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Abstract: Glioma peritumoral brain edema (GPTBE) is a frequent complication in patients with
glioma. The severity of peritumoral edema endangers patients’ life and prognosis. However, there
are still questions concerning the process of GPTBE formation and evolution. In this study, the
patients were split into two groups based on edema scoring findings in the cancer imaging archive
(TCIA) comprising 186 TCGA-LGG patients. Using mRNA sequencing data, differential gene (DEG)
expression analysis was performed, comparing the two groups to find the key genes affecting GPTBE.
A functional enrichment analysis of differentially expressed genes was performed. Then, a protein–
protein interaction (PPI) network was established, and important genes were screened. Gene set
variation analysis (GSVA) scores were calculated for major gene sets and comparatively correlated
with immune cell infiltration. Overall survival (OS) was analyzed using the Kaplan–Meier curve. A
total of 59 DEGs were found, with 10 of them appearing as important genes. DEGs were shown to be
closely linked to inflammatory reactions. According to the network score, IL10 was in the middle of
the network. The presence of the IL10 protein in glioma tissues was verified using the human protein
atlas (HPA). Furthermore, the gene sets’ GSVA scores were favorably linked with immune infiltration,
particularly, with macrophages. The high-edema group had higher GSVA scores than the low-edema
group. Finally, Kaplan–Meier analysis revealed no differences in OS between the two groups, and
eight genes were found to be related to prognosis, whereas two genes were not. GPTBE is linked to
the expression of inflammatory genes.

Keywords: glioma; peritumoral edema; inflammatory; gene; data integration analysis

1. Introduction

Gliomas are the most frequent primary central nervous system tumors, accounting
for around half of all intracranial tumors [1]. Even after standard treatment, such as
maximum surgical resection, radiotherapy, and chemotherapy, glioma patients’ prognosis
varies greatly, and the median overall survival of glioblastoma (GBM) patients is only
19 months [2,3]. Glioma peritumoral brain edema (GPTBE) is a common symptom in
these patients and might impair a patient’s prognosis [4,5]. In individuals with significant
peritumoral edema, increased intracranial pressure might ensue, potentially leading to a
life-threatening herniation [6]. As a result, GPTBE diagnosis and therapy are critical.

A swelling caused by an improper distribution of water in the brain parenchyma is
known as brain edema. Numerous studies have been conducted to investigate the molec-
ular pathways causing GPTBE development in glioma patients. Early research pointed
to vasogenic edema as the primary cause, which is mostly linked to a breakdown of the
blood–brain barrier (BBB) [7]. In a growing number of studies, GPTBE has been linked
to the invasive potential of gliomas, and it is thought that the invasion of tumor cells
leads to the remodeling of surrounding tissues. Brain edema is caused by the proteins
aquaporin 4 (AQP4), metalloproteinase 9 (MMP9), and vascular endothelial growth factor
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(VEGF). VEGF expression has been shown to promote tumor neovascularization while de-
creasing vascular permeability [8]. MMP9 destroys the extracellular matrix thus providing
enough room for AQP4, an essential channel involved in cell water transport [9–11]. The
basic processes of GPTBE remain unknown, as do the exact molecular pathways.

The cancer imaging archive (TCIA) is a master site for cancer imaging analysis [12].
The TCIA has magnetic resonance (MR) images that have been linked to cancer genome
atlas (TCGA) partial samples and to findings of professional radiologists’ analyses. This
offered us a handy way to research GPTBE. The goal of this study was to look at the
TCGA-LGG mRNA sequencing data as well as to edema score findings of brain MR in
related patients to see whether there were any genes that affected GPTBE.

2. Materials and Methods
2.1. Data Sources

TCIA provided data for cancer imaging assessments, which included TCGA-LGG (https:
//wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282890, accessed on
2 March 2022) [6]. Visually accessible Rembrandt images (VASARI) were employed for
radiographic evaluation of parameters, which were all assessed by experienced radiologists
(Supplementary file S1). For analysis, data in raw “counts” format were collected from the
TCGA website.

2.2. Assessments of Image Features

The “F14” feature of VASARI is the proportion of edema, which includes 10 options
(0 = -, 1 = n/a, 2 = None (0%), 3 = <5%, 4 = 6–33%, 5 = 34–67%, 6 = 68–95%, 7 = >95%,
8 = All (100%), 9 = Indeterminate). Supplementary file S2 reports a detailed discussion of
this feature. Before data analysis, samples with options 0, 1, and 9 were deleted. Samples
with options 2 or 3 were placed in the low-edema group, whereas samples with options 4,
5, 6, 7, or 8 were placed in the high-edema group.

