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ABSTRACT: Reversed-phase liquid chromatography has become
the preferred method for separating peptides in most of the
mass spectrometry-based proteomics workflows of today.
In the way the technique is typically applied, the peptides are
released from the chromatography column by the gradual
addition of an organic buffer according to a linear function.
However, when applied to complex peptide mixtures, this
approach leads to unequal spreads of the peptides over the
chromatography time. To address this, we investigated the use
of nonlinear gradients, customized for each setup at hand.
We developed an algorithm to generate optimized gradient
functions for shotgun proteomics experiments and evaluated it for two data sets consisting each of four replicate runs of a human
complex sample. Our results show that the optimized gradients produce a more even spread of the peptides over the
chromatography run, while leading to increased numbers of confident peptide identifications. In addition, the list of peptides
identified using nonlinear gradients differed considerably from those found with the linear ones, suggesting that such gradients
can be a valuable tool for increasing the proteome coverage of mass spectrometry-based experiments.

Shotgun proteomics, also referred to as bottom-up proteo-
mics, has become an essential tool in biological research.1

Tremendous developments in sample preparation,2 instrumen-
tation,3 and data analysis software4 have enabled the identifica-
tion and quantification of thousands of proteins in a single run.5

In its most widespread workflows, the technique involves the
digestion of the proteins of interest into peptides, the separa-
tion of the resultant peptide mixture into one or several fractions,
followed by mass spectrometry (MS) analysis of the peptides in
each fraction. The generated fragmentation spectra are sub-
sequently matched to peptide sequences and assigned statistical
confidence, and a list of proteins likely to be present in the
initial sample is inferred.
Within these advancements, a major role has been played by

fractionation techniques, in particular reversed-phase liquid
chromatographic (RPLC), which despite other options remains
the almost exclusive method for separating peptides prior to
electrospray ionization.6 In the way the technique is typically
applied, the peptides are separated on a liquid chromatography
(LC) column under gradient conditions, by the progressive addition
of an increasing percentage of organic solvent according to a
linear function.7 In the past decade, several studies have shown
that alterations in column length, inner diameter, packing material

or temperature may dramatically increase the yield of a shotgun
proteomics experiment.8−10 Furthermore, it has been shown
that modern LC-systems combined with ultralong gradients are
a powerful technology, with great potential in the context of
clinical samples where often limited amounts of biological material
are available.11,12 However, whereas a number of studies have
examined the effects of extending the gradient time,13,14 little is
known about the consequences of changing the shape of the
gradient function when analyzing complex peptide mixtures.
Currently, a limiting factor for the number of proteins that

can be identified in a shotgun experiment is the rate at which
the mass spectrometer fragments peptides.15 As an example,
without considering miscleavages, post-translational modifica-
tions, or sequence variations, a theoretical digest of the human
Swissprot 2012_09 database contains more than 3.7 × 105

unique tryptic peptides. Assuming a four hours experiment, this
translates to a total of 1500 peptides that the mass spectrometer
would need to sequence every minute, which is beyond the
capabilities of even the fastest instruments presently available.
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This problem is further augmented by the unequal spread of
the peptides over the gradient time, with a majority of the
peptides eluting in only a short portion of the chromatography
run.16 While in theory one could calculate different gradient
functions producing even distributions of the peptides, little is
known about the use of such functions in the context of
shotgun proteomics experiments of complex mixtures.
Following these observations, we herein investigate the use of

nonlinear gradients for the RPLC separation of complex pep-
tide mixtures. We implemented an algorithm that calculates two
such gradients, one designed to produce an even distribution
for the theoretical peptides from an in silico digest, and one
that evens the distribution of the high-intensity MS1 ions. We
evaluated the nonlinear gradients for two data sets consisting of
four replicate runs of a complex sample, and found that they
produced both more equally spread peptides throughout the
run, and increased numbers of confident peptide identifications.
In addition, the list of peptides identified using nonlinear gradients
differed considerably from the one found with the linear ones,
suggesting that such gradients can facilitate the identification of
novel peptide species. The algorithm to calculate nonlinear gradients
is straightforward to apply, and a python implementation can
be downloaded under MIT license at http://code.google.com/
p/nonlinear-gradients/.

