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Electroencephalogram signals and the states of subjects are nonstationary. To track changing states effectively, an adaptive
calibration framework is proposed for the brain-computer interface (BCI) with themotion-onset visual evoked potential (mVEP) as
the control signal.The core of this framework is to update the training set adaptively for classifier training.The updating procedure
consists of two operations, that is, adding new samples to the training set and removing old samples from the training set. In the
proposed framework, a support vector machine (SVM) and fuzzy C-mean clustering (fCM) are combined to select the reliable
samples for the training set from the blocks close to the current blocks to be classified. Because of the complementary information
provided by SVM and fCM, they can guarantee the reliability of information fed into classifier training. The removing procedure
will aim to remove those old samples recorded a relatively long time before current new blocks. These two operations could yield
a new training set, which could be used to calibrate the classifier to track the changing state of the subjects. Experimental results
demonstrate that the adaptive calibration framework is effective and efficient and it could improve the performance of online BCI
systems.

1. Introduction

A brain-computer interface (BCI) provides an alternative
communication and control channel between humans and
the environment or devices by noninvasive [1–3] and invasive
approaches [4]. For the noninvasive BCI, the scalp electroen-
cephalogram (EEG) is the most-used modality to convey the
user’s intentions owing to its low cost and high portability for
well-defined paradigms [5]. The well-designed paradigms in
EEG-based BCIs include motor imagery [6, 7], steady-state
visual evoked potentials (SSVEPs) [8–10], P300 event-related
potentials [11, 12], and motion-onset visual evoked potential
(mVEP) [13, 14]. Among these, mVEP is an important mea-
sure for studying the motion vision processing mechanisms
of humans and animals. It has already been widely used in
such fields as fundamental research and clinical diagnosis.

For the neural mechanism of motion perception and phys-
iological background of mVEP, the literature indicates that
mVEP has advantages over other typical VEPs because of its
large potential amplitude andminimal differences among and
within the subjects [15]. These characteristics make mVEP
more suitable in the application of BCIs. mVEP is evoked
by the fast-moving visual stimulation and represents visual
motion reactions of the middle temporal area and medial
superior temporal area. mVEP typically contains three main
peaks: a positive P1 peak with a latency of about 130ms, a
negative N2 peak with a latency of about 160–200ms, and a
positive P2 peak with a latency of approximately 240ms [16].
N2 is themost prominent and stable component of themVEP.
The BCI group fromTsinghuaUniversity designed a stimulus
paradigm to evokemVEP and implemented it in a BCI system
[14]. mVEPwas successfully used to develop a spelling system
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similar to the P300 speller [17]. Because it does not need
flashing stimulation or stimulation with sudden changes to
evoke mVEP, the subjects are not prone to visual fatigue,
whichmakesmVEP relativelymore suitable for subjects in the
training process. A common spatial pattern (CSP) algorithm
has been proved to be a highly efficient feature extraction
algorithm for BCI systems [18]. It aims to find directions
(i.e., spatial filters) that maximize variance for one class and
minimize variance for the other class at the same time [19].
The eigenvector processing by CSP is beneficial to the target
recognition of BCI systems and improves the accuracy of the
brain-computer interface system. In the current study, the
CSP is used to extract features for the mVEP.

For a BCI system, we must collect a sufficient training
dataset to train the classifier to implement online tasks.
This procedure may be laborious and time consuming. To
address this issue, a zero-training strategy and an automatic
adapting mechanism have been explored [20–23]. The user’s
states could change during experiments due to unexpected
environmental factors or internal physiological factor. In
addition, EEG signals are highly subject-specific and vary
considerably even between recording sessions of the same
user within the same experimental paradigm [21–23]. There-
fore, it is essential for an online system to track the changing
states of subjects. In the traditional system, the classifier is
usually trained before the online application [24–27]. When
the subject’s states change considerably from the previous
states during the training stage, it is necessary to take some
special measures, such as providing new data recorded from
the subjects for the retraining and adjusting the classifier
to track the subject’s changing states. Some efforts on this
topic have been tried [23, 28]. The main idea of those studies
was to exploit the information in the previous sessions to
calibrate the classifier. For example, Krauledat et al. proposed
a method in which past sessions were used together to
evaluate the prototype filters for the new session to calibrate
the classifier. This approach does not need the training set
and is the zero-training approach [23]. It seems that this
approach only performs the calibration at the beginning
stage of a new session. For an online system, when a session
lasts for several hours, this method may be ineffective [1,
23, 29]. Therefore, calibration only at the beginning of a
session may not be enough to capture the change of the
subject’s state that may occur during the experiment. It may
bemoremeaningful to calibrate the classifier adaptively in the
different phases of the experiment instead of just at certain
specific periods. To this end, it is necessary to mine robustly
the information hidden in the previous several blocks of data.
The calibration performance largely depends on the reliability
of the information represented by the previous blocks that
could be used for classifier calibration. However, as for the
practical online system, it may be very difficult or impossible
to know exactly the tasks reflected by the sample; that is, we
may not correctly label a sample with the classifier during the
experiment.