2.3. Differentially Expressed Gene (DEGs) Analysis

We used the R program “DESeq2” to extract differential information and evaluate the
significance of each gene difference in various groups. Gene names were searched on the
Genecards website, and protein-coding genes were kept as DEGs, while other genes were
left out. A p-value < 0.05 and a log2|fold change| > 1 were deemed significant.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis

GO and KEGG analyses were performed to functionally annotate DEGs by the “clus-
terprofiler” package of R software and study the probable roles of differentially expressed
genes. Cellular components (CC), biological processes (BP), and molecular function (MF)
were included in the GO study. Entries with a p-value < 0.05 and an adjusted p value < 0.1
were considered.

2.5. Correlation Analysis and PPI Network Construction

Spearman correlation analysis was utilized to examine the connection between each
expressed gene, in conjunction with a quantitative analysis of differential gene expression.
STRING (https://string-db.org/, accessed on 5 March 2022). We also studied the biological
interactions between proteins with varied gene expression patterns. Using the “cytohubba”
plugin in Cytoscape, hub genes in the protein–protein interaction (PPI) network were
discovered using the degree technique. Central node components can be thought of as core
proteins and essential hub genes with vital physiological roles.

2.6. Survival Analysis of Hub Genes

Patients in the TCGA-LGG cohort were separated into two groups, high expressors and
low expressors, based on the median expression levels of important genes, and survival
curves were produced based on overall survival (OS). With time information for each

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282890
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sample, a Kaplan–Meier (KM) survival analysis was conducted using the R package
“survival.” Statistical significance was determined using the log-rank test. The human
protein atlas (HPA) [13] provided information on protein expression of key genes measured
by immunohistochemistry.

2.7. Immune infiltration analysis

Immune impact is directly linked to inflammatory reactions. The gene set variation
analysis (GSVA) score indicates the integrated level of genomic expression, which is in-
versely proportional to genome expression. As a result, a higher GSVA score in a tumor
group might suggest a greater overall expression of that gene set. The R package “GSVA”
was used to construct GSVA scores in order to look into the relationship between central
gene sets and immune cell infiltration. The Gene Set Caner Analysis (GSCA) website
(http://bioinfo.life.hust.edu.cn/GSCA, accessed on 7 March 2022) reports the analysis and
visualization of the infiltration of 24 immune cells [14]. The correlation coefficient was used
to reflect the relationship between immune cell infiltrates and gene set expression levels,
which was analyzed using Spearman correlation analysis. The false discovery rate (FDR)
was used to alter the p-value [15].

2.8. Statistical Analysis

Excel was used to process the raw data. The SPSS 23.0 program was mostly used
to analyze clinical data. The chi-square test was used to compare categorical data. The
Student’s t test or the Kruskal–Wallis test was used to calculate statistical significance
for continuous variables between two groups or more than two groups. R was used to
sequence the data, analyze them, and visualize them (v3.6.1). The correlation between each
differential gene was determined using the Spearman correlation approach; p < 0.05 was
regarded as statistically significant.

3. Results
3.1. Clinical Features

In total, 178 patients with imaging data in TCGA-LGG were sorted into two groups
according to our grouping technique. The low-edema group included 116 patients, while
the high-edema group comprised 62 individuals. As reported in Table 1, gender, tumor
site, pathological grade, lactate dehydrogenase 1 (IDH1) status, 1p/19q status, and P53
status did not change between the two groups of patients, as reported in Table 1, with
statistical differences only in age (p = 0.022). The two groups of patients had the same OS
rate (Figure 1C, p = 0.115).
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tory response, cell chemotaxis, and leukocyte movement were all controlled by BP. MF 
was related to cytokine receptor activity, receptor ligand activity, and receptor binding of 
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Figure 1. Differences in survival time and gene expression between the two groups. (A) Differentially
expressed genes (DEGs). Genes with increasing expression were represented in red, whereas genes
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curves for the two groups.
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Table 1. Clinical characteristics of the two groups.