■ EXPERIMENTAL SECTION
Sample Preparation. A tryptic digest of HeLa protein

extracts was prepared as previously described.12,14 Briefly,
nocodazole arrested HeLa Kyoto cells were harvested and
protein was purified by acetone precipitation. After resuspen-
sion in 8 M urea in 0.5 M ammonium bicarbonate (ABC),
disulfide bridges were reduced using 0.05 μg of dithiothreiotol
(DTT) per μg of protein, and alkylated with 0.25 μg of iodoacet-
amide per μg of protein. The sample was subsequently diluted
with 50 mM ABC, first to 6 M urea, followed by 2 h digestion
with LysC (1:50 w/w), and then to 0.8 M urea followed by o/n
digestion with trypsin (1:30 w/w).
Reversed-Phase Liquid Chromatography. Four Hour

Gradient Experiments. HeLa digest peptide mixture (0.5 μg
per injection) was separated on an UltiMate 3000 RSLCnano
system (Dionex) using a 50 cm × 75 μm i.d. column
(AcclaimPepMap C18, 2 μm, 100 Å, Dionex).12 The sample
was first loaded onto a trapping column (2 cm × 100 μm i.d.;
Acclaim PepMap C18, 5 μm, 100 Å) for 10 min using 0.1%
TFA as a loading solution and a loading pump flow rate of
25 μL/minutes. Subsequently, the trapping column was switched
in-line with the analytical column and the linear gradient was
started using a pump flow rate of 230 nL/min. Solvent solu-
tions were solvent A (0.1% FA) and solvent B (0.08% FA and
80% acetonitrile).
For the linear gradient experiments, the analytical column

was first equilibrated in 98% A and 2% B, followed by a linear
gradient starting with 2% B at 10 min (the time-point of valve
switching) and increasing to 40% B at 250 min. To clear the
system from hydrophobic peptides, the linear gradient was
followed by an increase to 50% B at 255 min and to 90% B at
260 min, which was held constant for further 10 min.
Subsequently, the concentration of solvent B was decreased
to 2% within 2 min, which was maintained for 33 min to pre-
pare the system for the next injection. The mass spectrometer was
started by a contact closure signal from the RSLC at 10 min.
For the nonlinear gradients, all settings were kept identical,

including the settings of 2% B at 10 min and 40% B at 250 min.

However, for each minute between the time points 11 and
249 min, the calculated concentration of solvent solution B for
the respective optimized nonlinear gradient was rounded at one
decimal place and inserted into the LC method (248 additional
data points). Of note, the time intervals were interpreted by the
LC system as a series of linear gradients of 1 min duration.
The LC system therefore did not deliver a step-gradient but
rather approximated the concentration of solvent B during each
of the 1 min intervals. This strategy permitted a simple yet flexible
design as well as an adequate representation of the nonlinear
nature of the optimized gradients within the framework of the
standard LC control software (Chromeleon, version 6.80 SR11).
Two blank runs were programmed on the LC before each of

the individual linear or nonlinear sample analyses. Solvent
solutions for blanks were identical to samples, and the gradient
was: 2% B for 10 min, followed by a linear gradient from 2% B
to 40% B from 10 to 40 min, increased to 90% B at 45 min,
which was maintained for 5 min, then 2% B at 52 min con-
tinued for 23 min for column equilibration.
The time difference between the LC method and the MS raw

file was estimated experimentally using an LC method identical
to the linear gradients described above, except for the fact that
98% A and 2% B were maintained for 30.00 min, followed by a
sharp increase to 30% B at 30.01 min. This permitted an
observation of the well-defined time-point in the MS raw file at
which peptides eluting from the analytical column due to the abrupt
increase in organic solvent concentration were detected in the MS.
Only 50 ng of the peptides were injected for this purpose. For
further details, refer to the Design of Optimized Gradients section.

Two Hour Gradient Experiments. An Ultimate 3000 LC
system (Dionex) was employed for the 2 h gradient experi-
ments. 0.5 μg HeLa digest peptide mixture was injected and
separated on a 15 cm × 75 μm i.d. column (Acclaim PepMap
C18, 2 μm, 100 Å, Dionex). After the sample was loaded onto a
trapping column (5 mm × 300 μm i.d.; Acclaim PepMap C18,
5 μm, 100 Å) for 10 min using 0.1% TFA as a loading solution
and a loading pump flow rate of 25 μL/min, the trapping
column was switched in-line with the analytical column and the
linear gradient was started using a pump flow rate of 230 nL/min.
Solvent solutions were solvent A (0.1% FA) and solvent B
(0.08% FA and 80% acetonitrile).
The analytical column was first equilibrated in 98% A and 2% B.

The linear gradient started with 2% B at 10 min (the time-point
of valve switching), increasing to 40% B at 130 min, followed
by 90% B from 135 min until 140 min, then 2% B from 142 to
165 min to prepare the system for the next injection. The mass
spectrometer was started by a contact closure signal from the
LC at 20 min.
The nonlinear gradients were developed in an analogous way

as described above for the 4 h gradients except for the different
linear gradient time. The time delay between the LC and the
MS was estimated with an LC method that included a step
gradient which led to a sharp increase in the concentration of
organic solvent (%B) at 30.01 min LC time.

