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Abstract Myocardial infarction causes a massive loss of cardiomyocytes (CMs), which can lead to heart failure accompanied
by fibrosis, stiffening of the heart, and loss of function. Heart failure causes high mortality rates and is a huge socio-
economic burden, which, based on diets and lifestyle in the developed world, is expected to increase further in the
next years. At present, the only curative treatment for heart failure is heart transplantation associated with a num-
ber of limitations such as donor organ availability and transplant rejection among others. Thus, the development of
cellular reprogramming and defined differentiation protocols provide exciting new possibilities for cell therapy
approaches and which opened up a new era in regenerative medicine. Consequently, tremendous research efforts
were undertaken to gain a detailed molecular understanding of the reprogramming processes and the in vitro differ-
entiation of pluripotent stem cells into functional CMs for transplantation into the patient’s injured heart. In the last
decade, non-coding RNAs, particularly microRNAs, long non-coding RNAs, and circular RNAs emerged as critical
regulators of gene expression that were shown to fine-tune cellular processes both on the transcriptional and the
post-transcriptional level. Unsurprisingly, also cellular reprogramming, pluripotency, and cardiac differentiation and
maturation are regulated by non-coding RNAs. In here, we review the current knowledge on non-coding RNAs in
these processes and highlight how their modulation may enhance the quality and quantity of stem cells and their
derivatives for safe and efficient clinical application in patients with heart failure. In addition, we summarize the clini-
cal cell therapy efforts undertaken thus far.
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1. Introduction

Cardiovascular diseases (CVDs) leading to heart failure are the most
common cause of death worldwide, which is particularly attributed to
the lack of sufficient regenerative potential of the heart. The high mortal-
ity and morbidity rates of CVDs contribute to a vast socioeconomic bur-
den. The Western lifestyle and demographic changes are expected to

account for drastically increasing patient numbers in the next years.1

According to the 2015 American Heart Association CVD Burden
Report, 41.5% of the US population was diagnosed with at least one type
of CVD including high blood pressure, coronary heart disease, stroke,
congestive heart failure, and atrial fibrillation. Unsurprisingly, CVDs are
by far the costliest chronic diseases.2 Despite advances in biomedical re-
search in the last decades, pharmacological interventions primarily focus
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on symptom reduction, while the only curative treatment for heart fail-
ure available to date is heart transplantation, which is accompanied by
long waiting time for a donor heart and immune suppression after
transplantation.

Contrary to the long-standing assumption, the heart is not a post-
mitotic organ and proliferation of cardiomyocytes (CMs) occurs
throughout life, although at an extremely low level.3 This endogenous re-
generation, however, does not balance the huge loss of CMs during in-
jury such as myocardial infarction and thus, subsequent maladaptive
remodelling can lead to heart failure.4 The knowledge of endogenous
CM turnover and the emergence of cell therapies have led to two differ-
ent regenerative strategies for CVD: first, promoting the limited intrinsic
proliferation of CMs and secondly, the replacement of lost CMs by trans-
plantation of pluripotent stem cells (PSCs), PSC-derived cardiac progeni-
tors or CMs (PSC-CMs).

PSCs have the ability to self-renew and differentiate into all cell types
derived from the three germ layers emphasizing their remarkable regen-
erative potential in versatile diseases. Initially, embryonic stem cells
(ESCs) were utilized in regenerative medicine and research, but ethical
and legal limitations hamper their clinical application.5 Therefore, the dis-
covery of cellular reprogramming with the so-called Yamanaka factors
and the establishment of induced pluripotent stem cells (iPSCs) in 2006
revolutionized the stem cell field and heralded a new era in regenerative
medicine.6 To generate iPSCs, virtually any somatic cell may be reprog-
rammed by the introduction of four transcription factors Oct4, Klf4,
Sox2, and c-Myc. Since the initial discovery, several transcription factors
and combinations introduced as genes, proteins, or mRNAs, and the de-
livery by various integrating and non-integrating vectors were tested suc-
cessfully.7 Nonetheless, several problems emerged using the iPSC
technology and scientists around the globe constantly seek to find solu-
tions. For instance, the accessibility of different genetic regions in somatic
cells varies, explaining the impact on reprogramming efficiency and matu-
ration of iPSCs and in this regard, the advantages of their counterpart,
the ESCs. In addition to their potential in regenerative medicine, iPSCs
are also heavily studied as patient-specific platforms for disease model-
ling in 2D and 3D cell culture systems.8 This contributes to a wider and
more detailed understanding of disease phenotypes and their underlying
mechanisms, and finally helps to discover new therapeutic strategies and
targets. Moreover, those platforms can also be used for drug screenings
either for personalized medicine or for specific patient cohorts that are
not responding to traditional treatments. In CM cultures also cardiotoxic
side effects, which frequently occur during anti-cancer treatments,9,10

can be studied as this is often the reason for market withdrawal of novel
drugs.8

The human ENCODE project revealed that only 2% of the human
transcriptome is protein-coding,11 whereas a large proportion accounts
for non-coding RNA (ncRNA) transcripts, which are not translated into
proteins. Those ncRNAs are emerging as crucial regulators of physiologi-
cal and pathophysiological processes. Besides the well-described transfer
RNAs and ribosomal RNAs, particularly microRNAs (miRNAs), long
ncRNAs (lncRNAs) and circular RNAs (circRNAs) gained a lot of atten-
tion during the past two decades. While miRNAs are short oligo-
ribonucleotides with a size of about 21–23 nucleotides, lncRNAs are de-
fined by a length of more than 200 nucleotides.12 CircRNAs are the
most recently described class of ncRNAs that are characterized by a ‘co-
valent closure’ forming a circRNA molecule.13 Functionally, miRNAs
post-transcriptionally regulate gene expression by forming a miRNA-
induced silencing complex with Ago proteins. The complex induces
sequence-specific mRNA degradation or stalls mRNA translation12

