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Abstract: In the field of rehabilitation, the electromyography (EMG) signal plays an important
role in interpreting patients’ intentions and physical conditions. Nevertheless, utilizing merely
the EMG signal suffers from difficulty in recognizing slight body movements, and the detection
accuracy is strongly influenced by environmental factors. To address the above issues, multisensory
integration-based EMG pattern recognition (PR) techniques have been developed in recent years,
and fruitful results have been demonstrated in diverse rehabilitation scenarios, such as achieving
high locomotion detection and prosthesis control accuracy. Owing to the importance and rapid
development of the EMG centered multisensory fusion technologies in rehabilitation, this paper
reviews both theories and applications in this emerging field. The principle of EMG signal generation
and the current pattern recognition process are explained in detail, including signal preprocessing,
feature extraction, classification algorithms, etc. Mechanisms of collaborations between two important
multisensory fusion strategies (kinetic and kinematics) and EMG information are thoroughly explained;
corresponding applications are studied, and the pros and cons are discussed. Finally, the main
challenges in EMG centered multisensory pattern recognition are discussed, and a future research
direction of this area is prospected.
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1. Introduction

Monitoring and analyzing the patient’s physiological information are of significance in the process
of physical rehabilitation in order to evaluate the rehabilitation effect [1,2] and control auxiliary devices
during the physical rehabilitation process. Conventionally, the physiological information is divided into
physical and psychological information, e.g., muscle force information and the intention of the patient.
To detect these two categories of information, various types of sensors, including electromechanical
sensors (such as accelerometers [3,4], gyroscopes [5,6] and force sensors [7,8]), and biosensors (such as
electromyography (EMG) [9–11] magnetoencephalography (MEG) and electroencephalogram (EEG))
have been utilized. Electromechanical sensors are capable of detecting the physical information
effectively. For example, in [12], flex sensors and force sensitive sensors (FSRs) are utilized to detect
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the bending angle of the finger and the grasp force, respectively. The sensing information is then
used for the control of robotic fingers in performing ten different tasks. In [13], the integrated use
of accelerometer sensors, pulse sensors, and ambient sensors is reported for recognizing sedentary
behavior with an accuracy of 95%. Nevertheless, biosensors are not only proven to reflect physical
information, but convert the bioelectric signal, which is broadly treated as a direct link to human
psychological information, into interpretable voltage amplitudes, and therefore have unique advantages
in psychological detection over the electromechanical sensors [11,14]. Note that in the rehabilitation
area, human psychological information normally refers to human intention information, which can be
used to examine the synchronization level between human movements and human thinking. Hence,
in this article, the detection of human intention, instead of human psychology, is focused.

Among all biosensor-captured information, EEG, MEG, and EMG are the three most relevant signals
to human intention [15–17]. Among them, the EEG signal is of weak robustness due to the shortage
of noninvasive electrodes in collecting a surface EEG signal, failing to provide high signal quality.
MEG techniques, e.g., MRI, can offer accurate and rich information, but the time-consuming issue and
huge machine volume block its use in rehabilitation. In contrast, EMG techniques enjoy relatively
higher signal-noise ratio (SNR) and robustness than EEG means (especially during movements),
and process information much faster than MEG techniques. Therefore, EMG is a more preferred choice
for intention detection in the rehabilitation field.

Two widely used techniques to interpret the EMG signal are signal intensity registration and
pattern recognition [18,19]. The former approach is based on the correlation between EMG signal
intensity and quantified muscle force level [20,21]. However, the EMG amplitude of a muscle is usually
determined by many uncontrollable factors, e.g., EMG crosstalk [22] and variation in muscle force [23],
which will not only generate misinterpretations of the muscle activities, but also result in potential
safety risks when such information is directly utilized in the exoskeleton for the motion functions
impaired patients [18]. Alternatively, the latter approach offers higher accuracy in decoding EMG
signals owing to the higher level of information, e.g., a set of motions or the movement intention can
be extracted via raw data to provide deep insights in examining user’s body condition. EMG PR was
not popularized for its high computational cost compared to its counterpart, until being promoted by
the rapid development of electronics and information technology in recent years. Now EMG PR has
been broadly applied to disease diagnosis [24], intelligent prosthesis control [19], and gains continuing
attentions from relevant researchers.

Generally, the recognition scenarios can be divided into upper limb PR and lower limb PR. In early
years, research on EMG PR mainly focused on the recognition of the upper limb movements with
great differences, e.g., largely changed arm movements [25]. This is because the EMG patterns of
such movements are significantly different and therefore is easier to be recognized. Nevertheless,
fine upper movements and lower limb movements are also important in many neuromuscular disease
analysis, such as Parkinson’s disease and myasthenia. Therefore, it is also important to create a reliable
relationship between EMG signal and patients’ intentions and physical conditions for these two kinds
of movements.

However, using the EMG signal to interpret fine upper limb and lower limb motions is challenging.
In terms of the former, small movements in the upper limbs like the finger or wrist only result in slight
differences in EMG signals, giving rise to difficulties in effectively distinguishing the EMG signal of one
pattern from others. For example, a hand movement recognition method using single-channel sEMG
is presented in [26]. This work reached an accuracy of 86.7% in classifying nine finger movements,
and the recognition accuracy and the pattern types are all lower than the multisensory approach [27].
As to the latter, interactions between lower limbs and unpredictable environments during movements
can generate unexpected EMG patterns. For example, the muscle activity of lower limbs is often
related to the flatness of terrains [28], or the different locomotion modes such as obstacle crossing [29]
and stairs ascending/descending [30]. Therefore, utilizing only the EMG signal cannot satisfy the
demand for reaching robust recognition performances at these complicated scenarios without learning
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environmental knowledge. A possible solution is to concurrently acquire the external information of
the environment as well as the EMG signals, so that information from different dimensions can be
integrated for further analysis and complementing each other.