The support vector machine (SVM) [30, 31] and fuzzy C-
mean cluster (fCM) [32] are two different approaches, where
the traditional SVM needs the training set for the supervised
learning [30, 31]. It provides a link between the current block

and the previously supervised classifier. fCM as a data-driven
classifier does not need prior information as much as SVM
for clustering [32], and it emphasizes the local clusters that
the current samples form. Apparently, the different aspects of
datasets can be reflected by these two different approaches,
and the combination of them may provide more-flexible and
more-reliable information about the samples.

In this paper, we propose an adaptive online calibration
framework that was first used in mVEP-BCI system to
calibrate the classifier that could track the changing states
of the subjects. To fulfill this goal, the framework needs to
adopt the new information in the latest samples and remove
the information represented by the old samples, which were
recorded a relatively long time previously. We combine SVM
and fCM to select the reliable samples from the previous
blocks and then clip the expanded training set to remove the
old information represented by the old samples. With these
operations, an updated training set could be generated and
subsequently fed into the classifier for the retraining to track
the subject’s states. The performance of the framework was
tested with the dataset from 11 subjects under the mVEP-
based BCI paradigm. The results indicate the satisfactory
effectiveness and efficiency of the proposed method.

The structure of this paper is as follows:The framework is
introduced in Section 2, Section 3 presents the results when
the adaptive calibration is used for the recorded dataset, and
the discussion of the results and conclusions are given in
Section 4.

2. Methods and Materials

2.1. The Traditional Training Protocol of a BCI Classifier. For
most of the current BCI classifiers, training is usually imple-
mented before the online experiment; that is, the training and
test are not interactive [1, 33–35]. Figure 1 shows a flowchart
for the traditional BCI classification used to classify BCI tasks.

The diagram reveals that the training set is usually fixed
after the training procedure, and no new samples in the
test set are adaptively updated into in the training set. For
an online BCI system, the training set may be collected on
different days, and the experiment may last for a relatively
long time. Inevitably, the patterns according to the specific
tasks may vary over time due to the nonstationarity and
nonlinearity of EEG signals [33].Therefore, the subject’s state
will surely change during the test stage compared with the
state during the training stage. When the states are largely
different in the two stages, the trained classifier may fail to
decode the samples during new test sessions [21–23]. At this
moment, the performance of the classifier will be inevitably
lowered.

2.2. Adaptive Classifier Calibration Framework during the
Experiment. Considering that the individual subject’s state
will vary during the experiment, it is beneficial to adapt the
classifier to new data involving the varying states and to
retrain it [21–23, 28]. To implement the adaptive mechanism,
a direct approach is to integrate some new samples into
the training set. However, it may be difficult to assign a
reliable label to those new samples during the experiment.
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Figure 1: Classical classification flowchart for BCI tasks.

Obviously, once some unreliable samples are included in
the training set, they may have a negative effect on the
following classification performance [20, 31]. Therefore, it is
vital to label the samples correctly and then add these reliable
samples into the training set for further classifier calibration.
The traditional SVM classification strategy may not yield
satisfactory performance without recalibration using new
samples when the bias between the training set and test set
cannot be ignored.

SVM can provide the ability to discern how reliable an
assigned label of a test sample is [31, 36]. It needs supervised
training with training datasets; that is, the classification
largely depends on the prior training data [31, 34, 36]. Unlike
the SVM classifier, fCM is a kind of data-driven approach to
classify the set without the training procedure [32]. The only
prior information needed for fCM is the number of clusters,
which is usually known for the BCI system. Apparently, fCM
and SVM are two complementary approaches for classifica-
tion, in that the former focuses on the similarity between the
current sample and the previously labeled samples, whereas
the latter aims at the current data distribution. Both can
provide the probability (confidence interval) that indicates
reliability for this classification. Certainly, the combination
of these two methods can guarantee that the samples are
classified with an accuracy that is more reliable than the
single method. The following assumptions are considered in
an adaptive BCI online system:

(a) The variance of subject’s states will lead to classifier
bias.