(Figure 1). The modes of action of lncRNAs and circRNAs are much
more heterogeneous. Both can regulate gene expression on the tran-
scriptional and post-transcriptional level: in the nucleus, they can act as a
scaffold for transcription factors and epigenetic modifiers, as protein
decoys or as transcriptional enhancers. In the cytoplasm, they can influ-
ence mRNA stability, have a sponge effect on miRNAs or RNA-binding
proteins, or serve as scaffolds for protein complexes.12,14 A small num-
ber of lncRNAs and circRNAs were even shown to code for micropepti-
des.15 Due to the relatively recent discovery of ncRNAs that make up
the major part of our genome as well as the continuously growing num-
ber of newly described transcripts, ncRNA research is still in its infancy
but has a promising potential for the development of novel regenerative
strategies and for the treatment of many diseases. Additionally, all three
classes of ncRNAs are found in extracellular fluids and can therefore
serve as biomarkers.16

In this review, we focus on the exciting opportunities offered by
ncRNAs as regulators of PSC-CMs for cardiac cell therapy. NcRNAs are
promising targets to enhance or perform reprogramming of somatic
cells, to improve the pluripotent state of PSCs, and to facilitate the differ-
entiation into CMs in order to increase the quality and quantity of PSC-
CMs for safe and efficient clinical application.

2. ncRNAs in cellular
reprogramming

Cellular reprogramming is based on and accompanied by wide-ranging
changes of the transcriptional and epigenetic landscape. Particularly,
pluripotency-related genes are activated while genes crucial for cellular
specification are silenced through chromatin remodelling processes.
Since the discovery of reprogramming of murine fibroblasts into iPSCs
with retroviruses containing Oct4, Klf4, Sox2, and c-Myc, alternative
molecules and delivery strategies were identified to reprogram not only
fibroblast but also other somatic cells successfully. As cellular reprog-
ramming is a very inefficient process, different strategies were tested to
enhance the generation of iPSCs through modulation, for example of tel-
omerase and SV40 large T17 or p5318,19 in addition to the four reprog-
ramming factors. Also the replacement of c-Myc with small molecules
such as valproic acid (a histone deacetylase inhibitor)20 has been proven
to be an effective strategy. Historically, murine embryonic fibroblasts
had been the first described cell type that was reprogrammed,6 subse-
quently enabling the direct transfer of this fundamental discovery to hu-
man dermal fibroblasts.17 To date, successful generation of iPSCs from a
wide range of cell types like keratinocytes, cord blood, or peripheral
blood cells has been demonstrated.7

Not surprisingly, as master regulators of gene expression, ncRNAs
were described to influence stem cell properties with some of them be-
ing sufficient to reprogram somatic cells alone (Figure 2). The miR-302–
367 cluster was found to reprogram human cancer cell lines21 as well as
murine and human fibroblasts22,23 even more efficient than Oct4, Klf4,
Sox2, and c-Myc. miR-200c, miR-302, and miR-369 were sufficient for
the reprogramming of adipose stromal cells and dermal fibroblasts, but
exhibited a lower efficiency.24 A major advantage of synthetic and ma-
ture miRNA mimics as a reprogramming strategy is the non-integrative
nature of those molecules, thus, no transgenes remain in the generated
iPSCs. Importantly, if delivered by multiple consecutive transfections,
miRNAs have a similar reprogramming efficiency compared to com-
monly used retroviruses.7

2 H.J. Hunkler et al.3072
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..miRNAs were also used in addition to or instead of one of the classical
reprogramming factors. For example, the miR-290–295 cluster, known
as ESC-specific cell cycle-regulating miRNAs, regulates the transition
from G1 to S phase.25 From this family, miR-291, miR-294, and miR-295
also play a role in activating the stemness properties as these are under
the transcriptional control of c-Myc and thus, each of them can substi-
tute c-Myc to enhance reprogramming together with Oct4, Klf4, and
Sox2.26 From this cluster, miR-294 seems to be the most important, be-
cause it interferes with super ordinated pathways such as Akt, Wnt, and
TGFb signalling.27 Also the other family members have further regula-
tory duties such as miR-291, which suppresses the expression of p65
and concurrently NF-jB formation.28 Interestingly, like miR-294, miR-
181 also acts on Wnt and TGFb pathways initiating reprogramming with-
out having synergistic effect, suggesting that both miRNAs influence addi-
tional mRNAs, which are connected to reprogramming.27

Moreover, the expression of the core transcription factors Oct4,
Sox2, and Nanog is controlled by miRNAs. miR-34a degrades the tran-
scripts of Nanog, Sox2, and c-Myc. Consequently, reprogramming of
miR-34a knockout murine fibroblasts is more efficient than their wild-

type counterparts.29 Also the knockdown of miR-145 leads to a higher
efficiency as this miRNA represses the translation of Oct4, Sox2, and
Klf4.30 The inhibition of let-7 in combination with overexpression of
Oct4, Sox2, and Klf4 results in a similar efficiency compared to reprog-
ramming including c-Myc as let-7 inhibits LIN-41, which is another essen-
tial transcription factor for reprogramming.31 Also miR-130, miR-301,
and miR-721 enhance iPSC generation by inhibiting the translation of
mesenchyme homeobox 2 (Meox2), a homeobox transcription factor
and negative regulator of reprogramming.32

Reprogramming can lead to genome destabilization and therefore ac-
tivate tumour suppressors, which can be based on or enhanced by the
reprogramming vector integration. In turn, miRNAs involved in those
processes can be exploited to increase reprogramming efficiency.
NcRNAs add an additional level of regulation as the control of such cru-
cial processes has to be stringent, otherwise cells can transform into a
cancerous state. For example, miR-19 represses phosphatase and tensin
homolog (PTEN) and can be used as a substitute for c-Myc,33 while inhi-
bition of miR-29a and miR-21 indirectly leads to depletion of p53, which
is known to greatly facilitate reprogramming.34

Figure 1 NcRNAs fine-tune gene expression via versatile mechanisms. Cellular functions of ncRNAs are summarized here with miRNA in blue,
lncRNA in green, and circRNA in red.

