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A B S T R A C T

Background: Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were
the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Cur-
rently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based
model for treatment decision in NPC.
Methods: A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and
received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients
with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images,
based on which an optimal treatment regimen was recommended. Model performance was assessed by the
concordance index (C-index) and the Kaplan-Meier estimator.
Findings: The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-
index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic
difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-
preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over
those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24,
p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001).
Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by
clinical factors and MR acquisition parameters.
Interpretation: Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment
regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool
for promoting personalized treatment of NPC.
Funding: National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural
Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduc-
tion in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion
Association CAS.
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1. Introduction

Nasopharyngeal carcinoma (NPC) is a radiosensitive epithelial
malignancy associated with the risk of locoregional and distant
aggressiveness, with the highest prevalence reported for the popula-
tions of East and Southeast Asia, and North Africa [1]. Of the 87,000
newly diagnosed NPC annually, over 70% of them are classified as
advanced disease [2]. Patients with advanced NPC have several treat-
ment options, including induction chemotherapy (ICT) plus concur-
rent chemoradiotherapy (CCRT) and CCRT alone [3,4]. Currently, the
choice of individualized treatment regimen remains equivocal in clin-
ical practice [3,5].

In recent decades, some prognostic biomarkers, such as mRNA [6],
plasm protein [7], and tumour-infiltrating lymphocytes [8], had been
developed for advanced NPC. However, these prognostic signature are
not predictive biomarkers for treatment response, as they did not
inform therapy strategy before treatment [9,10]. Therefore, it is very
necessary to examine the impact of treatment regimen on prognosis of
NPC patients to help optimize treatment decision.

Recently, the use of radiomics in oncology, which allows in-depth
characterization of tumour phenotypes using a computerized imaging
analysis algorithm, has garnered increasing attention [11,12]. The intro-
duce of deep learning enables radiomics to perform end-to-end model-
ling of medical data and multi-task learning for multiple clinical tasks,
which demonstrated excellent results [13-15]. Emerging evidence has
confirmed that radiomics had potential value in predicting prognosis
and treatment response in NPC [16-18]. However, no previous study
has used multi-task learning to simultaneously predict prognosis and
make treatment recommendations for NPC patients.

The aim of this study was to use multi-task deep-learning radiomics
to develop simultaneously prognostic and predictive signatures from
pre-treatment magnetic resonance (MR) images of NPC patients, and to
construct a combined prognosis and treatment decision nomogram
(CPTDN) for predicting the prognosis of NPC patients with different
treatment regimens and accordingly recommending an optimal treat-
ment regimen. In this study, we focused on stage T3N1M0 NPC patients,
the largest subgroup of advanced NPC, and collected a large multicentre
dataset used for model development and validation.
2. Methods

2.1. Patients

The ethical review board of Institute of Automation, Chinese
Academy of Sciences approved this retrospective study (ID: IA-
202043) and waived the requirement of informed consent.

The overall study design is shown in Fig. 1. We retrospectively
reviewed the charts of patients with NPC diagnosed at the four Chi-
nese centres (centre 1: Sun Yat-sen University Cancer Centre, centre
2: First People's Hospital of Foshan Affiliated to Sun Yat-sen Univer-
sity, centre 3: Fifth Affiliated Hospital of Sun Yat-sen University, cen-
tre 4: Guilin Medical University Affiliated Hospital) between January
2010 and June 2017. A total of 1872 candidate eligible patients with
stage T3N1M0 NPC and available diagnostic MR images were
included, according to the inclusion and exclusion criteria.

The inclusion criteria: had diagnosed T3N1M0; treated by either
ICT+CCRT or CCRT alone; received intensity-modulated radiotherapy;
underwent MRI scans within 2 weeks before treatment.

The exclusion criteria: received adjuvant chemotherapy, targeted
therapy, or biotherapy during the course of radical treatment; with
previous chemotherapy or radiotherapy or other malignant tumours;
had artifacts, blurs, faults, and disordered slices in the MR image.