In light of this, EMG-centered multisensory-based technologies emerge in recent years,
and increasing demonstrations and attempts in three main rehabilitation scenarios have been reported
globally. First, multisensory fusion EMG PR plays an important role in accurate and early diagnosis for
neuromuscular diseases so that the patients could start the rehabilitation process before the diseases
further develop. For example, in [31], the acceleration information of the muscles and forearm of the
biceps brachii of the Parkinson’s patient are collected simultaneously, 12 kinds of signal features were
extracted for cluster analysis, and successfully achieved a diagnostic accuracy rate of more than 90%.
Second, multi-sensor fusion can evaluate the rehabilitation process of patients and the effectiveness
of the treatment in more dimensions. For example, in [32], the fusion analysis of the plantar force
information of the Parkinson’s patient and the myoelectric information of the anterior tibial muscle.
The effect of a plantar sensory stimulation therapy on improving gait and motor output in Parkinson’s
patients were evaluated. Third, multisensory EMG PR is used as the control strategy for assistive
devices such as intelligent prosthesis and exoskeleton [33–36], these auxiliary devices can effectively
help patients in physical rehabilitation, and to a certain extent reduce the burden of the physical
therapy. In addition, multi-sensor fusion also allows these devices to obtain higher security and a
more comfortable user experience. For example, in [37], an exoskeleton hand is designed to help
paralyzed people in rehabilitation training. It uses myoelectricity as an input to represent the patient’s
intention and uses angle information and gripping force information as feedback to provide reference
and correction for EMG signals in real-time, ensuring that the rehabilitation action can be completed
accurately. The above three application scenarios are conceptually depicted in Figure 1.
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recognition technique.

To provide a timely and systematic overview of the EMG based pattern recognition techniques
using multisensory fusion strategies in the context of rehabilitation, this review article is composed.
The paper is structured as follows: we first introduce the basic physiology knowledge relevant to
EMG-based PR in Section 2. Then, in Section 3, a detailed explanation of the processing procedure and
comparison of the state-of-the-art EMG PR is presented. Afterward, Section 4 explains the collaborations
between EMG and multi-sensory information and presents diverse multisensory strategies successfully
applied in different rehabilitation scenarios. Finally, the challenges faced by EMG PR and the prospect
in resolving these challenges are summarized in Section 5.
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2. Physiology Background

For reader convenience in understanding the working principle for EMG pattern recognition,
some relevant physiological backgrounds, including the mechanism of EMG generation and the target
patterns, are essential prior knowledge. This chapter will explain these physiological backgrounds,
which helps readers to understand the characteristics of EMG signals and the design of recognition
systems for the target patterns.

2.1. EMG Signal Overview

EMG is a type of technique used to evaluate and record a series of electrical signals that emanate
from body muscles [38]. The principle of the generation of the EMG signal can be described as follows.
Motor nerve cells produce electrical pulses under the control of the central nervous system in the
cerebral cortex. These neural signals are transmitted to muscle fibers through axons and cause pulse
sequences, which activate them to contract and produce muscle tension. Meanwhile, a current is
generated in the human body that brings about transmembrane potential [39]. The transmembrane
potential is the difference between the internal and external potentials of muscle cell membranes.
When muscle cells are in a quiet state, the cell membrane potential is polarized. The potential difference
between the inside and outside of the cell membrane under the polarization state is called resetting
potential. Depolarization occurs when the cell is excited, and this trend will spread to around [40].
The corresponding action potential is defined as an electromyography signal. The above procedure is
demonstrated in Figure 2.
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2.2. Human Movement Patterns

As the EMG signal is a bioelectrical signal controlled by the mutual effect of the receptors and
nerve system of human beings, the pattern of the EMG signal relies on both the user’s subjective
intention and the interactive environment conditions while performing specific actions. In this section,
we will introduce some frequently studied upper and lower limb patterns in relevant studies.

The upper limbs of the human body include a forearm, elbow, rear arm, wrist, and hand.
The muscle mass of the upper limb is generally small and slender, and the movement range of the
upper limb is not extensive. Compared with the lower limbs, the muscle strength of the upper limbs is
generally weaker because the body does not need to be supported.

The main functions of the upper limbs are grasping, stretching, and expressing information with
hand gestures. Therefore, the patterns in the upper limb can be divided into two categories: limb position
and hand gestures. The classification of Limb positions has been elaborated comprehensively in [25],
including P1: arm hanging at the side, elbow bent at 90 degrees; P2: straight arm reaching up (45 degrees
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from vertical); P3: straight arm hanging at side; P4: straight arm reaching forward. Hand gestures
account for the dexterous movements of the hand, including wrist and finger movements. Wrist gestures
are the hand movements that rotate the whole hand around the wrist joint, but finger gestures only
involve the movements of the fingers. Reference [27] proposed a challenging set of 15 gestures in which
5 (thumb, index, middle, ring, pinky) are finger gestures, 6 are wrist gestures. The above patterns are
demonstrated in Figure 3.
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The lower limbs of the human body include the hip, thigh, calf, foot, hip, knee, ankle, and other
joint parts. The lower limb has the characteristics of larger muscle tissue and a larger joint movement
angle [41]. Its function is mainly to support the human body and change the position of the human
body. Depending on these physiological functions of the lower limbs, the activities most closely related
to the lower limbs are often activities with the core of walking behavior, so the activity recognition
based on the lower limbs can be roughly summarized in two aspects, namely, the locomotion mode
and the gait phase.

The first one is locomotion mode, which aims at the process that the brain actively coordinates
the limbs to make different actions when the human body is facing different environments in the
real world. Specifically, up and downslope, walking on flat ground, up and downstairs are the most
widely studied in the relevant research [35,42,43]. This is not only because these five sports modes
are the most common and widespread scenes in life, but also because these modes have the process
of overcoming the influence of gravity and changing the center of gravity of the body, so auxiliary
equipment is needed to adjust the lower limbs [44,45]. In addition to these five kinds of sports modes,
some work has also been done to study such sports modes as crossing obstacles [29,46], turning [29],
standing, and sitting transition [47]. These locomotion modes are a more in-depth interpretation than
simple actions, such as leg swinging, touchdown, etc., which is conducive to the auxiliary equipment
to have a better understanding of the user’s environment and generate adaptive control based on this.