NcRNA regulate CM production for cell therapy 33073
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Besides miRNAs, lncRNAs also play crucial roles during reprogram-

ming (Figure 2). The first described lncRNA in reprogramming is regula-
tor of reprogramming (lincRoR), which acts as a sponge for several
miRNAs such as miR-145, which represses the expression of the core
pluripotency factors.35,36 LncRNAs not only influence gene expression
post-transcriptionally but also interact with chromatin modifiers. For ex-
ample, lncPRESS1 acts as a decoy for the histone deacetylase SIRT6
maintaining the acetylation of pluripotency-related genes in pluripotency,
while it is repressed by p53 during differentiation.37 In contrast,

lincRNA-p21 is induced by p53 and prevents reprogramming by building
a scaffold for histone and DNA methyltransferases at pluripotency
genes.38

To conclude, ncRNAs influence the expression of genes regulating
stem cell features on different levels while interfering in various pro-
cesses during reprogramming. Due to the later discovery, less lncRNAs
and barely any circRNAs are described in reprogramming,39 but this will
certainly change within the next years. In particular, synthetic miRNAs
or miRNA inhibitors can be used as a cocktail to induce or enhance

Figure 2 NcRNA influence reprogramming of iPSCs, pluripotency, differentiation to CMs, and their maturation. NcRNAs regulating the process posi-
tively are summarized on the right side, inhibitory ncRNAs on the left.

4 H.J. Hunkler et al.3074
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‘traceless’ reprogramming of somatic cells into iPSCs which is of great in-
terest for the application of patient-specific iPSCs in medical sciences.

3. ncRNAs in control of
pluripotency

Pluripotency is a complex process and tightly regulated on multiple lev-
els. The pluripotency gene regulatory network orchestrates the pluripo-
tent state of a cell via core transcription factors and, additionally, via
chromatin-mediated and RNA-based processes, which fine-tune the reg-
ulation and increase the variety of translated proteins. The super-
ordinated role of ncRNAs, in particular miRNAs, has been highlighted in
a knockout model in PSCs, where core proteins of the riboprotein com-
plex involved in miRNA processing, namely Dicer and DGCR8, were ab-
sent. As a consequence, the proliferative capacity and differentiation of
PSCs into specialized cell types was severely impaired.40,41 Several
miRNAs are described as regulators of pluripotency with a more pro-
nounced effect on differentiation (Figure 2). Pluripotency is regulated on
versatile levels by miRNAs, for example, miR-302, described above as a
reprogramming factor, also inhibits the translation of the transcription
factor NR2F2, which initiates neural development.42 The miR-290–295
cluster regulates cell cycle progression of PSCs and therefore plays not
only an important role during reprogramming but also in maintaining
self-renewal.25 Culture conditions of PSCs can be improved by miR-203
and lead to a higher differentiation capacity by repressing DNA methyl-
transferases.43 The differentiation of ESCs is promoted by miR-125,
which inhibits Cbx7, a chromatin modifier, and enhances the maturation
of the pro-differentiative miRNA let-7.44 The core pluripotency factors
Nanog, Sox2, and Oct4 are negatively regulated by many miRNAs, for
example miR-145, miR-470, miR-134, and miR-296, which inhibit their
translation.30,45

LncRNAs often exhibit regulatory features specifically in distinct cell
types, so it is already conceivable that they also modulate pluripotency
(Figure 2). For example, lincRoR as mentioned above sponges miR-145,
which derepresses the translation of Oct4, Sox2, and Nanog.36 The mul-
tifaceted modes of action of lncRNAs can be illustrated by the following
lncRNAs. LncRNA Tuna (megamind) activates the transcription of
Nanog, Sox2, and Fgf4 by recruiting RNA-binding proteins polypyrimi-
dine tract-binding protein 1 (PTBP1), heterogeneous nuclear ribonu-
cleoprotein K (hnRNP-K), and nucleolin (NCL) to their promoter
region.46 Nanog was also assumed to be targeted by the lncRNA
Cyrano,47 but could not be validated in a recent study that used several
knockout and knockdown techniques to eliminate Cyrano in ESCs and
iPSCs without any effect on pluripotency.48

LncRNAs are commonly involved in the epigenetic control of specific
processes maintaining or inducing a pluripotent state. For instance,
lnc_ES1 and lnc_ES2 regulate on the one hand the expression of Sox2
and on the other hand are involved in chromatin remodelling via target-
ing SUZ12, which is part of the histone-modifying complex PRC2.49

Furthermore, also Meg3 and lncPRESS1 influence pluripotency by dis-
tinct chromatin modifications, which are described above. Meg3 serves
as a scaffold for PRC2 at promoters of pluripotency-associated genes.50

Pluripotency is also regulated by lncRNAs, which are well known in a
stem cell-independent context. For example, Terra, a particular lncRNA
that is transcribed from several sub-telomeric regions into the telomere,
inhibits the transcription of the pluripotency repressor TCF3.51

Taken together, ncRNAs bear the potential to optimize culture condi-
tions and keep PSCs in an optimal pluripotent state. It is therefore

conceivable that panels of ncRNAs may even be exploited to assess the
quality of PSCs before using them in subsequent manufacturing steps
and applying them to clinics.