(b) The classifier calibration needs to be performed dur-
ing a certain interval.

(c) The training set size cannot be too large for classifier
training.

Based on these three assumptions, we proposed an
adaptive framework for classifier calibration for a mVEP-
based BCI system. The framework is shown in Figure 2.

The “new training set generation” process is the core of
this framework and determines the performance of online
BCI systems. If it is removed, the framework presented
in Figure 2 becomes the traditional one. Considering the

two-class task experiment, the detailed procedure of new
training set generation is further revealed in Figure 3.

In Figure 3, the procedure for generating a new training
set consists of Steps (A), (B), (C), and (D). For the adaptive
classifier calibration, the procedure should include the new
samples that can account for the subject’s new state in the
training set, and it should exclude the old samples that were
recorded a relatively long time before current samples from
the training set. The detailed implementation for the four
subprocedures is elucidated as follows.

Step (A) (label samples with SVM). In this step, after the SVM
classifier is trained by the old training set, the samples in
session 𝑛 − 1 are classified by this classifier. The output of
this SVM classifier provides two kinds of information: the
labels of samples and the probabilities denoting the reliability
of those predicted labels [30, 36].

Step (B) (label samples with fCM). fCM is applied to the
samples in session 𝑛 − 1. Owing to the two-class classifica-
tion task for mVEP data, fCM could classify the data into
two clusters, M1 and M2, with cluster centers U1 and U2,
respectively. As for clusters M1 and M2, we only know that
these two clusters belong to different tasks and cannot exactly
determinewhich labels (i.e., tasks) are assigned toM1 andM2.
To label these two clusters, a matching technique is adopted.
First, for the training dataset, the two centers C1 and C2 for
the two tasks can be obtained by averaging the corresponding
features. Then, the center U1 is compared with the centers
C1 and C2. If U1 is much closer to C1, the samples in cluster
M1 will be assigned with labels as the samples for Task 1 and
samples in clusterM2 assignedwith labels as samples for Task
2. Otherwise, samples in M1 and M2 are assigned with the
labels as samples for Tasks 2 and 1, respectively. Besides the
two clusters, fCM also generates a membership probability
to indicate the reliability of each trial when it is assigned with
the corresponding label [32].

Step (C) (select reliable trials). Based on the probabilities
obtained with SVM and fCM that can indicate the clas-
sification reliability, we define a criterion to select reliable
trials. Only the trials that have the same labels assigned
by SVM and fCM can be regarded as potential candidates.
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Figure 2: Framework for adaptive classifier calibration. Session 𝑖 (1 ≤ 𝑖 ≤ 𝑛) denotes the 𝑖th session consisting of several blocks, and each
block includes several samples. Session 𝑛 is the latest session to be classified.The existing training set and 𝑛−1 sessions of new data were used
to yield a new training set. CSP is used to extract the related features of the mVEP signal in the current work.

Furthermore, we set an acceptance threshold 𝛿 (0 ≤ 𝛿 ≤ 1)
for the selection operation. Let 𝑃svm(𝑖) and 𝑃fCM(𝑖) be the
probabilities provided by SVM and fCM for the 𝑖th trial,
respectively. If 𝑃svm(𝑖) > 𝛿 and 𝑃fCM(𝑖) > 𝛿, then this trial
will be selected as the reliable trial for succeeding classifier
calibration.

Step (D) (clip the expanded training set). The subject’s state
may change over time; therefore, the samples in the training
set recorded a relatively long time ago may have different
characteristics and have a negative influence on classifier
performance. Removing the redundant samples from the
training set is necessary to include a fixed number of samples
during the online experiment.This procedure is necessary for
this adaptive classifier calibration framework. Without this
clip procedure, the training set will grow quickly so that the
training of the classifier will be unacceptable for the online
system due to time-consuming training. Denoting the fixed
number of the training samples as M, we label each sample
with a time stamp in reverse time order. Specifically, the last
added sample is labeled 1, the one before is labeled 2, and so
on. When the size of the training set is larger thanM, the clip
procedure is implemented. We remove the samples that have
a time stamp larger thanM and keep the rest.