Gait phase is another widely concerned lower limb mode, which is a scientific decomposition and
utilization of human periodic walking movement. There are different ways to define the gait phases
according to different usage scenarios. The simplest one is to divide the gait into two phases: namely,
the stance phase and swing phase [3]. Generally, the heel strike (HC) and toe-off (TO) are used as the
starting point of the stance phase and the swing phase, respectively [48]. However, this division is not
accurate enough and is not applicable in scenes that require high continuity. In [42], a definition of the
gait phase consisting of four phases is proposed and used for real-time recognition. In the most precise
definitions, the gait cycle can be divided into eight phases [49].
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The function of the gait phase is to provide auxiliary equipment to refine the human walking
process and provide different auxiliary control in different gait segments [42,50]. The characteristics
of the gait phase, such as continuity, duration, and so on, to describe the whole walking cycle of the
human body, is a standard method in gait analysis and has been proved to be related to the diagnosis
of some diseases [51]. Figure 4 shows the five most commonly studied locomotion modes, as well as a
detailed definition of the gait phases.
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3. EMG Pattern Recognition Pipeline

The differences in human body motion patterns can be reflected in EMG signals. However, the raw
EMG data is usually very noisy and cannot be directly classified. Therefore, a series of processing
procedures is necessary to distinguish these differences accurately. Generally, the PR procedure can be
summarized in the following four steps (also depicted in Figure 5):

1. Data acquisition
2. Signal preprocessing
3. Feature extraction and reduction
4. Classification

There is no universal standard for these processing procedures yet, owing to the variability for
EMG PR in different rehabilitation scenarios. Therefore, in this section, we will explain the EMG PR
protocols and approaches adopted by relevant studies in detail.
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3.1. Data Acquisition

Acquiring a high-quality EMG signal is strongly desired to ensure a satisfying recognition accuracy
level, so properly designing the front-end EMG acquisition approaches is very important. In this
section, we will compare the methods in front-end EMG acquisition from two aspects: the design of
the EMG sensing system and the selection of muscle measurement points.
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3.1.1. EMG Sensing System

The sensing system for collecting EMG signals is mainly composed of electrodes, amplifiers,
microprocessors, and transmission devices. The electric signal generated by the muscle is picked up by
the electrodes, amplified by the amplification circuit, and then transmitted to the host computer via the
transmission device. Generally, the connection between electrodes and processor is wired while the
transmission is typically wireless.

In the collection of EMG, the design of the sensor module is typically highly similar, except for
the electrode. Common EMG electrodes include two main kinds of pole placement methods:
monopolar electrode and bipolar electrode. Both placing methods measure the potential with
reference to the electrode placed at the locations without EMG response (e.g., ankle or knee), while the
Monopoles method directly measures the potential difference and bipolar method apply the differentiate
amplification method [52]. Bipolar electrodes have a higher usage frequency because the common
mode noise can be suppressed in real application but lack of setup flexibility when compared to
monopoles. Besides, the EMG signal quality is also influenced by the distance between each electrode
pole and their diameters and widths when bipolar electrodes are applied [38,52].

In addition to electrode placement, the implantation of the electrode is also reviewed here.
Intramuscular EMG and surface EMG are two mainstream Electromyography signal acquisition
schemes. Usually, intramuscular EMG signals are recorded using percutaneous fine wire electrodes
or others made of similar materials. These electrodes need to be inserted into several muscle tissues
using hypodermic needles [53]. Insertion locations are identified by palpation [54] and verified by
electrical stimulation and EMG channel activity during corresponding test contractions. Different from
intramuscular EMG signal collection, surface EMG (sEMG) electric potentials are acquired with
electrodes placed on the skin just above the target muscle [52]. Electrodes occurring in previous
experiments are usually made of silver. Typically, there are two ways for operators to contact the
electrode with the skin. One is by using a silver-chloride gel to achieve wet contact while the other
applies dry electrodes with microneedles to record EMG signals [43].

According to the literature research, surface EMG hosts a higher usage frequency compared
with intramuscular EMG [52,55–57]. The main reasons for its wide application are regarded to be
non-invasive and convenient. Modern surface EMG electrodes are stuck to the surface of muscle
and avoid the danger of causing potential muscle injuries to tissue, which is considered to be the
critical concern in intramuscular EMG. Besides, during the use of sEMG, operators can freely select
measurement points on the surface of muscle tissue and reduce the time cost to do the preparation work
like disinfecting the probe points with alcohol. Nevertheless, some bold attempts in the application of
intramuscular EMG have also been provided recently [53,54]. Intramuscular EMG provides another
signal source to detect the human body behavior and handles some difficulties related to sEMG-based
control, such as the unstable contact of the electrode with the skin. Some other additional benefits
of intramuscular EMG are given in [53], for example, the ability to record deep muscle signals with
little EMG crosstalk. Although the experimental results in [53,54,58] all prove that intramuscular EMG
could not bring with the reduction in classification error from sEMG for single classifiers while the
significant decrease of classification error for parallel classifiers can be achieved. According to the
practical efforts in [53,54], the parallel configuration for simultaneous control becomes more promising
via the use of intramuscular EMG, which has long been an unsolved problem in sEMG studies.

3.1.2. Muscle Site Selection

In the thesis of movement recognition, reasonable muscle group selection for EMG signal
obtainment is of considerable significance for robust recognition. Various muscle groups in both the
lower and upper limbs are functioning and positioned differently, and Figure 6 demonstrates the
anatomical structure of the muscles.