Data on demographic characteristics, pre-treatment plasma
Epstein-Barr virus DNA (pre-EBV DNA) levels, and treatment regimen
were gathered from the medical records of each centre. All patients
were treated by either CCRT or ICT+CCRT. To reduce the impact of
clinicians’ judgment on the choice of treatment regimen, a nonpara-
metric matching method was used to screen out patients with similar
baseline characteristics in the CCRT and ICT+CCRT groups at a ratio of
1:1 [19] (Appendix A). Matched patients from centre 1 were divided
into a training cohort and an internal test cohort, and those from the
other three centres were divided into an external test cohort.

The primal endpoint is disease-free survival (DFS), the time from the
date of initial diagnose until either the date of disease progression or
death from any cause. The protocol of disease progression identification,
including local and regional recurrence or distant metastasis, was the
same as previously reported [17]. Tumour staging was determined

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Deep-learning radiomics workflow. (a) Extracting deep radiomic features from multi-sequence magnetic resonance images. (b) Building prognostic and predictive signa-
tures using a unified fully connected neural network. (c) Constructing and validating a prognostic nomogram that could predict the prognosis of patients with different treatment
regimens. (d) Supporting treatment decision using the prognostic difference between treatments based on the nomogram. DFS, disease-free survival.
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based on the American Joint Committee on Cancer TNM StagingManual,
eighth Edition [20]. Treatment details are summarised in Appendix A.
2.2. MR acquisition and tumour segmentation

In two weeks prior to any anti-tumour therapy, all patients under-
went three sequences of MRI (T1-weighted, T2-weighted, and con-
trast enhanced T1-weighted) scanning. The MR acquisition protocols
(including the details of manufacturer and magnetic field strength,
among others) are shown in Appendix B. For each MR sequence, the
primary tumour was manually contoured on each axial MR slice by
two experienced radiologists (X.L.F. and F.Z.).
2.3. Feature extraction and radiomic signature building

Considering scanner-dependent bias in image intensity, the MR
images were interpolated and normalized to match the reference
template [21]. We used the SE-ResNet architecture [22] as the back-
bone network combined with the multiple instance learning method
[23] to extract the deep radiomic features from the MR images. After-
ward, taking the deep radiomic features from three MR sequences as
input, a unified fully connected neural network, which consists of a
shared backbone network and two task-specific subnetworks, was
constructed to simultaneously predict prognosis and treatment
response. The output of the subnetwork for predicting prognosis
(Prognostic-score) was the estimate of the risk of disease progression,
whereas that of another subnetwork (Predictive-score) was the esti-
mate of the relative risk of disease progression associated with
receiving ICT+CCRT vs. receiving CCRT. In the subnetwork that pre-
dicted treatment response, interactions between treatments and acti-
vation units were considered, using the modified covariate method
[18]. Cox partial log likelihood [24] was chosen as the loss function to
train feature extraction networks and signature building network in
the training cohort. Specific architectures and training details of these
networks were shown in Appendix C.
2.4. CPTDN construction

Univariate Cox proportional hazards regression analysis was used
to evaluate the association between clinical characteristics and DFS
and response to treatment regimen in the training cohort. Incorpo-
rating independent clinical factors, Prognostic-score, and Predictive-
score, a CPTDN was developed using multivariate Cox proportional
hazards regression (MCox) method and was plotted for the conve-
nient of clinicians. Using the CPTDN, the prognosis predictions of
each patient were calculated when it receives different treatment
regimens, based on which the prognostic difference was used to
make a personalized treatment recommendation.

To compare to CPTDN in prognostic prediction, three clinical mod-
els were built, using MCox method in all patients (Modelclinall ), those
receiving CCRT (Modelclinccrt) and those receiving ICT+CCRT
(ModelclinictþccrtÞ of the training cohort. In addition, Modelclinþprog

all was
built using MCox method in the training cohort to assess the incre-
mental prognostic value of prognostic-score in clinical practice.