4. ncRNAs in cardiac differentiation

Many patients with CVD suffer from cardiac damage characterized by
massive loss of CMs. The general idea is that these patients could benefit
from a cardiac cell therapy that has already been explored in a large
number of pre-clinical and clinical studies. One example is the clinical
trial ESCORT (Transplantation of Human Embryonic Stem Cell-derived
Progenitors in Severe Heart Failure) where 5–10 million ESC-derived
cardiac progenitors were required per patient highlighting a major chal-
lenge for cardiac cell therapies (Table 1).52 To fulfil this high demand for
cells, the manufacturing processes have to be scaled up in an effective
and cost-efficient way while maintaining quality and integrity of the cells.
Indeed, such upscaling has been the focus of research in recent years and
substantial progress can be reported. Large-scale adherent monolayer
platforms and three-dimensional suspension cultures in stirred tank
reactors were established for cardiac differentiation.53 From a differenti-
ation in monolayer, for example 7.2 � 108 iPSCs were differentiated to
6.2–7.0� 108 CMs after purification (with a purity of 99%), whereas in a
Good Manufacturing Practice (GMP) compliant process in a suspension
culture 1 � 106/mL ESCs were differentiated in carrier-free aggregates
resulting in 1.5–2 � 106/mL CMs (90% purity on Day 25 of differentia-
tion).53 In addition to the high demand of needed cells, the cells were ap-
plied by different approaches in the clinical trials. Besides intracoronary
infusions or epicardial injections, cells were also transplanted as patches.
For the latter, as in the ESCORT trial, the cells have to undergo a tissue
engineering process to embed the cells in a fibrin scaffold adding another
step of complexity to the manufacturing process.

In vitro cardiac differentiation mimics the embryonic development of
the heart. Several crucial signalling pathways including bone morphoge-
netic protein, Wnt/b-catenin, Notch or fibroblast growth factor (FGF)
signalling are found to induce cardiomyocyte-specific gene programmes
in an accurately coordinated way. For in vitro generation of CMs, exoge-
nous regulation, which is accomplished by specific compounds, needs to
be strictly timed as the differentiation process is extremely delicate.54

NcRNAs are also involved in cardiac differentiation (Figure 2), for exam-
ple miR-1 promotes differentiation to the mesoderm by increasing the
expression of transcription factors associated with cardiogenesis and the
sarcomeric proteins in cooperation with miR-133.55 In addition to these
regulatory effects during the early time points of differentiation, miR-1
inhibits Wnt and FGF signalling in cardiac progenitors leading to the dif-
ferentiation of CMs,56 whereas miR-133 has an antagonistic role in those
subsequent processes.55 The miRNAs miR-199a-3p and miR-483-3p are
enriched in mesodermal progenitor cells and regulate their correspond-
ing target genes ACVR2A and PGAM1, which play roles in the Nodal/
TGFb signalling and glycolysis pathway.57 The so-called myomiRs, which
are CM exclusively expressed, miR-208a, miR-208b, and miR-499 are
transcribed from the introns of myosin heavy chain (Myh) 6, 7, and 7b
and regulate the expression of their host genes, therefore influencing the
differentiation and progression to more adult CMs.58 miR-322/503
increases the cardiomyocyte yield by driving PSCs to the cardiac fate and
inhibiting neural lineages.59

A well-known lncRNA in cardiac development is Braveheart, which
initiates transcription of early cardiac genes like Mesp1, Nkx2.5, Tbx5,
and Gata4 by interacting with Suz12 in mice, so far no human homologue

NcRNA regulate CM production for cell therapy 53075
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Table 1 Overview of registered cell therapy trials for the treatment of CVD

Study, year, phasea Type of cells, number of cells,

time point of intervention, and

delivery

Results Clinical trial number

Bone marrow (-derived) cells

TOPCARE-AMI, 2001, IIa Bone marrow-derived progenitor cells

or circulating progenitor cells

(CD34/CD45-positive), 1.6–9.4

million cells, 3–7 days after AMI by

intracoronary infusion

Cardiovascular events$, no tumours

4 months: LVEF", end-systolic

volume#, cell groups$
1 year: LVEF", infarct size#
5 years: LVEF", infarct size#, LVEDV"

Not available

BOOST, 2002, I Autologous bone marrow cells, 2500

million cells, 4–8 days after PCI by

intracoronary transfer

6 months: LVEF"
18 months:$

NCT00224536

ASTAMI, 2003, II Autologous mononuclear bone

marrow cells, 54–130 million cells,

4–7 days after PCI by intracoronary

injection

6 months: LV end-diastolic volume$,

adverse events$
NCT00199823

LEUVEN-AMI, 2003, II Autologous bone marrow-derived

stem cells, 176–432 million

nucleated cells and 100–244 million

mononucleated cells, by

intracoronary injection

One in cell group died of

haemorrhagic shock

4 months: infarct size#, regional

systolic function"