Real muscle selection needs to consider the previous experience and specific demand in the
application scenario. For example, as for prosthetic control, which is mainly designed for the amputees,
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experimenters commonly choose the proximal muscle groups like thigh muscle group [29,35,42] and
the upper arms [59] because the distal ones are considered to be amputated. While, as for the studies
oriented for non-amputees subjects, the distal muscle groups such as the shank muscle tissues and
forearm and wrist muscles are often selected as targeted muscles due to their lower inter-subject
variability than the proximal [43,60,61]. Gao Shuo [43] chose a pair of distal antagonistic muscles,
tibialis anterior (TA) and soleus (SL) to conduct the terrain identification experiment and got satisfying
results. Besides, muscle characteristic is also an important aspect to be taken into account. For example,
the proximal hip muscle groups (AM, GM, and PRF) are taken into consideration in [9] due to their
sensitivity to different walking speeds. It has been proved in [61] that rectus femoris (RF) and Soleus
(SL) are responsible for pulling the body forward at the stance phase of the gait and therefore studies
related to the recognition of uphill/upstairs behaviors demanding to overcome the gravity are more
likely to choose such muscles for EMG detection [62]. The selected criterion and the specific muscle
groups selected by relevant studies have been summarized in Table 1.
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3.2. Signal Preprocessing

The original EMG signals obtained through the front-end acquisition equipment are generally
noisy, and pattern recognition requires the use of signals of limited length for further processing.
Therefore, this section will introduce filtering and windowing preprocessing methods to reduce the
noise in raw data and segmenting the EMG signals.

Real EMG signals are usually mixed with various kinds of noise due to environmental disturbance
and other uncontrollable factors in the experiments. Reasonable preprocessing is necessary for
extracting useful features in further analysis. Filtering, normalization, and windowing are the three
most common EMG data preprocessing methods. The filtering technique derives from classical signal
process schemes of signal preprocessing in the frequency domain. Most of the energy of the EEG
signal are mainly within the frequency range 0–500 HZ [65]. In [66,67], it is stated that high-frequency
(500–1000 HZ) EMG signal is likely to be interfered with by the aliasing. As for the low-frequency
region (1–10 HZ), it is mainly regarded as a kind of noise caused by the cable movement and the
interface of the measurement electrode and the skin. Actually, the most commonly used EMG signal
filter is essentially a finite impulse response bandpass filter with a cutoff point of 10 HZ (low) and
500 HZ (high) [68–70].
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Table 1. Summary of the selected muscle group for detecting electromyography (EMG) signals.

No. Proximal Muscle Distal Muscle Comments

[42] SAR, RF, VL, VM, GRA,
BFL, SEM, BFS, ADM /

Gluteal muscles (gluteus maximus and gluteus
medius) on the amputated side and the thigh
muscles of the residual limb were monitored

[35] RF, VL, VM, BFL,
SEM, BTS, TFL /

The accurate electrodes locations are adjusted
according to the able-bodied subjects and

transfemoral subjects

[29] SAR, RF, VL, VM, GRA,
BFL, SEM, BFS, ADM /

It should be noted that the locations of EMG
electrodes on the distal muscles were

approximate

[60] / TA, SL Although only two muscles are selected, the
classification accuracy is still satisfying

[59] TPA, DPA, PMC, BCL,
TBL, FCR, ECR /

One of the eight signal channels is used for the
synchronization of data from the Fastrack
while the left seven are utilized to collect

muscle activities signal.

[27] /
FDS, FDP, EDC, EIP,

EMP
These selected muscles are responsible for
controlling all fingers except the thumb.

[9] AM, GM, PRF, VL, VM /

The proximal hip muscle groups have higher
rates of the change in EMG activation with

regard to different walking speeds while the
distal knee extensor muscle groups show

higher rates of change for different
waling slopes

[61] GM, RF, VL, BFL TA, GA, SL

Humans often change gait patterns to prevent
overexertion and possible injury to the

relatively small dorsiflexor muscles, which are
walking close to maximum capacity.

[63] RF, VL, SEM
These three thigh muscles are the most

commonly used muscles to classify locomotion
modes at different speeds.

[64] BF, RF MG, TA

To reflect the effect of gait speed and gender on
joint motion of lower extremity more

comprehensively, bilateral lumbar erectors
spinae are also utilized besides the muscles

mentioned before.

Muscles: TA = Tibialis Anterior; SL = Soleus; SAR = Sartorius; RF = rectus femoris; VL = vastus lateralis,
VM = vastus medialis; GRA = gracilis; BFL = biceps femoris long head; SEM = semitendinosus; BFS = biceps
femoris short head; ADM = adductor magnus.

Due to the difficulty when dealing with the long-term sensor data sequence, windowing operation
is necessary to slice it into short clips for the real-time prediction task. Generally, the properties of
the signal decide the window length when analyzing the EMG data. According to [71], EMG signal
can be considered a wide-sense Gaussian random process. Therefore, proper window length is
of great significance for information extraction. The too-long window will lead to clips with an
unbearable variance, while too shot sequence may not be able to contain enough useful information
for classification [72]. Huang, He et al. [29] state that the analysis window length should not exceed
200 ms, which is an ideal upper bound to control the signal variation. Research in [8,72] suggests that
windows of 150–250 ms for EMG are the optimal tradeoff between the classification accuracy and
the delay, while 100–250 ms windows can be used for mechanical sensors. Fast time response is also
desired for continuous classification tasks in addition to high classification accuracy [29]. In [42,72],
a method called overlapping analysis windows was applied to accelerate the decision update. The key
aspect of this scheme lies in the careful window increment setting. The smaller the window increment
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step, the faster the classification result can be achieved. Furthermore, overlapping can help obtain
better classification performance when processing the transition phase, such as from the sitting phase
to the standing phase [42].

3.3. Feature Extraction

After the signal was preprocessed, the noise was attenuated and the window segments were
obtained. However, using the entire segment as the input data is not an ideal choice due to the high
computation cost and poor correlation between the input data and the target patterns, which would
negatively affect the recognition performance. Therefore, it is necessary to extract some features from
each window sequence. In this section, the two most commonly applied feature extraction approaches,
including time-domain features, frequency domain features, and autoregressive features, are reviewed
and compared.

The time-domain features of the EMG signal are based on the characteristic index of the statistical
method, which regards the EMG signal as a function of time. This is an intuitive interpretation of
the EMG signal. Its calculation is directly related to the magnitude of window segments, which
occupies small calculation resources. In [71,73,74], Hudgins et al. proposed several time-domain
features that are widely used in the following researches, including mean absolute value (MAV),
mean absolute value slope, slope sign changes (SSC), waveform lengths (WL) and zero crossings (ZC).
In [75], time-domain features like root mean square (RMS), waveform length (WL), number of
zero-crossings(ZC), variance (VAR) and maximum(MAX) value are combined to represent the
feature space.