2.5. Performance assessment

Harrell’s concordance index (C-index) and hazard ratio (HR) esti-
mates were used to assess and test prognostic performance of the
proposed models in all cohorts. The quality of Predictive-score was
assessed by its pinteraction value, indicative of treatment interaction.

Furthermore, the calibration curve was plotted to evaluate the
agreement between the observed survival and the CPTDN-predicted
survival. Subgroup analysis using clinical factors and MR acquisition
parameters was performed to assess the stability of CPTDN. In addi-
tion, we evaluated the prognostic performance of CPTDN in terms of
second clinical endpoints, including overall survival, distant metasta-
sis-free survival, and locoregional relapse-free survival.

2.6. Statistical analysis

The survival curves were drawn using Kaplan-Meier method. The
p-value of HR estimate was computed using the log-rank test. In the



Fig. 2. Combined prognosis and treatment decision nomogram (CPTDN) and its calibration curves. (a) A CPTDN was built for predicting disease-free survival (DFS) of patients
with different treatment regimens and accordingly recommend an optimal treatment regimen. The calibration curves of the CPTDN were plotted for predicting the 3-year (b) and
5-year DFS rate (c) in three cohorts (n=1206). The CPTDN could noninvasively recommend an optimal treatment regimen and predict patient prognosis. For example, consider a 40-
year-old target patient with stage T3N1M0, a pre-EBV DNA of >4000 copy/mL, a Prognostic-score of 0.0, and a Predictive-score of -0.4; If the patient received ICT+CCRT, the patient’s
total score would be 122 (21+15+41+45), for which the 5-year DFS rate is estimated at 81%. If the patient received CCRT, the patient’s score would be 147 (21+15+41+70), for which
the 5-year DFS rate is estimated at 63%. The 5-year prognostic difference is 18%, so the CPTDN would recommend ICT+CCRT and provide a 5-year DFS rate of 81%. CCRT, concurrent
chemoradiotherapy; ICT, induction chemotherapy; pre-EBV DNA, pre-treatment plasma Epstein-Barr virus DNA. HL test: Hosmer-Lemeshow test.
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MCox analysis, a hybrid mode of forward and backward stepwise
selection was applied to select independent features using Akaike’s
information. A two-sided p<0.05 means that the corresponding esti-
mate reaches significant difference.

Open-source R software v3.6.1 was used to conduct statistical
analysis, and open-source Python v3.6.8 and TensorFlow v1.12 was
used to implement deep learning network models. A detailed
description of the R packages used is shown in Appendix C.
2.7. Role of the funding source

The funders had no role in the study design, data collection, analy-
sis, patient recruitment, writing of the manuscript, the decision to
submit the manuscript for publication, or any aspect pertinent to the
study. All authors had full access to the full data in the study and
accept responsibility to submit for publication.
3. Results

3.1. Clinical characteristics

According to sex, age, smoking status, drinking status, family his-
tory of cancer, haemoglobin levels, tumour volume, and pre-EBV
DNA levels, 1008 matched NPC patients with stage T3N1M0 in centre
1 were selected and divided randomly into the training (n=684) and
internal test (n=324) cohorts. The external test cohort comprised of
198 matched target patients from three other centres. All matched
patients had balanced baseline clinical characteristics between treat-
ments (Table A1). Baseline clinical characteristics are summarized in
Table 1; they did not show significant differences between the
cohorts, except for the pre-EBV DNA levels. Median follow-up was
64.0 months (interquartile range [IQR]: 53.4-78.3), 65.7 months (IQR:
52.9-77.6), and 63.3 months (IQR: 50.9-76.6) in the training, internal
test, and external test cohorts, respectively. At the last follow-up,



Fig. 3. Comparison of prognostic models’ performance on different treatment-specific subgroups. The vertical line over the bar presents the confidence interval of the C-index.
CCRT, concurrent chemoradiotherapy; ICT, induction chemotherapy.
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107/684 (15.6%), 55/324 (17.0%), and 35/198 (17.7%) patients had
experienced a confirmed disease progression in each of the cohort,
respectively.