Considering that the subject’s state will not greatly change
in a relatively short time period, the calibration is performed
at a certain time interval. In the current study, we adaptively
updated the training set at a certain number of experiment
blocks. Each block consisted of five trials that lasted for 1.5 s.
With this framework, some new reliable samples could be
integrated into the training set, while some old samples were

excluded from the training set. In our work, SVM is used to
classify the samples based on the expanded training set, and
other classifiers, such as linear discriminate analysis (LDA)
[33], Bayesian linear discriminate analysis (BLDA) [35], and
kernel spectrum regression (KSR) [37], could be considered
to replace SVM for classification.

2.3. Experimental Paradigm and Subjects. Eleven subjects
(three females and eight males, age 23.6 ± 1.2 years) partic-
ipated in the experiment. They had either normal vision or
corrected-to-normal vision. The Institution Research Ethics
Board of the University of Electronic Science and Technology
of China approved the experimental protocol. All the subjects
read and signed an informed consent form before they
participated in the experiment.

A 14 in LCD monitor with a 1280 × 1024 resolution and
60Hz refresh rate was used to present the visual stimulus
graphical user interface (GUI) with a visual field of 30∘ × 19∘
on the screen, as shown in Figure 4. The six virtual buttons
labeled with 1, 2, 3, 4, 5, and 6 were embedded in the GUI.
Each button with a visual field of 4∘ × 2∘ was composed of a
red vertical moving line and a vacant rectangle where the line
existed.

For each button, the red line appeared and moved from
the right side of the rectangle and disappeared at the leftmost
side.The entire process formed a brief motion-onset stimulus
and took 140ms with a 60ms interval between the consec-
utive move processes. Each motion-onset stimulus appears
randomly in the corresponding virtual button, and all the
stimuli appeared before others were repeated. A trial had six
successive stimulus periods corresponding to the six buttons.
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Figure 3: The procedure to generate the new training set.

Specifically, a trial included a series of six red vertical moving
lines across each virtual button successively. Therefore, when
there was a 300ms interval between two trials, each trial
lasted for 1.5 s, as shown in Figure 5. In addition, five trials
formed a block, which lasted for 7.5 s.

In the experiment process, each subject was asked to
focus on the button presented in the center of the GUI,
where the random number appeared. And the subjects
were required to calculate mentally the number of moving
stimulus occurrences in the target button. A total of 72
blocks (including 360 trials) were collected for each subject
in two separate sessions, and there is a 2min interval for
rest between the sessions. In the following process, the first
session was used as the training set, and the second session

was used as the test set. For the training set, we averaged five
trials for each virtual button in each block.Then, we could get
one target stimulation sample and five standard stimulation
samples, where the sample in the current work refers to
the 0.5 s long EEG recording corresponding to the stimulus.
One standard stimulation sample was randomly selected and
combined with the target stimulation sample as two samples.
Thus, the data collected from each subject contain 36 pairs of
samples to constitute the training set. For the test set, we also
averaged the five trials for each virtual button, resulting in
one target stimulation sample and five standard stimulation
samples, and then we totally obtained six samples for one
block in the test set. It was a binary classification problem for
mVEP recognition. We needed to conduct six times the two
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Table 1: Performance of both calibrations when the classifier is calibrated with a different number of blocks.

Subjects Adaptive calibrationby SVM and fCM (accuracy (%)/ITR) SVM
4 6 9

S1 86.1/13.4 81.5/11.7 83.3/12.4 83.3/12.4
S2 94.4/17.1 94.4/17.1 91.7/15.8 91.7/15.8
S3 69.4/7.9 72.2/8.7 72.2/8.7 66.7/7.2
S4 94.4/17.1 97.2/18.7 94.4/17.1 91.7/15.8
S5 77.8/10.4 80.6/11.4 77.8/10.4 75/9.5
S6 91.7/15.8 88.9/14.6 88.9/14.6 88.9/14.6
S7 94.4/17.1 94.4/17.1 91.7/15.8 91.7/15.8
S8 94.4/17.1 94.4/17.1 91.7/15.8 88.9/14.6
S9 94.4/17.1 94.4/17.1 94.4/17.1 94.4/17.1
S10 83.3/12.4 77.8/10.4 80.6/11.4 77.8/10.4
S11 91.7/15.8 94.4/17.1 94.4/17.1 91.7/15.8
Mean ± std 88.4 ± 8.0∗/14.7 ± 3.1∗ 88.2 ± 8.2∗/14.6 ± 3.3∗ 87.4 ± 7.3∗/14.2 ± 2.8∗ 85.6 ± 8.9/13.5 ± 3.1
∗ denotes that the adaptive calibration method results are significantly higher than those of SVM approach (𝑝 < 0.05, paired 𝑡-test). In each column, the left
and right values of “/” denote the accuracies and ITRs of subjects, respectively.