Mass Spectrometry Analysis. Four Hour Gradient
Experiments. For the long gradient experiments, the LC was
connected to a Q Exactive mass spectrometer (Thermo Scientific)
via a nanoelectrospray ion source (Proxeon). The mass spectro-
metry method duration was 290 min, and the mass spectro-
meter was operated in positive ionization mode. The source voltage
was 1.9 kV, and the capillary temperature was 275 °C. One
MS1 scan (m/z 350−2000, AGC target 3 × 106 ions, maximum
ion injection time 60 ms) acquired at a resolution of 70 000
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(at 200 m/z) was followed by up to 10 tandem MS scans
(resolution 17 500 at 200 m/z) of the most intense ions
fulfilling the defined selection criteria (peptide match on,
exclude isotopes on, exclusion of singly charged precursors,
AGC target 1 × 105 ions, underfill ratio 20%, maximum ion
injection time 120 ms, isolation window 2 Da, dynamic exclu-
sion time 90 s). The HCD collision energy was set to 30%
NCE and the polydimethylcyclosiloxane background ions at
445.120025 were used for internal calibration (lock mass).
Two Hour Gradient Experiments. An LTQ-Orbitrap XL/ETD

mass spectrometer (Thermo Scientific) was connected to the
LC via a nanoelectrospray ion source (Proxeon) and operated
in positive ionization mode with a source voltage of 1.5 kV and
a capillary temperature of 200 °C. Method duration was 140 min.
One MS1 scan (m/z 400−1800, AGC target 1 × 106 ions,
maximum ion injection time 500 ms) acquired at a resolution
of 60 000 at 400 m/z was followed by up to 10 collision-
induced dissociation scans (normalized collision energy 35,
activation time 30 ms, activation Q 0.25) of the most intense
ions (monoisotopic precursor selection enabled, exclusion of
singly charged precursor ions, AGC target 5 × 104 ions,
maximum ion injection time 100 ms, dynamic exclusion time
30 s with an exclusion window of ±5 ppm). The minimal signal
threshold was 5 × 104, isolation width was 3 Da. FT preview
mode was enabled and polydimethylcyclosiloxane background
ions at 445.120025 were used for internal calibration (lock mass).
Data Processing. The tool msconvert from the Proteo-

Wizard software suite17 was used to convert all the raw data to
the .mzML and .ms2 file formats. We used Hardklör version
2.0318 for deconvolution and mass and charge calculations, and
Bullseye version 1.3019 to assign to each peptide the apex
retention time of its corresponding feature. The fragmentation
spectra were searched with Crux version 1.37,20 using the
sequest−search command and the following parameter values:
precursor mass window of 10 ppm, the enzyme set to trypsin,
and the missed-cleavages option switched on. The only fixed
modification searched was the carbamidomethylation of
cysteine (57.021464 Da to all cysteines). The data sets were
searched against both the human Swissprot 2012_09 database,
and a decoy database obtained by reversing the sequences from
the human database. The resulting peptide-spectrum matches
were postprocessed using Percolator version 2.04,21 which
improved the rate of confidently identified spectra, and
provided statistical significance measures such as false discovery
rates (FDR) and posterior error probabilities (PEP) at pep-
tide level.
The full lists of peptide identifications obtained following

these procedures and parameters used to run each software tool
are available online at http://www.nada.kth.se/lumi/datasets/
nonlinear_gradient/nonlinear_gradient.html.
Design of Optimized Gradients. We designed two non-

linear gradients, denoted in silico-optimized and MS1-optimized,
tailored to give even distributions across the chromatographic
run for the theoretical peptides from an in silico digest of the
human proteome, and for the high-intensity MS1 ions detected
using a linear gradient, respectively. Each new gradient was
defined by a function giving the percentage of solvent B at
every minute during the chromatographic run.
To design these gradients, we first needed to estimate the

correspondence between the times tLC in which the gradient
was given to the LC-system, and the times tMS when the effects
of these instructions were reported in the output file from the
mass spectrometer. This correspondence can be expressed by

= +t t tMS LC lag (1)

where tlag is a constant characteristic for the respective LC-MS
system. We determined the value of tlag for our data
experimentally, using the following procedure: we modified
the linear LC gradient so that 98% solvent A and 2% solvent B
were delivered until 30.00 min, followed by an abrupt rise to
30% solvent B at 30.01 min (LC method time). This led to a
surge of peptides eluting from the analytical column at a well-
defined time-point (tpeptide_surge) which was observable in the
MS raw file, permitting the calculation of the time difference
between the LC and the MS as tlag = tpeptide_surge−30. For the
4 h runs we obtained tlag = 6.2 min, and for the 2 h runs
tlag = −6.87 min.