Characteristic Low Edema Group High Edema Group p

n 116 62
Gender, n (%) 0.354

Female 50 (28.7%) 33 (19%)
Male 62 (35.6%) 29 (16.7%)

Laterality, n (%) 0.787
Left 55 (32%) 27 (15.7%)

Midline 2 (1.2%) 1 (0.6%)
Right 54 (31.4%) 33 (19.2%)

Tumor location, n (%) 0.721
Posterior Fossa, Cerebellum 1 (0.6%) 0 (0%)
Supratentorial, Frontal Lobe 64 (36.8%) 38 (21.8%)

Supratentorial, Not Otherwise 3 (1.7%) 1 (0.6%)
Supratentorial, Occipital Lobe 0 (0%) 1 (0.6%)
Supratentorial, Parietal Lobe 13 (7.5%) 6 (3.4%)

Supratentorial, Temporal Lobe 31 (17.8%) 16 (9.2%)
Histologic grade, n (%) 0.094

G2 65 (37.4%) 27 (15.5%)
G3 47 (27%) 35 (20.1%)

IDH1, n (%) 1.000
Wild 28 (15.8%) 15 (8.5%)

Mutant 88 (49.7%) 46 (26%)
1p/19q co-del status, n (%) 0.377

Wild 85 (48.6%) 42 (24%)
Mutant 28 (16%) 20 (11.4%)

TP53, n (%) 0.870
Mutant 60 (33.9%) 30 (16.9%)

Wild 56 (31.6%) 31 (17.5%)
Age, median (IQR) 39 (30, 52.25) 48.5 (37, 57) 0.022

IDH, isocitrate dehydrogenase, IQR, interquartile range.

3.2. Differentially Expressed Genes (DEGs) Analysis

The raw mRNA expression data were processed using the R software to acquire the
genes differentially expressed in the two groups in order to understand genomic expression
differences. Figure 1A,B revealed a total of 59 genes differentially expressed genes at a signif-
icant level. Supplementary file S3 shows the results of the original analytical computations.

3.3. Functional Analysis of DEGs

GO and KEGG analyses are useful tools for determining the likely function of genes.
Figure 2 depicts the changes in genes related to BP, MF, CC according to KEGG. The original
functional enrichment analysis data are reported in Supplementary file S4. Inflammatory
response, cell chemotaxis, and leukocyte movement were all controlled by BP. MF was
related to cytokine receptor activity, receptor ligand activity, and receptor binding of ad-
vanced glycation end-products (RAGE). Collagen-containing extracellular matrix, plasma
membrane’s exterior side, and high-density lipoprotein particles were found in relation to
CC. The Janus kinase signal transducer and activator of transcription (JAK–STAT) signaling
pathway, cytokine–cytokine receptor interactions, and osteoclast differentiation were all
heavily represented in the inflammation-related activities of KEGG.
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3.4. PPI Network Construction and Key Gene Identification

Proteins are essential for carrying out biological tasks. A hypothetical PPI network
was built using the STRING website, as illustrated in Figure 2D. Figure 2E shows that 10
important genes were ruled out (IL10, FCGR3B, S100A8, AQP9, S100A9, FPR2, SAA1, HK3,
DKK1, and IBSP). Table 2 shows the detailed results for each of the 10 genes. The most
important gene was interleukin 10 (IL10); immunohistochemistry of its protein is displayed
in Figure 3. As indicated in Figure 2F, Dickkopf Wnt signaling pathway inhibitor 1 (DKK1)
and integrin-binding sialoprotein (IBSP) were substantially less linked with the expression
of other molecules.

Table 2. Top 10 genes in the network ranked by the Degree method.

Rank Name Score

1 IL10 12
2 FCGR3B 8
3 S100A8 6
4 AQP9 5
4 S100A9 5
4 FPR2 5
4 SAA1 5
8 HK3 4
8 DKK1 4
10 IBSP 3
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3.5. Key Genes Prognostic Analysis

Eight of the ten key genes were linked to poor prognosis in LGG patients, including
IL10 (p = 0.013), S100A8 (p = 0.002), AQP9 (p = 0.01), Fc gamma receptor IIIb (FCGR3B)
(p < 0.001), S100A9 (p = 0.006), serum amyloid A1 (SAA1) (p < 0.001), hexokinase 3 (HK3)
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(p = 0.036), DKK1 (p = 0.646), IBSP (p = 0.001), and formyl peptide receptor 2 (FPR2)
(p = 0.202), as shown in Figure 4.
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3.6. Immune Infiltration Analysis of Gene Sets