1 2

3

45

6

Move leftward

Figure 4: Graphical user interface for the offline data recording
for mVEP-based BCI experiment. The number “5” in the center
indicates the target button that subjects should gaze at. The red
vertical line moves leftward with a random order in each of the six
buttons to form the motion-onset stimulus.

classifications, and then we compared these output values to
recognize the button at which the subject gazed. In this study,
the accuracy was used to measure the subjects’ performance,
which is the ratio of the correctly classified blocks to the
total blocks in the test set. It is obvious that the higher the
recognition accuracy, the better the performance of mVEP-
BCI.

By using a Symtop amplifier (Symtop Instrument, Beijing,
China), eight Ag/AgCl electrodes (O3, O4, P3, P4, CP1, CP2,
CP3, and CP4) from an extended 10–20 system were placed
for EEG recordings. AFz electrode was adopted as reference.
The EEG signals were sampled at 1000Hz. There usually was
noise contaminating the scalp-recorded EEG signals, and, in
our work, those samples with absolute amplitude above the
50 𝜇v threshold were considered to be contaminated with
strong artifacts and abandoned in the following analysis.
Because themVEP is usually distributed in the low-frequency
band, EEG data were bandpass-filtered between 0.5Hz and
10Hz. Data between 150ms and 300ms were used to extract
features with the CSP algorithm. The one pair of CSP filters

was selected to filter the dataset. The log-variances of the
spatially filtered data were fed into the classifier for training
or test task recognition.

3. Results

This section details the performance evaluation of the pro-
posed approach under various conditions based on the accu-
racy and information transfer rate. The accuracy is defined
as the ratio of the number of correctly recognized targets to
the number of targets overall. Besides accuracy, the corre-
sponding information transfer rate (ITR) is another standard
criterion to measure the BCI performance. Generally, ITR is
defined as

ITR =
(log𝑁2 + 𝑃 log

𝑃
2 + (1 − 𝑃) log

[(1−𝑝)/(𝑁−1)]
2 )

𝑇
, (1)

where𝑁 is the number of selectable items, 𝑃 is the selection
accuracy, and 𝑇 is the average time in seconds for finishing
one selection.

3.1. Effect of the Calibration Interval. As the subject’s state
may change during certain intervals, in this section, the effect
of the calibration interval on the classifier performance is
explored. Specifically, we study the performance of the clas-
sifier when it is calibrated with different numbers of blocks.
Table 1 lists the accuracies and ITRs when the classifier is
calibrated for every four, six, and nine blocks, respectively.
For the different calibration intervals, the training set size is
fixed at 250 samples, and the threshold for reliable sample
selection is 0.75. The accuracies and ITRs in Table 1 are the
overall accuracies and ITRs for the total 36 test blocks. The
test set is thus divided into several segments that have the
same number of samples as the adopted calibration interval.
The samples in the current segment are classified using
the classifier calibrated with samples in previous segments.
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Figure 5: Timing scheme of the mVEP experiment. Each block contains five trials. In each trial, the motion stimulus appears in the virtual
button for 140ms. There is a 60ms interval between two consecutive stimuli and a 300ms interval between two consecutive trials.

Table 2: Performance of single SVM calibration when the classifier is calibrated with different numbers of blocks.

Subjects Adaptive calibration by SVM (accuracy (%)/ITR) SVM
4 6 9

S1 80.6/11.4 80.6/11.4 83.3/12.4 83.3/12.4
S2 94.4/17.1 91.7/15.8 91.7/15.8 91.7/15.8
S3 63.9/6.4 66.7/7.2 63.9/6.4 66.7/7.2
S4 88.9/14.6 91.7/15.8 88.9/14.6 91.7/15.8
S5 75/9.5 72.2/8.7 75/9.5 75/9.5
S6 88.9/14.6 86.1/13.4 88.9/14.6 88.9/14.6
S7 91.7/15.8 88.9/14.6 91.7/15.8 91.7/15.8
S8 88.9/14.6 91.7/15.8 88.9/14.6 88.9/14.6
S9 91.7/15.8 94.4/17.1 94.4/17.1 94.4/17.1
S10 83.3/12.4 80.6/11.4 75/9.5 77.8/10.4
S11 88.9/14.6 91.7/15.8 88.9/14.6 91.7/15.8
Mean ± std 85.1 ± 8.5/13.3 ± 3.0 85.1 ± 8.6/13.4 ± 3.1 84.6 ± 9.0/13.2 ± 3.2 85.6 ± 8.9/13.5 ± 3.1