In silico-Optimized Gradient. The in silico-optimized
gradient is designed to give an even spread for all the predicted
peptides of the analyzed proteome. The procedure consists of
two steps: the prediction of the peptides’ retention times, and
the calculation of an altered gradient giving a theoretical con-
stant elution rate for these peptides. Both steps are described in
more details below.
To predict peptide retention times, we randomly selected

1500 peptides confidently identified (FDR < 1%) in one of the
runs based on the linear gradient, and used these together with
their observed retention times to train a retention time model
using the software package Elude.16,22 The observed retention
time of each confident peptide was assigned by first considering
the best scoring spectrum for that particular peptide, and then
use Bullseye version 1.3019 to find for each such spectrum the
apex retention time of its corresponding feature.
Next, we performed an in silico digest of the proteins in the

Swissprot 2012_09 database, and retained only the peptides
with masses between 600 and 8000 Da and between 8 and 50
amino acids long. We estimated the retention times of these
peptides using the previously trained retention model and
excluded the peptides predicted to elute outside the gradient
time. The remaining set included 378 058 unique peptide
sequences. Here we emphasize that, since the retention model
was trained on data generated using a linear gradient, the
retention time distribution obtained for the theoretical peptides
was the one expected when such a gradient is used.
In the next step we calculated an optimal theoretical peptide

elution rate, Q = N/TΔ, where N is the number of theoretical
peptides and TΔ is the gradient time. For the 4 h runs
conditions, we used N = 378 058 and TΔ = 240 min, which
resulted in an optimal elution rate of Q = 1575.2 theoretical
peptides per minute. For the 2 h runs, TΔ = 120 min, and thus
Q = 3150.5. We translated the predicted retention time of each
peptide to the corresponding volume fraction of solvent B
(ϕ%B), taking the time translation of eq 1 into account. We
sorted the peptides according to their assigned volume fraction,
ϕi
%B, so that ϕi

%B ≤ ϕi+1
%B for each pair of peptides, i and i + 1. We

then defined the in silico-optimized gradient by assigning to
each time point tMS the volume fraction ϕ%B corresponding to a
linear interpolation between the peptides with indices closest to
tMSQ. More formally, the gradient was defined by the function
given below:

ϕ ϕ

ϕ

= − ⌊ ⌋

+ ⌈ ⌉ −

⌊ ⌋

⌈ ⌉

t t Q t Q

t Q t Q

( ) ( )

( )

B
t Q

B

t Q
B

%
MS MS MS

%

MS MS
%

MS

MS (2)

Here we use the notation ⌊tMSQ⌋ for the closest integer
smaller than tMSQ, and ⌈tMSQ⌉ for the closest larger integer.
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Out of practical reasons we selected to calculate ϕ%B(tMS) in
steps of one minute from the beginning to the end of the
gradient time. We subsequently converted the time values to
LC-times using eq 1.
MS1-Optimized Gradient. The first step in calculating the

MS1-optimized gradient was to compile an accurate list of MS1
ions using Krönik version 2.02.23 We chose to retain only those
features that persisted over at least four consecutive scans, with
a gap tolerance of one scan. Furthermore, if we assume a
fragmentation speed of 300 peptides/min for the Q Exactive
mass spectrometer, this would result in a maximum of
72 000 MS1-features that could get fragmented during a 4 h
experiment. Following this reasoning, we considered in our
calculations only the 72 000 MS1-features with the highest
intensity. Thus, the MS1-optimized gradient aimed at
producing an even distribution of the highest abundant features
that could get fragmented during a shotgun proteomics experi-
ment. For the 2 h runs, we considered the 17 000 most abundant
MS1-features.
The procedure to derive the gradient function was identical

to the one described for the in silico case, with the theoretical
peptides being replaced by the abundant MS1-features, and the
predicted retention times with the observed retention time
apexes of these features.
Estimation of Chromatography Peak Widths. We fitted

a Gaussian to the chromatography profile of each MS1-feature
by applying a logarithm transformation of the data, followed by
a parabolic line of best fit. To minimize the tailing effects,
we computed the best fit using only the points within 25%
from the maximum intensity, and computed the coefficient of
determination R2 for this subset. Further, we retained only the
50% MS1-features with the highest intensity that fulfilled
R2 > 0.95. We divided the gradient time in windows of 10 min,
and computed the median peak width of the features eluting in
each such window. The peak widths were expressed in terms of
the full width at half-maximum (FWHM), which gives the
width of a Gaussian peak at 50% of the maximum peak height.
Experimental Design. For both the 4 and 2 h gradients,