The frequency-domain features of EMG signal are mainly to transform the time-domain signal
of EMG signal into a frequency-domain signal through Fourier transform, and then analyze the
spectrum characteristics or power spectrum characteristics of the signal. The advantage of this
method is that it overcomes the characteristics of a time-domain signal, which is greatly affected by
noise, is relatively weak, and it is easier to extract stable characteristic indexes by analyzing EMG
signals in frequency-domain. Common frequency domain features are comprehensively investigated
in [76]. Lots of experimental results demonstrate that mean frequency (MNF), median frequency
(MDF), mean peak frequency (PKF), mean power (MNP), frequency ratio (FR), power spectrum
ratio (PSR), and variance of central frequency (VCF) are not good features for EMG signal-based
locomotion mode classification. Joint time-frequency domain features have been proved to be
capable of effectively representing transient EMG patterns resulting from dynamic contractions [77].
The experiments comparing the time domain methods and time-frequency methods have also been
conducted, and results show that the wavelet packet transform (WPT) is the best method to increase
the EMG information density.

Apart from the conventional time and frequency domain feature extraction approaches, there are
other ways of extracting effective features. For example, autoregressive (AR) features are usually taken
into consideration in lower limb locomotion mode analysis. Huang. He et al., applied autoregression
features (three-order autoregression coefficients) and time-domain features (MAV, ZC, and WL) for
locomotion identification for their computation efficiency and fast time-response property.

In recent years, there are also handcrafted features that do not rely on statistical techniques.
Instead, they use the prior knowledge of biomechanics to select the specific response point at the
experimental curve. For example, in [43], twenty-one biomechanical features such as the peak EMG
interval between two selected muscles and the duration of the EMG activation time are carefully
selected. Such an extraction technique obtained an accuracy of 96.8% and is proven to outperform
the traditional feature extraction technique. Although this kind of method seems lacking the general
capability dealing with different scenarios, the classification performance is satisfying for the only
specific task and shows less generality than the conventional features. There are also researches
dedicating to improving the efficiency of the conventional feature extraction methods by designing
new features. For example, in a most recent research [78], three time-domain features, including ASS,
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MSR, and ASM, are specially proposed to improve the performance of EMG-PR based strategy in
arm movement classification task. Experimental results showed that the new-designed features could
achieve the accuracy 92.00% ± 3.11%, which is 6.49% higher than that of commonly used time-domain
features [72].

3.4. Dimensionality Reduction

When the extracted feature set occupies a high-dimensional space, it may lead to the failure to
correctly classify the patterns because the discriminative features are hidden in the complex feature
space. Efficient data dimensionality reduction technique not only reduces the computation cost but
also proves to be powerful in increasing the inter-class distance, enhancing recognition accuracy.
Two commonly used dimensionality methods, i.e., feature projection and feature selection, are being
discussed in this section.

3.4.1. Feature Projection

The feature projection method means projecting the original high dimension feature space into
a lower-dimensional feature space. The most important characteristic of such a method is that it
uses all the original features to get the reduced feature space, which will not bring any information
loss. Many algorithms are proposed to accomplish this task, including approaches like principal
components analysis (PCA) [77,79], Non-negative matrix factorization (NMF) [80], averaging [75],
independent components analysis [81], nonlinear projection [82] and. We will mainly introduce the
PCA and NMF approaches in this section.

PCA is regarded as one of the most commonly used linear dimensionality reduction techniques.
It essentially takes the direction with the largest variance as the main feature and off-correlates the
data in each orthogonal direction, which makes them irrelevant in different orthogonal directions.
Therefore, PCA also has some limitations. For example, it can remove linear correlation very well,
but there is no way for higher-order correlation. For data with high-order correlation, Kernel PCA
can be considered, and the nonlinear correlation can be achieved through the Kernel function turning
to linear correlation. The research in [83] illustrates the importance of having relevant embedded
muscle activity features in a low-dimensional space. It is also demonstrated in this paper that the
PCA technique can efficiently capture features from EMG signals in an unsupervised manner. Due to
the parameterless characteristic, PCA is convenient for universal implementation but having trouble
for personalized optimization itself. Besides, some other methods about the strategic combination of
features have also been leveraged in recent papers, and they are improving towards the direction with
higher speed and accuracy. For example, FastICA is proposed in [84] to overcome the difficulty of
previously used ICA for high-density EMG signal decomposition.

Non-negative Matrix Factorization (NMF) is another dimensionality reduction technique that has
also been widely studied in recent years [80,85]. D.D.Lee et al. point out in [85] that NMF reduces data
dimensionality by approximately factorizing the source data into two matrices. The factorization aims
to extract the latent structure from the source data to a lower-dimensional space by minimizing the
predefined cost function whose value is inversely proportional to the quality of the approximation.
Common cost functions include conventional least square error and Kullback-Leibler divergence. As for
its application in EMG signal recognition, G.R.Naik and H.T.Nguyen first studied the identification of
EMG finger movement with a nonnegative matrix factorization technique [80]. Recently, non-negative
matrix factorization is also leveraged to select the subject-specific signal channel for improving the
lower-limb motor imagery recognition accuracy. Apart from this, NMF is also found to be put into
practice in the determination of muscle synergies while utilizing EMG signals [86].

Actually, lots of other data dimensionality reduction methods have been investigated in recent
years due to the quick progress in data science, like Uncorrelated Linear Discriminant Analysis
(ULDA) [87], the locality preserving projections (LPP), neighborhood preserving embedding (NPE),
discriminant analysis (OFNDA) and so on. These methods provide different dimensions to
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increase the distinguishable information density, which will help improve recognition accuracy
and processing speed.

3.4.2. Feature Selection

Feature selection means reasonably selecting a subset of features to form the new feature space,
while the rest of the original features would be abandoned [88,89]. It has been proved by numerous
empirical results that feature reduction can reduce data dimensionality and the computational
complexity meanwhile.