The original SVM classifier uses the total training set of 36
pairs of samples. In the calibration framework, the samples
in the previous segment are used to update the training
set, and the redundant samples are dynamically removed
to keep a fixed number of training samples for adaptive
calibration of classifiers. The same default parameters were
used for SVM classifiers in the calibration and classification
stages for relatively fair comparison. The results of a single
SVM calibration and single fCM calibration under different
calibration intervals are shown in Tables 2 and 3. We find
that the combination of SVM and fCM yields better perfor-
mance with higher accuracy and ITR than a single method.
Additionally, the performance obtained by the combination
strategy is significantly higher than the performance obtained
by the method without adaptive calibration under three
interval conditions.

3.2. Effect of the Threshold for Reliable Sample Selection. In
this subsection, the influence of the threshold for reliable
sample selection on the calibration performance is explored.
Five values, that is, 0.6, 0.65, 0.7, 0.75, and 0.8, were tested.The
calibration was performed every four blocks. Table 4 gives
the overall accuracies and ITRs when different thresholds

were used. The results of a single SVM calibration and single
fCM calibration under different thresholds are also shown
in Tables 5 and 6. We observe that the calibration with the
combination of fCM and SVM shown in Table 4 provides
better performance (i.e., higher accuracy and ITR) with a
significant difference compared with single fCM or SVM
calibration at each threshold. In addition, the threshold of
0.75 provides the best performance. These results further
confirm that the proposed framework combining fCM and
SVM is feasible and effective and it is superior to the two
methods when they were implemented independently.

4. Discussion and Conclusion

The calibration of the classifier is an open issue for BCI online
systems, and the application of the information contained in
the new samples is one feasible solution to this issue [20, 22,
28]. However, for the practical online system, it is impossible
or difficult to label the samples as indisputably correct. To
address this problem, we proposed an adaptive classifier
calibration framework. In this framework, we labeled the
samples according to the outputs of SVM and fCM, and we
chose the reliable samples to update the training set that was
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Table 3: Performance of single calibration when the classifier is calibrated with different numbers of blocks.

Subjects Adaptive calibration by fCM (accuracy (%)/ITR) SVM
4 6 9

S1 77.8/10.4 83.3/12.4 77.8/10.4 83.3/12.4
S2 91.7/15.8 91.7/15.8 88.9/14.6 91.7/15.8
S3 66.7/7.2 69.4/7.9 66.7/7.2 66.7/7.2
S4 91.7/15.8 88.9/14.6 88.9/14.6 91.7/15.8
S5 77.8/10.4 75/9.5 75/9.5 75/9.5
S6 94.4/17.1 91.7/15.8 88.9/14.6 88.9/14.6
S7 86.1/13.4 88.9/14.6 86.1/13.4 91.7/15.8
S8 88.9/14.6 86.1/13.4 88.9/14.6 88.9/14.6
S9 91.7/15.8 94.4/17.1 94.4/17.1 94.4/17.1
S10 77.8/10.4 75/9.5 77.8/10.4 77.8/10.4
S11 94.4/17.1 91.7/15.8 94.4/17.1 91.7/15.8
Mean ± std 85.4 ± 8.6/13.5 ± 3.2 85.1 ± 8.0/13.3 ± 2.9 84.3 ± 8.4/13.0 ± 3.1 85.6 ± 8.9/13.5 ± 3.1

used to recalibrate the classifier. Moreover, two parameters,
that is, the calibration interval and the threshold for reliable
sample selection, were studied. We systematically tested the
effects of the two parameters on the classifier performance.