3.2. Development and validation of radiomic signatures

Prognostic-score and Predictive-score were developed simulta-
neously by the unified fully connected neural network. Prognostic-
score exhibited a good predictive value for DFS in the training cohort
(C-index: 0.772, 95% confidence interval [CI]: 0.721-0.822). Similar
prognostic ability of Prognostic-score was obtained in the internal
test (C-index: 0.733, 95% CI: 0.657-0.809), and external test (C-index:
0.681, 95% CI: 0.568-0.793) cohorts. Predictive-score exhibited a
strong association with treatment response in all cohorts (all
pinteraction < 0:001 [Wald test]). Furthermore, Predictive-score did not
exhibit a consistently significant association with any clinical factor
in all cohorts (Table D1).

3.3. Construction and prognostic performance of CPTDN

Univariate Cox proportional hazards regression analysis (Fig. D1)
demonstrated that age (HR: 1.25 [per 10 years], log-rank test:
p = 0.020) and pre-EBV DNA levels (HR: 2.08, log-rank test: p <

0.001) were significantly associated with DFS, and that no clinical fac-
tor was significantly associated with treatment response (all pinteraction
>0:05 ½Wald test�Þ: Incorporating Prognostic-score, interaction item
of treatment with Predictive-score, pre-EBV DNA levels, and age,
CPTDN was constructed for DFS prediction in the training cohort
using the MCox analysis and is plotted in Fig. 2a. Meanwhile, Mode
lclinall was constructed using age and pre-EBV DNA levels; Modelclinccrt was
constructed using tumour volume and pre-EBV DNA levels; Mode
lclinictþccrt was constructed using age and pre-EBV DNA levels; and Mode
lclinþprog
all was constructed using age, Prognostic-score and pre-EBV
DNA levels. CPTDN obtained the best prognostic ability in the treat-
ment-specific subgroup of all cohorts (Fig. 3). Furthermore, the C-
index of CPTDN (training: 0.868 [95% CI 0.833-0.903], internal test:
0.856 [0.807-0.905], external test: 0.851 [0.787-0.914]) was also
highest compared to other models in all cohorts (Table D2).

CPTDN presents good agreement with the actual observed DFS
rate at 3-year and 5-year (Fig. 2b and 2c). Risk stratification analysis
demonstrated that CPTDN could successfully classify patients into
the low-risk and high-risk groups with significant differences in DFS
(log-rank test: p <0.05, Fig. 4). Similarly, CPTDN could identify
patients with good prognosis for second clinical endpoints in the
combined internal and external test cohort (Fig. D2). In addition, sub-
group analysis demonstrated that CPTDN retained the capacity for
risk stratification for DFS (Fig. D3) when considering clinical factors
and MR parameters, including sex, C-reaction protein levels (normal
or abnormal), smoking status (yes or no), family history of cancer
(yes or no), tumour volume (�29 mL or >29 mL), magnetic field
strength and manufacturer of MR scanner (<3.0T or =3.0T).

3.4. Performance for treatment decision of CPTDN

According to the CPTDN, the prognostic difference was calculated
using the difference in DFS rate of receiving ICT+CCRT vs. receiving
CCRT. The 5-year prognostic difference of receiving ICT+CCRT vs.
receiving CCRT divided patients into the ICT-preferred group and