A key problem in the feature selection method is that what factors should be taken into
consideration to define the best EMG feature space, Zardoshti-Kermani, Mahyar, et al. [90] came
up with some standards to evaluate the EMG feature space including maximum class separability,
robustness, and computational complexity.

Diverse approaches have been proposed to help select more representing features from the dataset
containing too much useless data. Some work derives from combining the specific physical or statistical
properties. In the task like limb posture classification, deterministic approaches have been proposed
to select the optimal feature-channel pairs [91]. In this work, a distance-based feature selection to
determine a separability index is utilized. Besides, to measure the amount of mutual information
between features and classes, a correlation-based feature selection method was applied, and both
schemes were proved effective to boost the posture classification accuracy.

Evaluating relevant features is another novel approach to make feature selection proposed in
recent years [92–97]. One newest work formulates the feature selection problem as the optimization
problem and proposes a personal best guide binary particle swarm optimization (PBPSO) to solve the
feature selection, which works by evaluating the most informative features from the original feature
set [93]. In another recent paper [97], a feature selection algorithm called ReliefF is given from the
heuristic angle. This algorithm first selects the random instance of one of the database classes and then
searches for the k nearest neighbor instances.

3.5. Classification Algorithms

Once the features with the reduced dimensionality are determined, classification algorithms should
be deployed to distinguish the different categories of the extracted feature vectors. Numerous algorithms
have been proposed, and in this section, we will review some of the most frequently utilized algorithms
in EMG PR, along with the comparison between them.

Traditional classification methods include linear discriminant analysis (LDA) [98], support vector
machine (SVM) [99,100], k nearest neighbor (KNN) [101,102], Bayesian analysis, fuzzy logic (FL) [103]
and hidden Markov models(HMM) [104] while some modern methods have also been given like
artificial neural network (ANN) [105] and convolutional neural network (CNN) along with the recent
progress in deep learning research. All of the above methods are effective in classifying the extracted
feature space while they each have specific characteristics due to their intrinsic difference at the
algorithm level. Therefore, we will briefly explain the basic principle of each type of algorithm along
with the comparison of their classification performance at different rehabilitation scenarios.

LDA is one of the most simple but effective methods which has attracted great attention in
recent years. Linear discriminant analysis is utilized in for lower limb prosthesis movement mode
recognition and achieves competitive accuracy of 97.45% even compared with neural network classifiers
while deploying a PCA reduced feature set. In another recent work [105], LDA in a One-Vs-One
topology was used for non-weight bearing lower-limb movement recognition immediately after
training. Nevertheless, a fatal disadvantage for the LDA model is that it is not capable of handling
the linear inseparable problem even if given perfect data. At this point, ANN enjoys the ability
to describe nonlinear class boundaries among different categories. MLP and Cascade are the two
main structures of artificial neural networks. Identification and classification of different gait phases
according to the collected EMG data is a classical linear inseparable problem. In new research focusing
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on this problem [104], three different MLP is deployed for the classification of two main gait phases
while directly using the raw EMG data without feature extraction. The experimental comparison
demonstrates that the performance of three MLP models achieves an average higher accuracy over all
the popular models. On the other hand, in scenarios that some dimensionality reduction techniques
like PCA have linearized the discrimination task, LDA can behave even better than the ANN methods.
Besides, due to the well-defined classifier inner architecture, LDA possesses better performance stability.
Nevertheless, for a given problem, it may be not easy to determine the optimal size and structure of
an ANN. At last, in spite of the advantage of extracting latent features from unprocessed EMG data,
the long training period is another thing that we need to take into consideration when intending to
apply the ANN.

The SVM is estimated as one of the most popular approaches utilized in the movement mode
classification. It is an effective data classification approach that projects the low-dimension data to the
high-dimension feature space via kernel function. SVM works by finding a hyperplane to distinguish
different categories in high-dimension space through the training process. It is believed that proper
kernel function can help reduce the indivisible linear data to linear separable set in high-dimension
space. From this, it is obvious that the most crucial problem when building the SVM model is to
determine the optimal kernel function and its parameter values. Pires, Ricardo, et al. [99] uses the
SVM algorithm to classify lower-extremity EMG signals during running shod/unshod with different
foot strike patterns. It is also mentioned that kernel function selection, and parameter setting should
depend on the specific task scenario. In [100], the SVM algorithm is utilized to develop an automatic
classification system for lower limb hemiparetic patients. The empirical results demonstrate that SVM
has the highest accuracy (95.2%) than KNN (89.2%) and ANN (92.3%). Particle swarm optimization
(PSO) has long been a classical heuristic optimization algorithm. According to our literature review,
the related works hybridizing the PSO and SVM to detect movement patterns are growing continuously
in recent years. Zheng, Jiajia, et al. [106] employ PSO-optimized SVM to classify four gait phases,
including initial contact, mid stance, terminal stance, and swing phase. The experimental results
show that PSO-SVM exhibits the distinctive advantages on gait phase classification and improves
the classification accuracy up to 32.9%–42.8% compared with the classifier based on vanilla SVM.
Recently, some work compares the performance of common classifiers in different scenarios to provide
references in practical application. The comparative analysis among NLR, MLP and SVM shows that
for either classification performance and for the number of classification parameters, SVM attains the
highest values followed by MLP, and then by NLR [107]. It should also be noted that SVM can obtain
the highest classification performance while utilizing the lowest sampling rate.

Fuzzy Logic (FL) is another technique used in the classification of EMG signals, which achieves
definite conclusions just from imprecise data input in a simple manner. It has been studied that FL
exhibits the advantage of control techniques in biosignal processing [103]. FL can extract unrepeatable
EMG features and mimic user’s intent to make a decision. On the other hand, FL requires more system
memory and processing time because of the use of fixed geometric-shaped membership functions in
fuzzy logic limits system knowledge more in the rule base than in the membership function base [103].

The application of the hidden Markov model (HMM) is described in [108], where it is used for
recognition of gait mode based on electromyographic signals. A modified Baum-Welch was used to
estimate the parameter of HMM, and the Viterbi algorithm achieved the recognition of gait mode by
finding the best HMM and state to assign corresponding phases to the given segments.