we carried out twelve shotgun runs (a total of 24 runs): four
identical runs based on a linear gradient, four identical runs
based on an in silico-optimized gradient, and four runs based
on slightly different MS1-optimized gradients. Each of the
MS1-optimized gradients was calculated using each of the runs
based on a linear gradient, while the in silico-optimized gradient
was calculated using only one of the linear runs. The reason
why we chose to calculate only one in silico-optimized gradient
is related to the low resolution of the current retention time
prediction algorithms. While such predictors are useful for
estimating the general distribution of the peptides across the
run, they are often not able to capture subtle changes in reten-
tion times, such as the ones observed across replicate runs.
Since the overall spread of the peptides is highly similar across
all the replicates based on a linear gradient, training the predictor
on one of these runs is sufficient to learn this distribution.
In each case the four runs based on linear gradients were

carried out first, followed by the runs based on the nonlinear
gradients. All the experimental conditions were kept identical,
except for the gradient functions.

■ RESULTS AND DISCUSSION
Nonlinear Gradient Functions. For complex peptide

mixtures, the conventional linear gradients used in liquid
chromatography produce an unequal spread of the peptides

over time.16 To illustrate this, we first examined the retention
times of the analytes when using a 4 h linear gradient and a Q
Exactive mass spectrometer. We illustrated the distributions
across the run of the peptides identified at a 1% FDR (Figure 1),

of the theoretical peptides from an in silico digest of the human
proteome (Figure 2A), and of the abundant MS1-features
(Figure 2B). Clearly, all three distributions deviate considerably
from uniformity, with larger numbers of peptides eluting in the
middle of the run, and relatively few peptides eluting in the
beginning and toward the end of the gradient time.
In typical shotgun proteomics experiments, the mass spectro-

meters are able to fragment only a fraction of the peptides
eluting at any given time point, most often selecting for the
highest-intensity ions.24 This implies that, assuming the distri-
butions displayed in Figure 2, the peptides eluting in the middle
of the run get a lower probability to be selected for fragmenta-
tion, and thus identified. A preferred scenario would include an
even spread of the peptides throughout the run, ensuring that
the instrument has access to equal numbers of analytes at any
time point. However, this cannot be achieved using the linear
gradients typically employed in such experiments, but would
require the design of more sophisticated nonlinear gradient
functions.
To address this, we implemented an algorithm that calculates

two such nonlinear gradients, denoted in silico-optimized and
MS1-optimized. The in silico-optimized gradient is tailored to
give an even distribution of the theoretical peptides from an in
silico digest, while the MS1-optimized gradient aims at unifor-
mizing the abundant MS1 ions. As an example, Figure 2C
illustrates the nonlinear gradients designed to uniformize the
distributions in Figure 2A and B, with each gradient described
as a function giving the percentage of solvent B at every minute
of the gradient run. As expected, the two nonlinear gradients
are steeper than the linear one in the areas where few peptides
are eluting, and more gradual in the regions where the bulk of
the peptides elute. Note that the distributions displayed in

Figure 1. Uneven distribution of confident peptide identifications. We
display the average number of confident peptide identifications (FDR
1%) across the replicates based on a 4 h linear gradient as a function of
retention time. The small segments on each bin indicate the standard
deviation, while the two vertical black lines illustrate the start and end
of the linear gradient. Supporting Information Figure S-1 gives a
similar representation for the replicates based on 2 h gradients.
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Figure 2A and B vary with the chromatography system. Hence,
the optimized gradient functions for other systems may be
significantly different from the ones displayed in Figure 2C.
Our procedure to calculate nonlinear gradients depends only

on the following parameters: (i) start and end of the gradient,
(ii) correspondence between LC and MS times (see
Experimental Section), and (iii) the retention time distribution
to optimize. This makes the algorithm straightforward to apply
for optimizing other retention time distributions or chromatog-
raphy systems of interest. In addition, only changes in the
chromatography setup that alter substantially these parameters
would require the recalculation of the gradient. Furthermore,
we draw the attention to an interesting difference in the
workflows to calculate the two nonlinear gradients. To design
an MS1-optimized gradient, we need to prerun our samples
with a linear gradient, since in the design process we require a
list of MS1 intensities from a linear gradient. This is not the
case for the in silico-optimized gradient, where it suffices to
have access to a representative retention time model of linear
gradients.
Also, it is worth pointing out that the view described here is a

highly simplified one. A multitude of additional factors such as
differences in ionization efficiencies of the peptides, ion sup-
pression, or variations in chromatographic efficiencies can greatly
affect the peptide identification rate achieved in a shotgun experi-
ment. While we do not address such factors in the current work,

the complexity they entail makes it impossible to predict the
exact effect that a new gradient will have on the number of
confidently identified peptides.