NCT00264316

STEMI, 2003, II Autologous bone marrow-derived

stem cells, 304 million cells, 1 day

after reperfusion by intracoronary

infusion

No safety issues

4 months: infarct size#
NCT00264316

REGENT, 2004 Autologous bone marrow-derived

unselected mononuclear cells or

CD34þ-CXCR4þ cells, 178 million

BMNCs and 1.9 million

CD34–CXCR4 cells (median),

3–12 days after PCI by

intracoronary infusion

Major cardiac events$
6 months: improvement only after

treatment with BM cells and baseline

LVEF < median (37%) and PCI >

median

NCT00316381

BONAMI, 2004, II Autologous bone marrow

mononuclear cells, 89.6–107 million

cells, 7–10 days after PCI by

intracoronary injection

LV function", myocardial viability" NCT00200707

REPAIR-AMI, 2004, III Autologous bone marrow-derived

progenitor cells, 50 mL bone

marrow aspirated, 3–7 days after

reperfusion therapy by

intracoronary infusion

4 months: LVEF"
1 year: maximal vascular conductance

capacity", death#, recurrence of

myocardial infarction and

revascularization procedure#
2 years: infarct size", regional

contractility"

NCT00279175

SCAMI, 2005, II Autologous bone marrow cells, mean

381 million cells, mean 7 days after

AMI by intracoronary administration

with over-the-wire balloon catheter

6, 12, 24, 36 months: LVEF" if treated

with cell number above median,

without microvascular obstruction

better improvement

3 years: MR$

NCT00669227

HEBE, 2005 Autologous mononuclear bone

marrow cells or peripheral

mononuclear blood cells, 132–460

or 150–424 million cells,

respectively, 3–8 days after AMI by

intracoronary infusion

4 months:$, clinical events$ NTR166 (Netherlands Trial Register)

Continued

6 H.J. Hunkler et al.3076
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Table 1 Continued

Study, year, phasea Type of cells, number of cells,

time point of intervention, and

delivery

Results Clinical trial number

TIME, 2008, II Autologous bone marrow mononucle-

ated stem cells, 150 million nucle-

ated cells, 3/7 days after MI by

intracoronary infusion

Major adverse events were rare in all

groups

6 months:$, timing of treatment had

no effect on LV function

NCT00684021

LateTIME, 2008, II Autologous bone marrow mononucle-

ated stem cells, 150 million nucle-

ated cells, 2–3 weeks after MI by

intracoronary infusion

6 months:$ NCT00684060

C-CURE, 2008, II/III Bone marrow-derived cardiopoetic

cells, 605–1168 million cells, MI/re-

vascularization max. 2 months ago

by endocardial injection

Cardiac or systemic toxicity$
6 months: LVEF", 6-min walk dis-

tance", LVESV#

NCT00810238

BAMI, 2013, III Autologous bone marrow-derived

mononuclear cells, 2–8 days after

reperfusion by percutaneous intra-

coronary intervention with over-

the-wire balloon

Results not published yet, follow-up

ended October 2019

NCT01569178

Mesenchymal stem cells

Prochymal, 2005, I Allogeneic bone marrow-derived

MSCs, 0.5/1.6/5 million cells per ki-

logram, by intravenous infusion

Adverse events$
6 months: ventricular tachycardia#,

forced expiratory volume", global

symptom score", LVEF "

NCT00114452

SEED-MSC, 2007, II/III Autologous bone marrow-derived

MSCs, 1 million cells per kilogram

body weight, mean 4 weeks after

PCI by intracoronary injection

No toxicity, adverse cardiovascular

events

6 months: LVEF"

NCT01392105

TAC-HFT, 2008, I/II Autologous mesenchymal and bone

marrow cells, 100/200 million cells,

by transendocardial injection during

cardiac catheterization

1 month: no adverse events

1 year: Minnesota Living With Heart

Failure score" with MSCs and BMCs,

6-min walk distance" and with

MSCs: regional myocardial function",
infarct size#

NCT00768066

POSEIDON-Pilot, 2010, I/II Autologous/allogeneic bone marrow-

derived MSCs, 20/100/200 million

cells, by transendocardial injection

during cardiac catheterization

30 days: 1 patient in each group hospi-

talized for heart failure

1 year: 33.3% serious adverse events

after allogenic, 53.3% autologous

transplantation, no arrhythmia, no

immune response by allogenic cells,

autologous 6-min walk test",
MLHFQ score", both mean EED#,
sphericity index#, allogenic LVEDV#

Low dose had greatest effect in LV

volume#, EF"
No placebo control

NCT01087996

WJ-MSC-AMI, 2011, II Umbical Wharton’s Jelly-derived

MSCs, 6 million cells, 4–7 days after

reperfusion by intracoronary

infusion

4 months: myocardial viability (PET)",
perfusion within the infarcted terri-

tory "
18 months: LVEF", LVESV", LVEDV",

adverse event rates$, laboratory

tests including tumor$, immune and

hematologic indexes$

NCT01291329

Continued
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Table 1 Continued

Study, year, phasea Type of cells, number of cells,

time point of intervention, and

delivery

Results Clinical trial number

CHART-1, 2012, III Autologous bone marrow-derived

mesenchymal cardiopoetic cells,

600 million cells, by intramyocardial

injection

52 weeks: LVEDV#, LVESV#
1 year: LVEDV#, LVESV#

NCT01768702

TRIDENT, 2014, II Allogenic adult MSCs, 20/100 million

cells, by transendocardial injection

No serious adverse events, 20% major

adverse cardiac event in 20 million

and 13.3% in 100 million, worsening

heart failure rehospitalization was

20% in 20 million and 7.1% in 100

million

1 year: scare size# in both groups, EF"
in 100 million, NYHA class",
proBNP" in 20 million