As shown in Table 1, when the calibration interval varies,
the calibration effect for the classifier is different. Among
the three different intervals tested, the interval including
four blocks demonstrates the best performance, and the
average accuracy is 88.4% and the average ITR is 14.7.
However, compared with the original SVM approach with-
out calibration, whatever the three calibration intervals the
calibration approach adopts, the classification accuracy is
significantly improved. The average classification accuracies
of four-block interval, six-block interval, and nine-block
interval are improved from85.6% to 88.4%, 88.2%, and 87.4%,
accompanied by the improved ITRs from 13.5 to 14.7, 14.6,
and 14.2, respectively. For a practical online system, there
is no doubt that the subject’s state may change during the
experiment, but it may not be necessary to calibrate the
classifier for each block or at a short interval. If the calibration
is frequently adapted, the efficiency of the online system may
be lowered due to the extra calculation involved. Moreover,
the subject’s state within a certain duration will be kept
relatively stable, so the feasible way is to calibrate the classifier
after a certain long period. However, the calibration interval
cannot be too large, or it may fail to adapt the classifier to
track the subject’s state on-time.

As shown in Table 2, when we only adopt the outputs
of SVM to find the reliable samples to update the training
set, the average performances (i.e., the accuracy and ITR)
of the three calibration intervals are 85.1% (13.3 bits), 85.1%
(13.4 bits), and 84.6% (13.2 bits), respectively. Compared with
the original SVM approach without classifier calibration, the
average performance is not improved. We can see similar
results in Table 3. When we only use the outputs of fCM
to find the reliable samples to update the training set, the
average performances of the three calibration intervals are
85.4% (13.5 bits), 85.1% (13.3 bits), and 84.3% (13.0 bits),
respectively. Obviously, the average performance evaluated

with accuracy and ITR has not yet been improved. For each
subject, compared with the method of combining SVM and
fCM to perform the classifier calibration,most of the subjects’
performance becomes worse for the single method. We can
see that the adoption of a single fCMor SVM for calibration is
not sufficiently effective. The method using the combination
of SVM with fCM is superior to single SVM or single fCM
and may provide more-reliable information about the new
samples.

The reliability of the selected sample is crucial for the
classifier calibration. The performance improvement of the
calibration approach is mainly due to the use of the infor-
mation in the new samples to retrain the classifier. In this
framework, the combination of two different approaches
can reflect the different aspects of samples to mine the
information hidden in the new samples. As shown in Table 4,
when the threshold is varied as 0.60, 0.65, 0.7, 0.75, and
0.80, the calibration approach gives the classification with
average performances of 87.9% (14.4 bits), 87.6% (14.3 bits),
88.1% (14.5 bits), 88.4% (14.7 bits), and 87.1% (14.2 bits),
respectively, compared with the baseline 85.6% (13.5 bits) of
the original SVMclassifier.The results show that the selection
of the threshold influences the performance of the calibration
approach, and the best accuracy of 88.4% and highest ITR
of 14.7 bits were achieved when the threshold was 0.75.
The threshold serves as a filter to differentiate the reliable
samples and unreliable samples, and a larger threshold will
facilitate selection of the more reliable samples. For the lower
thresholds, these thresholds could not guarantee the selection
of the samples with high-confidence probability; that is, some
incorrectly labeled samples could be added to the training
set. Obviously, those mislabeled samples may give incorrect
information for classifier calibration (training). Therefore,
the performances of thresholds that are 0.60 and 0.65 are
lower than those of 0.75. When the threshold becomes too
large, few reliable samples can be selected in one calibration
interval, and the small number of new samples in the training
set will not be enough or effective to calibrate the classifier,
which may be the main reason that the performance of 0.8
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Table 7: Number of samples updated and ratio of correctly recognized samples by three methods.

Session Adaptive calibration by SVM Adaptive calibration by fCM Fusion adaptive calibration
A B C A B C A B C

2 13 15 0.867 4 6 0.667 3 4 0.750
3 9 14 0.643 3 5 0.600 4 6 0.667
4 10 13 0.769 2 4 0.500 3 4 0.750
5 11 14 0.786 3 5 0.600 4 5 0.800
6 13 15 0.867 5 6 0.833 4 4 1.000
7 10 13 0.769 4 5 0.800 3 4 0.750
8 9 11 0.818 6 6 1.000 3 3 1.000
9 12 14 0.857 7 7 1.000 3 3 1.000
Sum 87 109 0.798 34 44 0.773 27 33 0.818
A and B denote the number of correctly labeled samples and the total number of samples updated into the training set, and C denotes the ratio of A and B.

is not compared with that of 0.75. As shown in Tables 5 and
6, we found that when only SVM or fCM was adopted to
perform the classifier calibration, the average performance
of the five thresholds was not obviously improved compared
with the original SVM approach. For each subject, com-
pared with the combination of SVM and fCM to perform
the classifier calibration, most of the subjects’ performance
becomes worse when the single SVM classifier is used for
calibration. Therefore, these results further confirmed that
combination of SVM and fCM to perform the classifier
calibration could provide better performance to find reliable
samples.