KNN classifier is another kind of common biosignal classifier based on traditional machine
learning techniques. The authors in [101] use the K-nearest neighbor method to classify the EMG
signals recorded from lower limb muscles during standing in individuals with complete spinal cord
injury implanted with spinal cord epidural stimulation. Actually, most KNN-related researches in this
area are correlated with other classification algorithms to find the most suitable classifiers for some
certain problem. In [102], weighted KNN and SVM are both utilized as the classifier to distinguish the
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sEMG signals for controlling a prosthetic foot while the comparison of the accuracy of two classifies
shows that weighted KNN obtains higher efficiency.

With the rapid development of deep learning technology in recent years, increasing attention has
been paid to the deep feature classifier. For example, a backpropagation neural network was used
in [109] to map the optimal surface EMG features to the FE angle angles. The experimental results show
that the features extracted from multichannel surface EMG signals using deep belief network method
proposed in this paper outperform principal components analysis (PCA), and the RMS error between
the estimated joint angles and calculated ones during human walking is reduced by about 50%.

4. Multisensory Fusion

Through a series of processing, the change of movement patterns creates a stronger correlation
with the EMG signal. However, due to the interactions between the lower limb movement and the
external environment, as well as the low resolution of the upper limb hand fine movement in the EMG
signal, the sensing strategy relying only on the EMG signal has great limitations in these two types
of rehabilitation scenes. To address these issues, multisensory fusion techniques are proposed and
proved to be capable of boosting pattern recognition accuracy by collecting more efficient data from
different dimensions.

Generally, the EMG-centered fusion strategy can be divided into two types, i.e., fusion with
kinematic sensors and fusion with kinetic sensors. The former strategy is mainly to supplement the
three-dimensional motion information like human body acceleration, angular velocity, angle, etc.
While the latter one is mainly to supplement the force information during the movement process.
In this section, we will explain the detailed procedures of these two fusion strategies and demonstrate
some successful applications using these techniques in different rehabilitation scenarios. Figure 7
demonstrates a block diagram of the above EMG-centered fusion strategy.
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4.1. Fusion with Kinematic Sensors

Kinematic sensors are widely used in obtaining the locomotion properties of targets. In recent
years, kinematic sensors have also attracted enough attention in human behavioral study combined
with biosignal sensors (e.g., EMG). Kinematic information of human lower extremity describes the
movements of the joints and limbs. Generally, the kinematic sensors can be divided into two main
categories, inertial sensors and motion capture systems. Inertial sensors, including accelerometer,
gyroscope, and magnetometer, are often used to collect kinematic data like joint angles, joint angular
velocity, body orientation, and limb acceleration, etc. Motion capture systems became popular only
in recent years, their biggest advantage being that they can collect locomotion information in a
contactless manner.

Kinematic sensors’ advantage of intuitively reflecting the 3D motion information of the limb helps
compensate for the defect of EMG sensors, which only describes the whole physical process from the
human nerve activity angle. Combing bioelectrical signal and motion information like acceleration has
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also been investigated to improve locomotion classification accuracy. Researchers in [110] especially
investigate the improvement in classification error while utilizing EMG and kinematic data together
rather than pure kinematic data. The empirical results demonstrate that the higher recognition rates
can be obtained with combined data compared with vanilla kinematic information from the hip joint
of non-dominant/impaired limb and an accelerometer.

The most successful use of the kinematics-EMG fusion strategy lies in the control of powered
lower-limb prostheses. Such devices help people get rid of the disability and restore normal walking
ability. Nevertheless, the adaptability of the prosthesis to other parts of the human body is still a
challenging subject in which the kernel issue can be regarded as inferring human locomotion intent.
Due to the restriction of the traditional recognition approach only relying on kinematic data, some recent
works are making the steps to fuse EMG and mechanical information to improve the performance.
The locomotion recognition system used for lower limb prosthesis control in [35] fuse the multichannel
EMG signals and accelerometer measurements in feature level. The physical test shows that the
empirical accuracy is over 95%, which is significantly better than traditional schemes, only applying
surface Electromyography for identifying locomotion modes [29,35]. In [111], A combination of
kinematic and electromyographic (EMG) signals recorded from a person’s proximal humerus was used
to evaluate a novel transhumeral prosthesis controller. Most especially, they trained a time-delayed
artificial neural network to predict elbow flexion/extension and forearm pronation/supination from
six proximal EMG signals, and humeral angular velocity and linear acceleration. Young, A. J. [15]
studied the contribution of EMG data in combination with a diverse array of mechanical sensors to
locomotion mode intent recognition in transfemoral amputees using powered prostheses. And this can
indeed significantly reduce intent recognition errors both for transitions between locomotion modes
and steady-state locomotion.

In addition, EMG centered kinematic fusion technique is also seen in applications of the hand
gesture recognition. This is because the dexterous movement of the finger movements varies more
significantly in the position information than the EMG information. Therefore, it is an ideal choice to
combine them to obtain intention information and position information at the same time. For example,
inertial measurement unit(IMU) and myoelectric units are utilized to implement the hand gesture-based
control of an omnidirectional wheelchair in [112]. The system component, sensor placement, and the
characteristic collected signals are demonstrated in Figure 8. In this system, the classification,
which involves recognizing the activity pattern based on the periodic shape of triaxial wrist tilt angle
and EMG-RMS from the two selected muscles, helps the accuracy improve to 94%.
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Utilizing vision technique is another effective and direct way to detect the kinematic information
of human. Recently, with the vigorous development of computer vision, some researchers are
trying combining the vision and EMG information for limb motion classification task. In a newly
published work [113], researches implemented a framework that allows the integration of multi-sensors,
EMG and visual information, to perform sensor fusion and to improve the accuracy of hand gesture
recognition tasks. For embedded applications, even-based cameras were utilized to run on the limited
computational resources of mobile phones. The online results of hand gesture recognition using fusion
approach reached 85%, which is 13% and 11% higher than utilizing EMG and vision individually.