NCT02013674

Adipose tissue-derived regenerative cells

APOLLO, 2007, I 20 million cells, 1 day after PCI by

intracoronary infusion

No adverse events

6 months: LVEF" (trend), perfusion

defect#, infarct size#

NCT00442806

PRECISE, 2007, I 0.4/0.8/1.2 million cells per kilogram

body weight, by transendocardial

injection

No arrhythmias, adverse events$
6 months: maximal oxygen con-

sumption", LV mass", wall motion

score index"

NCT00426868

ADVANCE, 2012, II Autologous, via intracoronary route Participants reduced from 216 to 23

Results not published yet

NCT01216995

ATHENA, 2012/2014, II Autologous, 0.4/0.8 million cells per ki-

logram body weight (max. 40/80

million cells), by intramyocardial

injection

Terminated 2014 due to delay

Coagulation-associated problems oc-

curred, changed with amendment

6 months:$

NCT01556022

NCT02052427

Cardiosphere-derived stem cells

CADUCEUS, 2009, I Autologous, 12.5/25 million cells, 1.5–

3 months after MI by intracoronary

infusion

No major adverse cardiac event or tu-

mor formation

6 months: scar size#, regional

function", functional heart mass"

NCT00893360

ALLSTAR, 2012, I/II Allogenic, 25 million cells, within

1 year after MI by intracoronary

infusion

No primary safety endpoint events, no

difference in severe adverse events

6, 12 months: LV volumes" (trend),

BNP" (trend)

Full results not published yet

NCT01458405

Cardiac stem cells

SCIPIO, 2009, I

retracted 2019

1 million cells, 3–5 months after sur-

gery by intracoronary infusion

No arrhythmia or tumour formation,

one intimal dissection after balloon

deflating, one second worsening val-

vular disease, less hospitalization for

angina (one in treated group, two in

control)

4, 12 months: LVEF", regional EF in in-

fused territory", viable mass", infarct

size LV non-viable mass#

NCT00474461

Continued
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..was identified.60 LncRNAs are often poorly conserved in their primary
structure, but many lncRNAs may have functional homologous across
different species. In human cells, several lncRNAs are known to influence
cardiac commitment. For example, lncRNA Fendrr modulates gene ex-
pression via recruiting methyltransferase mixed lineage leukemia (MLL)
to the promoter of forkhead box F1 (Foxf1) and paired like homeodo-
main 2 (Pitx2), two important transcription factors of early embryogene-
sis (lateral plate mesoderm), where the methylation leads to increased
transcription. Additionally Fendrr binds to PRC2 reducing gene expres-
sion.61 Initiating and maintaining cardiomyocyte identity is also depen-
dent on the cardiac mesoderm enhancer-associated non-coding RNA
(CARMEN). CARMEN is a super enhancer-associated lncRNA that
interacts with SUZ12 and EZH2, which is enzymatically active domain of
PRC2 and thereby influences the differentiation of cardiac progenitors.62

Lnc-MD1 sequesters miR-133 and miR-135, constructing a regulatory
network of ncRNAs, preventing the repression of transcription factors
needed for cardiomyocyte differentiation.63 Similarly, heart break
lncRNA1 binds to miR-1 thus inhibiting differentiation and is in turn regu-
lated by SOX2.64 Accordingly, lncRNAs mainly operate via repression of
distinct regulatory pathways rather than activating desired pathways.65

In contrast to lncRNAs, circRNAs are enriched in the later stages of
cardiac differentiation and show temporal expression patterns. Since
circRNA research is still in its infancy, only few mechanistic studies were
performed so far. First insights were gained for a circRNA from the titin
(TTN) locus, circ-TTN, which is highly expressed in CMs and described
to bind miR-432 competitively and therefore inhibiting the PI3K/Akt

pathway.66,67 Additionally, circ-SLC8A1 reveals an enrichment in CMs
suggesting a role in cardiac differentiation.66

Besides high demands on iPSC-CM quality and quantity for clinical ap-
plication, which may be improved by modulation of ncRNAs, in particu-
lar the maturation of engineered CMs remains a critical issue. PSC-CMs
differ from adult CMs in their transcriptome, cytoskeleton structure, me-
tabolism, and electrophysiology.68 For the transplantation of cells, the
electrical and mechanical capacity of the produced CMs should resemble
the physiological parameters of the myocardium69; otherwise, as
reported in animal studies, the transplantation of immature CMs can
cause arrhythmias.70,71 Several strategies and concepts were tested to
mature CMs in culture with a focus on a prolonged culturing time, stiff
substrates resembling the collagen deposition during embryogenesis,
cardiac engineering techniques, mechanical loading, electrical stimulation,
or neurohormonal factors.69 Recent approaches include the modulation
of ncRNAs as these are also involved in the maturation of CMs. The
most prominent example is miR-1 where the overexpression leads to
the functional maturation of electrophysiological properties of CMs by
influencing the action potential.72 Let-7 inhibits the PI3K/AKT/insulin sig-
nalling cascade leading to the metabolic change from glucose to fatty
acids typically observed during CMs maturation.73 Overexpression of
miR-125b, miR-199a, miR-221, and miR-222 resulted in more mature
PSC-CMs as observed by co-cultivation with endothelial cells.74

Furthermore, lncRNA Myheart inhibits the chromatin remodelling factor
Brg1 and therefore impairs the expression of its target genes MYH6 and
MYH7, which is accompanied by a decrease of the MYH7/6 ratio. This

..............................................................................................................................................................................................................................