In summary, Tables 2, 3, 5, and 6 consistently revealed that
when calibration was performed by the single SVM or fCM,
it did not show obvious improvement, whereas when SVM
and fCM were combined to calibrate the classifier, higher
performance with higher accuracy and ITR was exhibited.
The difference is attributed to the enhanced ability of the
proposed approach to capture reliable information from the
testing set. To further reveal this difference, we analyze the
different effects when using the combination of SVM and
fCM, single SVM, and single fCM to calibrate the classifier for
each session. Table 7 shows the correct number of samples,
the total number of samples updated into the training set,
and the ratio of the two kinds of samples from a represen-
tative subject (Subject 1) by adoption of the three methods,
respectively. Figure 6 shows the corresponding identification
accuracy for each session. The threshold for reliable sample
selection was set at 0.75, and the calibration interval was set
at four blocks.

From Table 7, we observe that the ratio of screened
samples with correct labels to total screened samples is higher
when using the combination of SVM and fCM than with
SVM or fCM to perform the classifier calibration. It is
obvious that the combined calibration method could provide
a training set withmore-reliable new samples. Similarly, from
Figure 6, we see the differences of identification accuracy
among the three calibration methods for each session. The
combinedmethod of SVM and fCM is overall better than the
other two methods, which is attributed to the higher sample
ratio of corrected labels to be added to the training set by
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Figure 6: The identification accuracy of Subject 1 in each session
among the three calibration methods.

the combined approach. SVM and fCM are two different
approaches to handle the unlabeled samples: SVM needs the
training set to train the classifier, while fCM is a kind of
data-driven approach that can classify the dataset without the
need to have the training set [31, 32, 34, 37]. The reliability of
the information added to the training set will determine the
algorithm’s performance [22, 23, 31]. In this work, the outputs
of SVM and fCM were combined to find the reliable samples
to update the training set, which may make the classifier
calibration more robust.

After new samples were added to the training set, the
clip technique was used to remove the old samples that were
recorded a long time before current blocks. This technique
facilitates the BCI online system in two ways. First, the
removal of the old sampleswill be helpful to track the subject’s
state, because those old samples may represent the different
subject’s stage from the current stage, and their utilization for
training could distort the classifier. Second, the online system
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requires a not-too-large training set for effective training [28,
33], and the clip technique can keep the size of the training
set fixed.

The result in this work is offline analysis for mVEP-BCI
data of our lab. We will transplant this framework to our
BCI online system in the future. Moreover, SVM is used
in the current version and other classifiers, such as LDA
[33, 38], BLDA [35], and KSR [37], could be adopted. To
have a relatively fair comparison, the default setups of SVM
are used in the current work. If the SVM parameters are
optimized with a technique like grid searching [36], the
performances for both approaches may be further improved,
but we think the relative performance between them will
be similar to that reported here. Our framework aims to
calibrate the classifier adaptively during the long experiment
duration, and it still needs certain training procedures to train
the classifier initially; that is, our framework is not the zero-
training online system [23].The data-driven fCM can classify
the dataset without the training procedure, and we will study
the possibility of extending this system to zero training. The
adapting strategy used in the framework assumes that the
subject’s state will gradually change during the experiment
(i.e., it is possible to track the state’s change). If the subject’s
state varies abruptly, our calibration framework may fail to
track this change. Under this special condition, it may be
necessary to provide the subject with a new training session
for totally new classifier training.

In all, the above results demonstrate that the proposed
adaptive calibration framework, which was first used in the
mVEP-BCI system, can improve the BCI classifier perfor-
mance. The core of the proposed framework is adaptively
updating the training set and recalibrating the classifier. One
way of updating is to add the novel information that can
reflect the subject’s current state to the training set, and
another way is to remove the old information from the
training set. By merging information in the new samples
with the training set, the classifier could track the changes
of the subject’s states. The feasibility and effectiveness were
verified by the real offline EEG data. Accordingly, the pro-
posed framework is a promising methodology for adaptively
improving the mVEP-based BCI system, and it could be
generalized to other BCI modalities.
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