented by polyapipe-
line (Github).

Analysis pipeline for CRISPR knockout screen RNA‑seq data. Data analysis pipeline for CRISPR 
screen RNA-seq data was conducted by performing  MAGeCK18 following the third demo: going through a 
public CRISPR/Cas9 screening dataset as described in the tutorial (https:// sourc eforge. net/p/ mageck/ wiki/ 
demo/# the- second- demo- start ing- from- raw- fastq- files). Briefly, MAGeCK requires a library file that lists three 
columns: sgRNA ID, sequence, and gene without comma in a txt file. So before running MAGeCK, user should 
make a library.txt file following provided library format. In the current version, MAGeCK can automatically 
determine the trimming length and sgRNA length, so user does not need to consider trimming RNA sequences. 
In this pipeline, we used two commands, count and test. The count command produces a count table from 
MAGeCK containing two columns for sgRNA and gene and the rest of the columns for count data. The test 
command is used to compare two conditions to test for differential genes targeted by sgRNAs or differential 
sgRNA-targeted genes.

Analysis pipeline for splicing RNA‑seq data. Similar to the general RNA sequence analysis pipeline, 
for splicing RNA-seq data we performed  FastQC61 to check for sequencing data quality, trimmed adapters and 
contaminations, filtered or removed overrepresented sequences or low-quality sequences, and corrected for 
errors to obtain clean sequencing data using the Galaxy  server62. We used three pipelines to map splicing RNA-
seq reads to the reference genome as described below.

Star‑spladder for splicing events. Firstly, STAR 51 was used to map RNA reads from samples onto the 
reference genome using gff3 annotation file and generate sorted bam files. In python 2.7 environment,  spladder11 
was carried out on these sorted bam files with C = 3 (confidence = 3) and gff3 annotation file and ran build model 
to align and annotate 3′UTR splicing events, 5′UTR splicing events, (cassette) exon skipping events, intron reten-
tion, multiple exons skipping and mutual exclusive exons into splicing graph representation. Spladder outputs 
merge_graphs_confirmed.gff3, .icgc.txt.gz, .pickle, counts.hdf5 files of each splicing type. More detailed instruc-
tions for running Spladder and setting parameters can be found at https:// splad der. readt hedocs. io/ en/ latest/ 
gener al. html and https:// splad der. readt hedocs. io/ en/ latest/ splad der_ modes. html.

STAR‑DEXSeq for differential exons. Like STAR -spladder, at step 1, STAR  was performed to map RNA 
reads onto the reference genome using gff3 annotation file to generate sorted sam files. At step 2, in python 2.7 
environment, dexseq_prepare_annotation.py was run on annotation.gff3 to DEXSeq annotation file (e.g., DEX-
seq.gff). The next step was to run dexseq_count.py on sam files and DEXseq.gff to output count data files with 
genes and exons annotated. This step was done by using  THseq52.

RNA‑seq data analysis for differential gene expression. After running star to build start index on 
a reference genome for mapping RNA-seq data, we started with STAR to run alignReads runModel with setting 
genes.gtf in hg19, bedGraph, and GeneCounts. STAR outputted gene count data file.

Benchmarking. For poly(A) RNA-seq count data and general RNA-seq count data, we compared the per-
formance of NBBt-test against those of DESeq2, edgeR, Baggerly’s beta t-test41 (called Baggerly for convenience) 
by implementing R packages, DESeq2 and edgeR installed from Bioconductor. This is because DESeq2 derived 
from  DESeq26,41 and edgeR are two popular methods for differential analysis that are also available on the Galaxy 
 server62. Baggerly et al.’s beta t-test method is a basis of our NBBt-test, so we chose it as a control for our NBBt-
test. The Baggerly method was implemented by using R functions that we wrote based on Baggerly et al41. The 
R functions for implementing Baggerly’s beta t-test were determined by realizing a practical example provided 
by Baggerly et al41. For CRISPR screening data of sgRNA, we chose DESeq2, edgeR, Baggerly, and MAGeCK for 
comparison against our NBBt-test. MAGeCK was specially designed for detecting differential sgRNAs and genes 
targeted by sgRNAs. We followed authors’ tutorials (https:// sourc eforge. net/p/ mageck/ wiki/ demo/# the- second- 
demo- start ing- from- raw- fastq- files) to perform MAGeCK on RT112 and UMUC3 CRISPR screen data. At gene 
level, we compared sgRSEA,  ScreenBEAM63,  PBNPA17 and MAGeCK to NBBt-test using the CRISPR screening 
datasets of RT112 and UMUC3. The sgRSEA, ScreenBEAM and PBNPA were implemented by following their 
R packages. For differential splicing event analysis, many methods or tools, for example,  DEXseq26,  DSGseq64, 
 SplicingCompass33,  rMATS34,35,  Cufflinks37, SeqGSEA, rdiff-parametrics65, and  DiffSplice38) have been devel-
oped. However, since these methods are based on different models (such as count-based or isoform resolution-
based), we chose DEXseq for comparison.