Retention Time Distributions. The two types of non-
linear gradients were first evaluated on a data set consisting of
four replicate runs using 4 h gradients as described in the
Experimental Section. To start with, we assessed the per-
formance of the new gradients by examining whether each of
them produced the expected behavior in terms of retention
time distributions. Figure 2D and E summarize the retention
time distributions obtained when the two optimized gradients
were used. Clearly, these data demonstrate that both nonlinear
gradients produced significantly more even retention time
distributions compared to when using a linear gradient. This
translated to a nearly constant number of fragmentation events
triggered by the mass spectrometer throughout the run (Figure 3).
Further, for the peptides confidently identified with both the

linear and one of the corresponding nonlinear gradients, we
plotted the retention time observed in the linear run as a func-
tion of the retention time in the optimized runs (Figure 2F).
The resulting representations closely reproduced the nonlinear
gradient functions given in Figure 2C, indicating that our calcula-
tions matched the experimental results, and that our procedure
preserved the relative order of elution of the peptides. More
generally, these results suggest that the nonlinear gradients are
as predictable as the linear ones.

Figure 2. Nonlinear gradient functions. In panel A, we display the distribution of the predicted retention times for the theoretical peptides from an in
silico digest of the human proteome when a linear gradient is used. Panel B gives the average number of high-intensity MS1-features for the four
replicates based on a linear gradient. In panel C, we illustrate the in silico-optimized gradient designed to uniformize the distribution in panel A, and
one of the four MS1-optimized gradients calculated to even one of the distributions summarized in panel B. Panel D displays the average number of
theoretical peptides as a function of predicted retention time when the in silico-optimized gradient was used. Similarly, panel E gives the average
number of highly abundant MS1-features yielded by the four replicates based on MS1-optimized gradients. The small segments on top of each bin
give the standard deviation over the four replicates. In panel F, we considered all the peptides identified at 1% FDR in both a run based on the linear
gradient, and the corresponding runs based on the nonlinear gradients. We show for each such peptide the retention time obtained with the linear
gradient against the retention times in the runs based on the optimized gradients. All figures correspond to 4 h gradients, while representations for
the 2 h runs are given in Supporting Informatin Figure S-2.
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The nonlinear gradients were also assessed for shorter runs
of 2 h. In coherence with the 4 h runs, the optimized gradients
produced more evenly distributed peptides for this data as
well, as compared to a linear gradient (Supporting Information
Figure S-2). However, for these runs the distribution of the
abundant MS1-features produced by the MS1-optimized
gradient was slightly more skewed compared to the 4 h runs
(Supporting Information Figure S-2E). This effect may be due
to the fact that the initial distribution to be optimized
(Supporting Information Figure S-2B) was significantly more
skewed as well.
Peptide Identifications. Next, we evaluated the optimized

gradients in terms of unique peptides confidently identified in
each of the runs (Table 1). All of the optimized gradients led
to statistically significant increases in numbers of peptide
identifications for both gradient lengths (two sample t test,
one-tailed p < 0.01). Notably, the increases were larger for
the shorter gradients, where the MS1-optimized gradient led
to an average of 10% more peptide identifications compared
to the linear gradient. Also, while for the 4 h runs the in
silico-optimized gradient seem to perform better, the
MS1-optimized gradient gave better results for the shorter
runs. This suggests that although the optimized gradients
gave improved identification rates for all the data sets we
investigated, the extent of these improvements vary with
the chromatography system and instrument settings
employed.
Interestingly, the list of confident peptide identifications

obtained using optimized gradients differed considerably from
the peptides generated by the linear gradients. For example, for
the 4 h runs the overlap between the peptides identified using a
linear gradient, and the ones found using an optimized one,
ranged between 66% and 70% across the four replicates,
compared to 74−82% when comparing any two replicates
based on linear gradients (Figure 4A). A similar trend was
observed for the 2 h runs (Figure 4B), where between 69% and
78% of the peptides identified with a linear gradient were also
found with an optimized gradient, compared to 81−87% when
comparing two runs based on a linear gradient. Hence, the
optimized gradients did not only lead to more identifications