Table 1 Continued

Study, year, phasea Type of cells, number of cells,

time point of intervention, and

delivery

Results Clinical trial number

CAREMI, 2014, I/II Allogenic, 10/20/35 million cells,

5–7 days after reperfusion by

intracoronary infusion

No deaths or major adverse cardiac

events, some serious adverse events

2 may be linked to treatment

Low immunogenicity (low levels of

donor-specific antibodies in 7% of

patients, cleared by 12 months)

1 year: MR-based efficacy

parameters$, infarct size# (trend)

NCT02439398

Embryonic stem cell-derived progenitor cells

ESCORT, 2013, I ESC-derived cardiac progenitors

(SSEA-1þ Isl-1þ), 5–10 million in a

fibrin patch, MI min. 6 months ago,

patch was fixed by ‘Kangaroo’

procedure

No tumour, no arrhythmias, clinically

silent alloimmunization

1 year: NYHA class#, systolic motion"
in cell-treated segments

NCT02057900

Induced pluripotent stem cell-derived cardiomyocytes

2018, I Allogenic, 100 million cells in 4–5 cm

0.1 mm thick sheets

Ongoing jRCT2053190081 (Japan Registry of

Clinical Trials)

HEAL-CHF, 2019 Allogenic, 100 million cells, 5,

epicardial injection at coronary

artery bypass surgery

Ongoing NCT03763136

aStudy start according to clinicaltrial.gov
EED, early enhancement defect; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; LVEDV, left ventricular end-diastolic volume; MR, magnetic reso-
nance; NYHA, New York Heart Association; PCI, percutaneous coronary intervention; PET, positron emission tomography.
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might be an important factor and could additionally influence maturation
of CMs.75

5. Cardiac cell therapies in clinical
trials

Curing cardiac injury by transplanting lost CMs with in vitro generated
PSC-CMs is one of the scopes of regenerative medicine in CVD. The
concept of cardiac cell therapeutic approaches has been fuelled by semi-
nal discoveries including iPSC technology, large-scale cell production, de-
fined cardiac cell specification, and cardiac tissue engineering over the
past two decades. Pre-clinical animal models have been instrumental in
the translation of these technologies into clinics. For example, transplan-
tation of PSC-CMs after myocardial infarction ameliorated cardiac func-
tion in small animal models by engraftment and electrical coupling of the
injected cells with the myocardium.76–81 Subsequently, applying cardiac
cell therapies in large animal models like non-human primates (ma-
caque)71,82 or pigs83 paved the way for translation into a clinical context.
A recurring issue is the occurrence of arrhythmias after cell therapy.
Noteworthy, these complications were especially detected in large ani-
mals, probably due to higher amount of transplanted PSC-CMs.
Additionally, changes in the heart rate of small animals might be masked
by their fast heart rate.71 Although in some studies no arrhythmic effects
of ESC-CMs have been observed, arrhythmogenesis has to be studied
carefully prior to clinical application of promising cell therapies.78

For ischaemic heart disease, several clinical trials using multipotent
stem cells were initiated in the past decades (Table 1). Different cell
types, e.g. bone marrow cells, mesenchymal stem cells (MSCs), cardiac
stem cells, or cardiosphere-derived cells, served as a cell source. In gen-
eral, the cell number, route of application, and time point after myocar-
dial infarction had a considerable influence on the respective outcome.
In some studies, a slight beneficial effect of stem cell therapies was docu-
mented, whereas others did not report any effects. The clinical trials
revealed so far no safety issue, but whether cardiac cell therapies are the
solution for the increasing number of patients with heart failure and their
high burden remains unclear. The advantage of transplanting early pro-
genitors is their high plasticity and adaption to the injured tissue environ-
ment, whereas more mature PSC-CMs have a higher potential to
improve cardiac function by replacing the lost CMs. So far, most clinical
trials were conducted with multipotent cells, PSC-CMs have only been
used a couple of times. One clinical trial was based on ESC-derived car-
diac progenitor cells (ESCORT, NCT02057900) and after the first year,
no tumours or arrhythmias were detected in the study group consisting
of five patients. The systolic motion of the heart area that received a fi-
brin patch with cells was improved.52 In 2018, the first clinical application
of iPSC-derived CMs was approved in Japan and included 10 patients
(Japan Registry of Clinical Trials jRCT2053190081). The first patient re-
ceived a cell sheet of 100 million iPSC-CMs in January 2020. Also in
2018, a Chinese clinical trial was registered injecting iPSC-CMs to
patients with chronic heart failure systemically, but did not recruit any
patients so far (IDCVTCHF, NCT03759405). In 2019, the HEAL-CHF
trial (NCT03763136) was enrolled to acquire the efficiency of injection
iPSC-CM epicardially. A major shortcoming of many cell therapies is the
washout of the infused or injected cells and the low engraftment rates af-
ter therapy. In two of the cardiac cell therapy studies, the PSC-CMs
were transplanted as a cardiac patch. With this tissue-engineering ap-
proach, 3D structures of PSC-CMs are first created in vitro and then
transplanted to foster retention of the cells with scaffolds such as natural

hydrogels and synthetic polymers. Also natural, organ-based scaffolds
like decellularized hearts are investigated.54

In an animal study, different application routes of bone marrow cells
after myocardial infarction were compared: intramyocardial injection
outcompeted infusions with 7% of cell retention vs. 1% and injecting the
cells in a fibrin scaffold led to even higher retention rates of 17% 3 days
after infarction.84 As the cell retention increases with engineering
approaches, the cell number needed for transplantation reduces, which
also make a huge positive impact on the financial expenditure for the cell
production process.