https://sourceforge.net/p/mageck/wiki/demo/#the-second-demo-starting-from-raw-fastq-files
https://sourceforge.net/p/mageck/wiki/demo/#the-second-demo-starting-from-raw-fastq-files
https://spladder.readthedocs.io/en/latest/general.html
https://spladder.readthedocs.io/en/latest/general.html
https://spladder.readthedocs.io/en/latest/spladder_modes.html
https://sourceforge.net/p/mageck/wiki/demo/#the-second-demo-starting-from-raw-fastq-files
https://sourceforge.net/p/mageck/wiki/demo/#the-second-demo-starting-from-raw-fastq-files
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F1‑score. F1-score is a measure of a test’s accuracy in statistics and widely used in the field of informa-
tion retrieval for measuring search, document classification, and query classification  performance66. F1-score 
is defined as

where

where tp = true positives, fn = false negatives, and fp = false positives. F1-score is a harmonic mean of the preci-
sion and recall. F1-score reflects balance between the precision and the recall of the tests and hence also reaches 
its best value at 1 (perfect precision and recall) when all true positives are found or fn = 0 and fp = 0.

N‑score. N-score: Many heatmaps were made by using z-score: a standard normal value: z = x−x
σ

 where 
x and σ are respectively average expression value and standard deviation of a gene over all replicates. z-score 
separates data into two groups: positive and negative and are in range of − 4 to 4 or less for expression of all 
genes, so it can visualize difference in expression of genes in two conditions. However, it just is because all data 
are separated into positive and negative groups, heatmap can clearly display difference in expression between 
two conditions even though the difference in expression of some genes between two conditions are not enough 
distinct. Therefore, z-score heatmap may show us false difference between two conditions. To avoid this false 
difference visualization, we here gave n-score for heatmap: Let expression value(x) of a gene or an isoform 
be log2 transformation value, we then use y =  2× to re-convert into the original expression value (y) and use 
nij = yij

max(y)
max(yi)

 to build n-score where max(y) is maximum among all genes and all replicates of two groups 
and max(yi) is maximum among all replicates of two groups in gene i. n has the same order of magnitude for all 
genes detected in high-throughput experiment but it does not have positive or negative value. Therefore, unlike 
z-score, n-score heatmap cannot visualize distinct difference in expression of genes between two conditions if 
the difference between conditions is not at an order level.

NBBt‑test package. NBBt-test can be implemented by  R package, NBBttest. Package  NBBt-test was 
recruited by CRAN and can be installed into R console (Mac) or RGui (PC) or Rstudio.  In addition, NBBt-
test can also be downloaded from github (https:// github. com/ Yuande/ NBBtt est) where README.md provides 
a detail instruction for user to run NBBt-test. Using NBBt-test one can check quality of count data, do multiple 
differential analyses of alternative splicing, alternative polyadenylation, CRISPR knockout screening, or gene 
expression, visualize the results and use NBBplot to display differential expression of exons within a specified DE 
gene identified by NBBt-test between two conditions across all replicates. NBBt-test package has two heatmap 
functions, myheatmap and myheatmap2. Function myheatmap uses row z-score across the sample individuals to 
show differential expression of genes or isoforms selected by NBBt-test between two conditions in one or multi-
ple datasets. Function myheatmap2 uses n-score to show differential expression of genes or isoforms selected by 
NBBt-test between two conditions in one or multiple datasets.

Data availability
Source data used in this study are publicly available from corresponding original publications as follows: 
Pasilla RNA-seq count data from Brooks et al.53 with Gene Expression Omnibus (GEO) accession numbers, 
GSM461176–GSM461181; CRISPR knockout screen data was downloaded from Evers et al.55 with Short Read 
Archive (SRA) accession code, SRP072947; Poly(A) RNA-seq count data and qPCR data from Tan et al.42; and 
the Arabidopsis heat shock RNA-seq data from Gulledge et al.50 accessible at https:// www. arabi dopsis. org/ servl 
ets/ TairO bject? type= gene& name= AT1G0 7350.1.
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Code availability
The source code for NBBt-test is accessible as an R-package download from R CRAN (https:// CRAN.R- proje ct. 
org/ packa ge= NBBtt est) and  https:// github. com/ Yuande/ NBBtt est.
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