but also allowed us to identify different peptide species than the
typical linear gradients.
This latter observation is particularly important in con-

nection to shotgun studies of complex mixtures, where a great
deal of efforts have been directed toward increasing the pro-
teome coverage.25 In this context, some common strategies
include the use of enzymes with different specificity,26 the use
of long gradients,11,12 and the analysis of the same sample
various times.27 In our data we found that by pooling the
peptide identifications obtained in one 4 h run based on a linear
gradient, and one based on an optimized gradient, we gain an
average 10% more peptide identifications compared to pooling
the identifications from any two runs based on a linear gradient.
This effect was even more pronounced for the 2 h runs, where
we obtained an average of 18% more peptide identifications.
Following this observation, we can speculate that this effect
would be even larger for gradients deviating more from linearity
than the ones used throughout this study. This suggests that
carefully designed nonlinear gradients could be used to improve
the comprehensiveness of proteomics studies.
When inspecting the peptides identified only with a nonlinear

gradient, we found across the replicates based on 4 h gradients
that between 89% and 91% of these peptides mapped to
proteins identified with at least one confident peptide (1%
FDR) in the corresponding run based on a linear gradient. This
was similar to comparing any two runs based on a linear
gradient, where between 88% and 91% of the peptides
identified in only one of the runs mapped to proteins that
were identified with at least one confident peptide in the other
run. The same observation was valid for the 2 h runs, although
these numbers were somewhat lower: between 81% and 86% of
the peptides identified only with a nonlinear gradient belonged
to a protein identified with the corresponding linear gradient,
compared to 81−85% when comparing two runs based on a
linear gradient. These results indicate that the nonlinear
gradients did not favor a different class of proteins, but rather
facilitated the identification of different peptides for the same
proteins as the ones identified using a linear gradient.
Further, we checked the retention times of the peptides identified

only with a nonlinear gradient, and found an enrichment of
peptides predicted to elute in the most crowded areas of the
linear run (Figure 5A and Supporting Information Figure S-3A).
This, despite the fact that the nonlinear gradients produced
nearly uniform distributions of the confident peptide identifi-
cations (Supporting Information Figure S-4A and B). When
examining the intensity of the MS1 precursor ions, we found

Figure 3. Fragmentation rate across run. For one replicate based on a
4 h gradient, we display the number of MS/MS fragmentation events
per minute for each of the three types of gradients.

Table 1. Number of confident peptide identificationsa

gradient type

gradient length linear in silico-optimized MS1-optimized

4 h 17 433 18 079 17 759
17 228 17 843 17 449
17 363 17 978 17 804
17 210 17 590 17 576

average 17 308.5 17 872.5 17 647.0
2 h 6176 6478 6700

6030 6298 6583
5980 6239 6713
5965 6412 6578

average 6037.8 6356.8 6643.5
aWe give the number of peptides identified at 1% FDR for all the data
sets investigated throughout the study.
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that the peptides identified only with the nonlinear gradients
corresponded to lower intensity precursors compared to the

common peptide identifications (Figure 5B and Supporting
Information Figure S-3B).

Figure 4. Peptide identifications for optimized gradients. The overlap between the peptides identified with each of type of gradient is displayed.
Panel A corresponds to one replicate using 4 h gradients, while panel B corresponds to 2 h gradients.

Figure 5. Peptides identified with only one type of gradient. For one of the replicates based on 4 h gradients, we considered the peptides identified at
1% FDR using the in silico-optimized gradient, but that were not identified with the linear gradient. In panel A, we calculated the corresponding
retention times that these peptides would have had if a linear gradient was used, and plotted the obtained distribution in green color. In gray, we give
the distribution of the confident peptides identified with the linear gradient. For the same peptides, panel B gives in green color the apex intensity of
their precursor ions. In gray, we display the precursor intensity of the common peptide identifications between the in silico-optimized and linear run.
Panels C and D give similar representations for the peptides confidently identified with the linear gradient, but that were not present among the
peptide identifications obtained with the in silico-optimized gradient. Note that for facilitating the comparison of the distributions, all the histograms
were normalized. In absolute numbers, the green and blue distributions are much smaller than the gray ones.
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In addition, we inspected the retention times and precursor
intensities of the peptides that were identified at 1% FDR with
the linear gradient, but missed at the same FDR threshold with
the corresponding nonlinear gradients. Figure 5C and D give
the results of these analyses when comparing a run based on
a linear gradient with one based on the in silico-optimized
gradient, and Supporting Information Figure S3-C and D give
similar representations for the MS1-optimized gradient. These
results indicate that (i) there was an enrichment of peptides
identified only with the linear gradient in the areas where this
gradient was shallower than the in silico-optimized one; (ii) the
peptides identified only with the linear gradient corresponded
to lower abundance precursor ions than the common peptide
identifications. The same observations were valid for the 2 h
gradients (Supporting Information Figures S-5 and S-6).
To summarize, the nonlinear gradients missed some of the