Infiltration of the immune system and the inflammatory response are linked. By using
the GSCA online tool, we found that macrophages were the cells most strongly correlated
with gene sets, while B cells were the least correlated. The infiltration scores revealed
that gene sets overall expression was positively correlated with the degree of immune
infiltration, based on the GSVA scores of key gene sets (Figure 5A, Supplementary file S5).
The GSVA scores of gene sets were greater in the high-edema group (p < 0.05, Figure 5B)
than in the low-edema group.
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4. Discussion

GPTBE causes the fluid content of peritumoral tissue to rise. Gliomas account for
approximately 80% of intracranial malignancies, and GPTBE is a prevalent occurrence [1–3].
Most studies concur that the presence of GPTBE in gliomas is linked to tumor aggressive-
ness and patient prognosis, and that severe GPTBE can be fatal [4,16]. GPTBE has a wide
range of effects on glioma patients, with some showing severe edema, and others showing
little or no edema. As a result, studying the underlying molecular pathways aids in gaining
a better understanding of GPTBE.

By merging the brain edema scores of glioma patients with high-throughput sequenc-
ing data of related patients, this study looked at possible chemicals that influence GPTBE.
Our findings show that inflammation-related chemicals, as well as the inflammatory re-
sponse that results from them, are implicated in the development and progression of GPTBE.
Hormone therapy is a therapeutic option for GPTBE [17]. This observation is significant
because it adds to the growing body of information supporting the role of immunological
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inflammation in GPTBE [4–6,18]. Furthermore, some studies suggest that GPTBE influences
glioma patients’ prognosis. However, our research found that the degree of GPTBE was not
linked to glioma patients’ survival. We believe the variance is due to the varying GPTBE
assessment standards utilized by different research studies as well as the different sample
sizes. As a result, the mechanism of GPTBE remains a point of contention [4].

Currently, GPTBE is thought to cause mainly vasogenic and cellular edema [19]. The
natural BBB is disrupted by the brain tumor tissue, which leads to increased capillary per-
meability and hence water buildup [20]. Increased VEGF expression has been established
as a significant factor in GPTBE. VEGF is aberrantly elevated in GBM, causing pathological
disruption of the BBB, further allowing leakage of neurotoxic molecules, interfering with
tumor microenvironment homeostasis, and contributing to poor patient outcome [21–23].
Extensive microvascular development is induced by VEGF acting on appropriate receptors
on vascular endothelial cells, and immature vascular structure results in fluid exuda-
tion [7,22]. According to recent studies [6,24], the STAT–VEGF pathway is critical for
GPTBE. Our differentially expressed genes were also enriched in STAT-related pathways,
indicating that the STAT–VEGF pathway plays a role. Inflammatory reactions can also com-
promise the BBB, resulting in cerebral hematomas in various neurological illnesses [7,25],
and the role of immune cells in the tumor microenvironment is critical. The fast growth and
invasion of glioma cells establishes a hypoxic–ischemic environment in the tumor’s local
area, and the accumulating toxic metabolites cause energy metabolism problems in the
peritumoral normal cells, resulting in cytotoxic edema [25]. In malignancies, the connection
between abnormal metabolic pathways and immune cell infiltration is complicated and
varied. In the glioma microenvironment, tumor-associated macrophages/microglia (TAMs)
are the most abundant stromal cells [25,26]. TAMs enhance angiogenesis by generating a
variety of pro-angiogenic and chemokine factors [26]. The degree of TAM infiltration was
shown to be positively linked with the degree of PTBE penetration in this investigation.
The infiltration of cytotoxic T lymphocytes (CTLs) and macrophages was larger in the
high-edema group than in the low-edema group, according to our findings. Increased CTLs
with macrophages will release a plethora of cytokines to destroy tumor cells, resulting in an
increase in metabolites and chemotaxis [25]. This might lead to the establishment of peritu-
moral edema. Two forms of glioma TAMs have been identified: anti-inflammatory M2-type
macrophages and activated pro-inflammatory M1-type macrophages. TAMs, under the
influence of glioma cells, appear to play a major role in tumor angiogenesis, local develop-
ment, and invasion, according to an increasing number of data [25–27]. Thus, we believe
that peritumoral edema is the result of multifactorial participation and multidimensional
control, with immunological imbalance being a key connection.