In humans, after a myocardial infarction, the scar might be huge in rela-
tion to laboratory manufacturing scales, whereas the transplanted patch
needs to have a similar size to rescue the heart function. With an increas-
ing size of the engineered tissue, an adequate nutrition, which relies on
diffusion processes, becomes problematic. Therefore, vascularization of
cell sheets is investigated intensively, which can be achieved by embed-
ding endothelial cells and distinct exogenous stimuli.85

Although transplanted cells do not persist in the heart for long, espe-
cially after intramyocardial injection or infusion, studies reported a bene-
ficial effect beyond the persistence of the cells. Especially for MSC
therapies, functional improvements based on remuscularization is im-
probable. This regenerative potential is assumed to be based on the
secretome of the transplanted cells including cytokines, growth factors,
and others often delivered to cells within the microenvironment via ex-
tracellular vesicles.86,87 Extracellular vesicles, which among other biomo-
lecules contain miRNAs, improved the cardiac function when injected
into the heart after purification from the producing cells.88 Besides para-
crine effects, cell transplantation also generated an acute sterile immune
response that improved cardiac function by the infiltration of macro-
phages89 by reducing fibroblast activity and the amount of extracellular
matrix in the border zone. The beneficial effects after systemic applica-
tion of cells for cardiac therapy, which rarely end up in the heart, support
the paracrine hypothesis and suggest repeated dosing for long-lasting
effects.90 Therefore, a longer retention of the cells would also lead to a
prolonged paracrine effect combining the best of two worlds.

Stem cell-derived products bear several safety concerns like the risk
of tumourigenesis by not terminally differentiated cells remaining in the
cell product upon transplantation. iPSCs are commonly generated with
integrating vectors and oncogenic factors.91 During long-term culture,
the probability and number of chromosomal abnormalities raises, leading
to a more serious risk for transforming events. After iPSC-CMs trans-
plantation in animals, tumour and teratoma formation was reported by
some groups, but the percentage was low in the large number of avail-
able studies and especially immune-deficient animals were more prone
to tumour formation.92 Also the clinical trials with stem cells and stem
cell-derived early progenitors did not show any increased tumour inci-
dence in the patients. Still there is the potential of tumourigenic long-
term effects of transplanted stem cells; therefore, several methods are
tested to eliminate remaining PSCs in PSC-CMs productions. The confi-
dence in scientists and their research in cardiac cell therapies suffered a
major set-back after the wide-ranging retraction of papers connected to
cardiac stem cell therapy including the SCIPIO trial (NCT00474461).
Not only the use of cardiac progenitor cells but the whole field focusing
on the development of new therapies in CVD with the help of applying
cells was critically interrogated. Even though the initial studies on c-kitþ
cells and the clinical trial were retracted, independent laboratories could
show in different pre-clinical models a beneficial effect of those cardiac
progenitor cells, which most likely rely on paracrine effects (discussed
above).93
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Efficient cardiac differentiation and advanced purification protocols are

investigated, as well as the additional selection with suicide genes,94–97 cy-
totoxic antibodies,98,99 or miRNA switches.100,101 Regarding the latter, a
construct with a constitutively expressed fluorescence reporter is gener-
ated with an upstream binding site of a miRNA, which is specifically
expressed in mature CMs. Therefore, cells expressing the fluorophore can
subsequently be eliminated by cell sorting as these are identified as non-
mature CMs, because mature CMs express the miRNA that leads to the
degradation of the fluorophore. For a purification independent of cell sort-
ing, apoptosis-inducing genes can be cloned downstream of the miRNA-
binding sites leading to autonomous induction of apoptosis in non-CMs.100

In summary, PSCs and derived CMs bear a huge potential in regenera-
tive medicine but safety and efficacy have to be evaluated carefully before
they can be applied as a standard clinical therapy.

6. Conclusions and future
perspectives

Besides tremendous efforts, cardiac cell therapies based on PSC-CMs
have not entered clinical routine so far. Results of the ongoing clinical tri-
als are awaited to earn more knowledge of safety and efficacy of PSC-
CMs in humans. To solve the concerns regarding safety of the cell prod-
ucts, various strategies are tested including the exploitation of ncRNAs.
By regulating cellular processes, ncRNAs can be used to fine-tune the dif-
ferent steps of PSC-CMs generation for clinical application: for

reprogramming to iPSCs in a non-integrative manner, for optimized cul-
ture conditions of PSCs, more efficient cardiac differentiation and matu-
ration (Figure 3). Cocktails of specific ncRNAs for the different steps of
the manufacturing process are imaginable.

Until application is clinically approved, disease modelling and drug
screening on iPSC-based platforms will also benefit from further re-
search and improvement of culture systems. When thinking of personal-
ized medicine, a fast and efficient generation of patient-specific iPSCs and
differentiation to the desired cell type has a huge impact on the health of
patients. Also for the identification of novel drugs, an optimal screening
platform is needed where the quality of PSC-CMs has drastic effects on
the screening results and whether the discovery of novel therapeutic
strategies is translatable from the dish to patients.

NcRNAs also bear the potential to design a panel for quality control
to assess pluripotency, cardiac purity, and maturation of the cells.
Especially lncRNAs and circRNAs reveal cell type-specific expression
patterns and might serve as a suitable tool to examine the quality of the
cells before using them in clinics.102

Among the many different strategies aiming to improve PSC-CMs for
cardiac cell therapy, ncRNAs have an emerging role as gene regulators
and chromatin modifiers, thus regulating the different manufacturing
steps of iPSC-CMs. Further detailed studies are needed to identify novel
ncRNAs and characterize their mode of action. Considerable progress
can be expected by novel high-throughput loss-of-function approaches
and technologies such as single-cell sequencing to identify new ncRNAs
especially with a dynamically regulated expression.

Figure 3 NcRNAs might bridge the hurdles of PSC-CMs implementation in clinics and applied research.
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