confident identifications eluting in parts of the run where the
linear gradient was shallower, but compensated for them by
facilitating the identification of more peptides in the crowded
areas of the linear run. Both the missed and the additional
peptides corresponded to lower intensity precursors compared
to the common identifications.
Chromatographic Peak Widths. Previous research has

shown that shallower gradients lead to peak broadening.13

Since the nonlinear gradients often displayed gentler slopes
compared to the linear ones (Figure 2C), we examined the
extent of this effect in our data. Figure 6 displays the median

peak width as a function of the retention time for one of the 4 h
runs. Indeed, the two nonlinear gradients generated wider
peaks in the middle of the run, corresponding to the regions
where they increased slower than the linear gradient. However,
they produced sharper peaks in the beginning and at the end of
the gradient time.
In general, broader peaks translate to a decrease in the signal

reaching the mass spectrometer, which in turn is associated to a
drop in number of peptide identifications.14 However, with our
optimized nonlinear gradients, the negative impact of the wider
peaks was surpassed by the advantage of having a more even

distribution of the peptides throughout the run. Nevertheless,
one can imagine that the use of nonlinear gradients for very
long runs may be hampered by such an effect. A straightforward
solution to this would be to limit the allowed slope at any time
of the optimized gradient. While this implies that the resulted
nonlinear gradient may not correspond to a perfectly even
distribution of the peptides throughout the run, it would still
give an improved spread of the peptides, while controlling for
the allowed peak broadening.

Reproducibility of the Nonlinear Gradients. Further, as
our data comprised of replicates for each of the three gradients,
we investigated the reproducibility of the gradients in terms of
confident peptide identifications (Table 2). Our results showed

that the two nonlinear gradients yielded similar numbers of
peptide identifications common to more replicates as the linear
gradients. As an example, for the 4 h runs 78% and 80% of the
peptides found using the MS1-optimized and in silico-
optimized gradients, respectively, were identified in at least
two out of the four replicates run with each of these gradients.
The same figure was 77% for the replicates based on a linear
gradient. Thus, in terms of reproducibility, the optimized
gradients yielded comparable results to the linear ones.

Availability. The python script to calculate nonlinear
gradients can be downloaded under MIT license at http://
code.google.com/p/nonlinear-gradients/.

■ CONCLUSIONS
Despite extensive efforts to improve peptide separation in
RPLC,6 little is known about the effects of changing the shape
of the linear gradient functions typically employed in such experi-
ments. Here, we have implemented an algorithm that calculates
two nonlinear gradient functions, designed to produce even
spreads over the chromatography time for the peptides of a
complex mixture. Our results showed that the nonlinear
gradients produced more even retention time distributions,
while yielding increased numbers of confident peptide
identifications. Furthermore, they led to a considerable number
of distinct peptide identifications eluting in the crowded areas
of the linear runs, suggesting the potential of using such
gradients for improving the proteome coverage attained by
shotgun experiments. The new gradients produced reprodu-
cible results, were straightforward to implement, and can be
easily extended to optimize other distributions of interest.

Figure 6. Chromatographic peak widths. For each type of gradient, we
display the estimated peak width as a function of the retention time.
The graphs corresponds to one of the 4 h runs, while Supporting
Information Figure S-7 gives a similar representation for the 2 h runs.

Table 2. Reproducibility of the Confident Peptide
Identificationsa

gradient type

gradient
length

number of
replicates linear

in silico-
optimized MS1-optimized

4 h 1/4 5645 (23%) 4875 (20%) 5655 (22%)
2/4 3741 (15%) 3681 (15%) 4221 (17%)
3/4 4457 (18%) 4107 (17%) 4741 (19%)
4/4 10 684 (44%) 11 733 (48%) 10 567 (42%)

2 h 1/4 1384 (18%) 1488 (18%) 1705 (19%)
2/4 944 (12%) 1111 (13%) 1143 (13%)
3/4 965 (12%) 1103 (13%) 1193 (14%)
4/4 4496 (58%) 4602 (55%) 4751 (54%)

aFor each of the three gradient types, we investigated how many
peptides were identified at 1% FDR in one (1/4), two (2/4), three (3/4),
or all (4/4) of the four replicates run with that gradient. The results
are given in both number of peptide identifications and percentages.
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