The 10 major genes that were elevated have diverse functions in the immune inflam-
matory response balance. IL-10 is a potent anti-inflammatory cytokine with a wide range
of functions in the immune system and inflammation. In the setting of cancer, IL10 causes
immunosuppression, which decreases T cell proliferation by inhibiting antigen-presenting
cells. IL10 binds to its corresponding receptor, causing STAT3 phosphorylation through
JAK1 and STAT2, which stimulates the proliferation of glioma cells [24,28]. Activated
STAT3 in glioma cells can also alter angiogenesis and GPTBE through the regulation of
VEGF. Calprotectin (S100A8/A9) is generated from neutrophil and macrophage calcium-
binding proteins [18,29]. It exerts proinflammatory, antibacterial, oxidant scavenging, and
apoptosis-inducing properties. The SAA1 gene codes for a key acute-phase protein that is
highly produced in response to tissue injury and inflammation. Through autocrine and
paracrine actions, SAA proteins can promote tumor development. SAA not only influence
tumor cell migration, invasion, angiogenesis, and IL-8 release in T98G and A172 cell lines,
but also increase cell proliferation and the formation of nitric oxide and reactive oxygen
species [30]. FPR2 is a strong chemoattractant for neutrophils. By decreasing the levels
of VEGF, Liu et al. showed that silencing the FPR2 gene decreased U87 cell proliferation,
migration, and invasion [31]. FCGR3B is a low-affinity receptor for the Fc region of im-
munoglobulin (IgG) that can be used to collect immune complexes in the bloodstream.
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HK3 is a key regulating enzyme in the first stage of the glucose metabolic pathway. Hexok-
inase is required for tumor cell decryption during aerobic glycolysis. AQPs are membrane
channel proteins that regulate water and solute transport across the phospholipid bilayer.
AQP4 is expressed in the end-feet of astrocytes, regulates osmolarity, and has a polarized
pattern [9,32,33]. In pathological situations, the distribution and expression of AQP4 are
aberrant, resulting in cerebral edema. Mou et al. discovered that aberrant APQ4 expression
was frequently accompanied by alterations in the expression of other molecules, such as
VEGF overexpression [9]. AQP4 is a critical molecule in GPTBE research, and we dis-
covered that highly expressed AQP9 was also linked to GPTBE in our study. AQP9 is a
protein that is expressed in astrocytes and is involved in brain energy metabolism [34].
In a rat intracerebral hemorrhage model, downregulation of AQP9 was also found to
limit angiogenesis [35]. The above molecular clusters may have an indirect impact on
PTBE through tumor angiogenesis and immunological modulation. The Wnt signaling
pathway is inhibited by DKK1 [36]. In a number of studies [23,26], Wnt signaling has been
linked to GBM development, invasion, and treatment resistance. IBSP is a focal adhesion
protein that aids in cell adhesion and migration on the cell surface [37]. In gliomas, the
clinical importance of IBSP is unclear. According to studies, IBSP can form a trimolecular
complex with integrins and MMP2, speeding up local matrix breakdown and cancer cell
invasion [11]. As a result, from an indirect consideration of molecular function, DKK1 and
IBSP may be involved in degrading the extracellular matrix, thereby providing space for
GPTBE [37,38]. All these differentially expressed genes were identified in previous GPTBE
research, demonstrating that GPTBE is caused by multifactorial, multidimensional changes
in the tumor microenvironment.

Despite the novel nature of our research methods, there are numerous limitations to
our study. First, GBM samples were left out since TCIA lacks GBM data, which might
have resulted in a bias [5]. Second, these genes were not tested in glioma patients with
large edemas. Finally, the expression of these genes varies by tumor tissue, and there are
no direct investigations into peritumoral edematous tissues [39,40]. Finally, we used a
combination of imaging and sequencing data to examine putative GPTBE compounds,
utilizing multi-dimensional data in a novel way. Our findings suggest that immunological
inflammatory responses are involved in the production of GPTBE.

5. Conclusions

Our findings showed that changes in the glioma immune microenvironment are
highly linked to the extension of GPTBE, based on an integrated study of TCIA and TCGA
data. IL10 may play a significant role in the pathogenesis of GPTBE by altering the local
immunological status. We discovered that the degree of GPTBE was unrelated to OS in the
studied research population. The complex molecular mechanisms underlying GPTBE need
to be investigated further.
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