Fig. 4. Risk stratification analysis of CPTDN for predicting disease-free survival in three cohorts (n=1206). (a) Kaplan-Meier curves of disease-free survival in the entire group,
(d) patients receiving CCRT, and (g) patients receiving ICT+CCRT in the training cohort. (b) Kaplan-Meier curves of disease-free survival in the entire group, (e) patients receiving
CCRT, and (h) patients receiving ICT+CCRT in the internal test cohort. (c) Kaplan-Meier curves of disease-free survival in the entire group, (f) patients receiving CCRT, and (i) patients
receiving ICT+CCRT in the external test cohort. All Kaplan-Meier curves were stratified by the mean total point (100) of CPTDN outputs. CCRT, concurrent chemoradiotherapy; ICT,
induction chemotherapy.
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CCRT-preferred group, using a threshold of 0% (Fig. 5). In the ICT-pre-
ferred group (difference >0%), ICT+CCRT was a preferred treatment
regimen with an improved DFS compared to CCRT in the training
(HR: 0.21, 95% CI: 0.11-0.38, log-rank test: p < 0.001), internal test
(HR: 0.17, 95% CI: 0.07-0.42, log-rank test: p < 0.001) and external
test (HR: 0.24, 95% CI: 0.07-0.90, log-rank test: p = 0.022) cohorts.
While in the CCRT-preferred group (difference �0%), CCRT was a pre-
ferred treatment regimen compared to ICT+CCRT in the training (HR:
5.34, 95% CI: 2.49-11.47, log-rank test: p < 0.001), internal test (HR:
6.24, 95% CI: 2.14-18.19, log-rank test: p < 0.001) and external test
(HR: 12.08, 95% CI: 2.74-53.19, log-rank test: p < 0.001) cohorts.
Moreover, in the treatment decision analysis of the 5-year prognostic
difference with 2% and 5% as cut-off points, it remained an effective
indicator for identifying patients who were suitable for CCRT or ICT
+CCRT (Fig. D4 and D5). Furthermore, CPTDN could identify patients
who were suitable for CCRT or ICT+CCRT for second clinical endpoints
in the combined internal and external test cohort (Fig. 6). When
stratified by sex, age (�42 years or >42 years), tumour volume
(�29 mL or >29 mL), and magnetic field strength of MR scanner
(<3.0T or =3.0T), the 5-year prognostic difference still identified
patients who were suitable for CCRT or ICT+CCRT (Fig. D6).

4. Discussion

In this large multicentre study, we developed a nomogram
(CPTDN) for prognosis and treatment decision in NPC patients with
stage T3N1M0. The CPTDN was constructed by the predictive radio-
mic signature and independent prognostic factors, which could pre-
dict the prognosis of patients with different treatment regimens and
accordingly recommend an optimal treatment regimen. Our CPTDN
identified patients most likely to benefit from specific treatment regi-
mens and presented better prognostic ability than the clinical models



Fig. 5. Kaplan-Meier curves of disease-free survival according to dichotomized 5-year prognostic difference in all cohorts (n=1206). (a) Comparisons of the ICT+CCRT and
CCRT groups in the ICT-preferred group (difference >0%), and (b) the CCRT-preferred group (difference �0%) in the training cohort. (c) Comparisons of the ICT+CCRT and CCRT
groups in the ICT-preferred (difference >0%) group, and (d) CCRT-preferred group (difference �0%) in the internal test cohort. (e) Comparisons of the ICT+CCRT and CCRT groups in
the ICT-preferred group (difference >0%), and (f) CCRT-preferred group (difference �0%) in the external test cohort. CCRT, concurrent chemoradiotherapy; ICT, induction chemo-
therapy.
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developed on different treatment-specific groups. These findings
indicate that the proposed model may serve as a tool for promoting
personalised treatment and optimizing the management of NPC
patients. We have developed a user-friendly web browser-based tool
for our CPTDN on an open-access website (http://www.radiomics.
net.cn/post/135) to facilitate its validation and application.

Previous radiomics/deep learning studies in NPC separately
explored the prognosis value or predictive value of clinical factors/
models. Although some studies found that imaging-based prognostic
signatures were predictive of treatment outcomes, they did not take
treatment factor into account in the development of prognostic
models [16,25]. Given the fact that treatment regimen may largely
affect clinical outcomes, it is necessary to consider treatment factor
when analysing prognosis. Some tailored predictive signatures could
identify the patients who would benefit most from adjuvant therapy
or induction therapy, but they could not give the individualized prog-
nostic evaluation for a patient receiving the specific treatment regi-
men [10,18]. Therefore, these studies could not predict the prognosis
of patients with different treatment regimen. In contrast, Our CPTDN
incorporating prognostic and predictive factors could provide indi-
vidualized evaluation of DFS in different treatment regimen and
accordingly recommend optimal treatment regimens, CCRT alone or

http://www.radiomics.net.cn/post/135
http://www.radiomics.net.cn/post/135


Fig. 6. Kaplan-Meier curves for second clinical endpoints according to dichotomized 5-year prognostic difference in the combined internal and external test cohort (n=500).
(a) Comparisons of overall survival between the ICT+CCRT and CCRT groups in the ICT-preferred group (difference >0%), and (b) CCRT-preferred group (difference �0%). (c) Compar-
isons of distant metastasis-free survival between the ICT+CCRT and CCRT groups in the ICT-preferred (difference >0%) group, and (d) CCRT-preferred group (difference �0%). (e)
Comparisons of locoregional relapse-free survival between the ICT+CCRT and CCRT groups in the ICT-preferred group (difference >0%), and (f) CCRT-preferred group (difference
�0%). CCRT, concurrent chemoradiotherapy; ICT, induction chemotherapy.

8 L. Zhong et al. / EBioMedicine 70 (2021) 103522
ICT+CCRT, to NPC patients. Our CPTDN remained good prognostic and
predictive ability for second clinical endpoints. Moreover, the prog-
nostic and predictive stability of our CPTDN was further validated in
different subgroups stratified by clinical factors and MR acquisition
parameters. To the best of our knowledge, this is the first multi-task
deep learning study aimed at simultaneously predicting prognosis
and recommending treatment regimens for NPC patients.

In our study, we found that Prognostic-score and Predictive-score
showed a large incremental value in prognostic prediction of DFS,
which validated the prognostic and predictive value of multi-task
deep-learning radiomics and emphasized the necessity of consider-
ing treatment factor in prognostic prediction. Compared the single-
task radiomic model (C-index: 0.759) [17], the multi-task radiomic
model integrating Prognostic-score and Predictive-score obtained
better prognostic results (C-index: 0.836 in the combined internal
and external test cohort). To provide insights into what the multi-
task deep-learning model learned, we performed gradCAM analysis
[26] on patients’ MR images (Fig. D7). This analysis revealed that the
primary tumour regions of the MR images are most responsible for
the Prognostic-score in high-risk patients, whereas the regions adja-
cent to the primary tumour are most responsible for this signature in
low-risk patients. As past studies indicate, both intra-tumoral and
peritumoral regions offer information valuable for prognosis [27]. In
the areas surrounding the tumour mass, immune signatures, such as
lymphangiogenic activity and lymphocytic infiltration can be
detected [28]. In high-risk patients with poor survival, the primary



Table 1
Baseline characteristics in the training, internal validation, and external validation cohorts.

Characteristics Training (N = 684) Internal test (N = 324) External test (N = 198) p-value

Age (years), median (range) 42 (14-72) 41 (15-65) 43 (13-72) 0.33
Sex, No. (%) 0.63

Male 464 (67.8) 229 (70.7) 134 (67.7)
Female 220 (32.2) 95 (29.3) 64 (32.3)

Haemoglobin1 (g/L), No. (%)
Normal 599 (87.6) 283 (87.3) 152 (86.4) 0.91
Abnormal 85 (12.4) 41 (12.7) 24 (13.6)
Unknown 0 0 22

Family history of cancer, No. (%) 0.72
Yes 189 (27.6) 82 (25.3) 44 (27.7)
No 495 (72.4) 242 (74.7) 115 (72.3)
Unknown 0 0 39

Smoking, No. (%) 0.73
Yes 205 (30.0) 105 (32.4) 50 (31.4)
No 479 (70.0) 219 (67.6) 109 (68.6)
Unknown 0 0 39

Drinking, No. (%) 0.33
Yes 72 (10.5) 40 (12.3) 23 (14.5)
No 612 (89.5) 284 (87.7) 136 (85.5)
Unknown 0 0 39

WHO pathology type, No. (%) 0.54
I-II 7 (1.0) 2 (0.6) 3 (1.6)
III 677 (99.0) 322 (99.4) 179 (98.4)
Unknown 0 0 16

Albumin (g/L), No. (%) 0.88
Normal (40-55) 630 (92.1) 301 (92.9) 146 (91.8)
Abnormal (other) 54 (7.9) 23 (7.1) 13 (8.2)
Unknown 0 0 39

C-reaction protein (mg/L), No. (%) 0.97
Normal (�3) 505 (73.8) 238 (73.5) 116 (73.0)
Abnormal (other) 179 (26.2) 86 (26.5) 43 (27.0)
Unknown 0 0 39

Lactate dehydrogenase (U/L), No. (%) 0.52
Normal (120-250) 634 (92.7) 304 (93.8) 152 (91.0)
Abnormal (other) 50 (7.3) 20 (6.2) 15 (9.0)
Unknown 0 0 31

Treatment 1.00
CCRT 341 (49.9) 163 (50.3) 99 (50.0)
ICT+CCRT 343 (50.1) 161 (49.7) 99 (50.0)

pre-EBV DNA (copy/mL), No. (%) 0.0087
< 4000 427 (62.4) 212 (65.4) 91 (51.7)
� 4000 257 (37.6) 112 (34.6) 85 (48.3)
Unknown 0 0 22

Tumour volume (mL), mean 29.2 28.6 31.4 0.88
1 For males, normal haemoglobin levels are in the range of 130-175 g/L; the equivalent values for females are in the

range of 115-150 g/L.
WHO, World Health Organization; pre-EBV DNA, pre-treatment plasma Epstein-Barr virus DNA.
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tumour tends to be more aggressive and the peritumoral immune
response rate tends to be low. In contrast, in low-risk patients with
good survival, the primary tumour is less aggressive and the peri-
tumour immune response rate is high. This may explain our find-
ings. When evaluating the Predictive-score, the multi-task deep-
learning model focused on the primary tumour regions of the
CCRT-preferred group and on the peritumoral regions of the ICT-
preferred group. This differentiation may be due to the fact that
CCRT-preferred patients tend to have vessel malfunction, which
may cause hypoxia inside the tumour and drive chemoresistance
[29,30]. However, in ICT-preferred patients, there are more func-
tional vessels around the tumour that guarantee effective blood
supply and drug delivery [29].

This study has three main strengths. First, this multicentre study
offers a promising start for developing more comprehensive prognos-
tic model with personalized treatment recommendations for NPC.
The present study design and methods can be applied to treatment
decisions and prognostic prediction in other cancer types. Second,
target delineation in radiotherapy ensures the repeatability of the
extracted features, as the feature extraction network uses tumour-
centred patches as input, which improves the convenience and feasi-
bility of our model in clinical practice. Finally, our study validated the
incremental value of multi-task learning in prognosis prediction, pav-
ing the path for the exploration of multi-task learning in fields, such
as tumour staging and disease surveillance.

Nevertheless, this study has some limitations, which should be
considered when interpreting its findings. First, only patients with
stage T3N1M0 NPC were included in this study; future studies should
consider patients with other disease stages. Second, CCRT plus adju-
vant chemotherapy is also an optional treatment regimen in the
advanced NPC [31], and the response to CCRT plus adjuvant chemo-
therapy remains to be investigated. Third, a nonparametric matching
method was used to balance baseline characteristics between treat-
ments in the retrospective study; however, selection bias between
the two treatment regimens likely remained and may have affected
the presented estimates; therefore, validation of the present findings
in prospective trials is required.

In conclusion, we developed and validated a multi-task nomo-
gram that could noninvasively predict the prognosis of T3N1M0
NPC patients with different treatment regimens and accordingly
recommend an optimal treatment regimen in the multicentre
cohorts. Our nomogram may act as a non-invasive and useful tool
for promoting personalized treatment and optimizing manage-
ment of NPC patients.
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