4.2. Fusion with Kinetic Sensors

Kinetic sensors are a kind of instrument used to measure forces and moments that are directly
connected with the movement of body segments like lower limbs. Various types of force transducers,
including piezoelectric [114,115], strain gauged [116,117], and capacitive transducers [118–120],
have been widely used in the design of force-sensitive sensors. Joint use of kinetic sensors and
electromyography sensors is believed to be able to extract human muscle reflex related information,
which will help the recognition of specific body behaviors. Generally, two types of kinetic information,
interaction force, and ground reaction force can both be integrated with EMG information. The following
part will introduce the fusion examples with interaction force and ground reaction force, respectively.

Interaction force sensors are typically embedded in a fixed structure and then used to detect
the extension or flexion of limb, which are important for interpreting the intention of the human
movement. The utilization of interaction force and EMG signals are also seen in the application of the
upper limb hand gesture recognition in recent years. The research in [27] showed that combining EMG
and pressure data sensed only at the wrist could support the accurate classification of hand gestures.
Especially, the EMG is suited to sensing finger movements, the pressure is suited to sensing wrist and
forearm rotations, and their combination is significantly more accurate for a range of gestures than
either technique alone. Figure 9 demonstrates the implementation of this multisensory approach in
hand gesture recognition.
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According to our literature review, ground reaction force (GRF) is also a commonly used kinetic
information, especially in lower limb rehabilitation scenarios. A typical combination pipeline focus
on lower limb prosthesis is shown in Figure 10. Such integration strategy is mainly applied in the
lower limb exoskeleton or prosthesis because the lower limb is mostly responsible for interaction with
the ground, and many locomotion modes are closely related to the terrain changes, which is directly
reflected in the GRF information. Liu, Ming. et al. [35] applied the EMG measurement results and
mechanical ground reaction forces/moments recorded using a six-degree-of-freedom load cell to build an
adaptive classification strategy, which further enhanced the reliability of neutrally-controlled prosthetic
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legs. The researchers in [60] presented a smart sensing system utilizing flexible electromyography
sensors and ground reaction force sensors for locomotion mode recognition. Here, EMG and GRF
information were collected from ten healthy subjects in five common locomotion modes in daily life.
Rehabilitation robots is an attractive research zone which mainly helps the patients like stroke regain
the locomotion ability. In [121], ground reaction forces and lower extremity electromyography are
both utilized to compare inclined treadmill walking and turning conditions with its emulation on a
developed balance assessment robot in order to investigate the feasibility of the existing approaches
in rehabilitation.Biosensors 2020, 10, x 17 of 30 
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4.3. Fusion with Both Kinematics and Kinetic Sensors

In addition to the information fusion work introduced above, we also notice some recent work
combing EMG with both kinematic and kinetic data. With the improvement of processor performance
and the development of machine learning algorithms to handle high dimensional data, this triple-type
sensor information fusion, which used to be regarded as a difficult approach, has been implemented
and outperforms existing approaches in some motion classification tasks.

Rehabilitation exoskeleton is an important application of kinematic-kinetic fusion strategy.
Because this kind of equipment needs various dimensions of information to maintain the highest
stability and safety, it can achieve the goal of using EMG as the subjective control input and kinematic and
dynamic data as the feedback. The work in [122] used human-robot interaction force, ground reaction
force, and EMG sensors to distinguish the walking environment and gait period to provide crucial
information for exoskeleton control. The results obtained using an individual mechanical sensor
together with sEMG showed improvement compared to the case of only using force sensors, reaching the
highest accuracy of 97.8% at gait phase recognition scenarios. The sensing blocks, as well as the location
of the sensors, have been demonstrated in Figure 11.
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Gait pattern analysis has also been widely used to assist in the diagnosis of muscle diseases.
By multi-sensor data fusion, gait analysis gives objective and quantitative information about the
gait pattern and the deviation due to the muscular situation of these patients, which are of great
significance to the clinical research. Cui, Chengkun, et al. [121] conducted the simultaneous recognition
and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological
data. In [123], researchers investigated the gait pattern of 10 patients with myotonic dystrophy
(Steinert disease) compared to 20 healthy controls through manual muscle test and gait analysis in
terms of kinematic, kinetic and EMG data.

Table 2 summarizes the fusion strategy, targeted recognition classes, extracted features,
proposed classifiers, and the final accuracy results of the multisensory application in different scenarios
of rehabilitation.

Table 2. Summary of the pattern recognition techniques applied in relevant studies.

No. Applied
Sensors Classes Feature Classifier Accuracy

[35] EMG + GRF

Five common
locomotion modes

(W, RA, RD, SA, SD)
and eight task

transitions: W->SA,
W->SD, W->RA,
W->RD, SA->W,

SD->W, RA->W and
RD->W

EMG data feature:
MAV, SL, SSC and

ZC, mechanical
signals: maximum,
minimum, mean

value and standard
deviation

Entropy-based
adaptation (EBA),

Learning form
testing data
(LIFT) and

Transductive
Support Vector

Machine (TSVM)

EBA: 95%, LIFT:
95% and TSVM:
96.25%, vanilla

SVM: 87.5%

[42] EMG + GRF

Locomotion modes:
LW, SO, SA, SD, RA
and RD and related
transitions: W->sA,

W->RA, W->O,
SD->W, RD->W,

SA/RA->W,
W->SD/RD

EMG time-domain
feature: MAV, SSC,

WL, ZC, Mechanical
signal features:

maximum,
minimum, mean

value of each
direction of force and

moment

SVM

99% or higher
accuracy in the

stance phase and
95% accuracy in
the swing phase
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Table 2. Cont.

No. Applied
Sensors Classes Feature Classifier Accuracy

[122]

Position
sensors, GRF,

interaction
force EMG

Five walking
environments: LW,

RA, RD, SA, and SD
Seven gait periods:

LS, MST, TST, PS, IS,
MS and TS

GRF feature: four
positions in the foot
for four time periods,

position feature:
three joint angles for

four time periods.
Interaction force

feature: two points
in the link for four

time periods, sEMG
feature: MAV, ZC,

SSC and WL

BLDA

96.1%(environment
classification

accuracy)
97.8%(gait period

classification
period)

[27]
EMG sensor,

pressure force
sensor

Finger gestures,
wrist gestures, and

other gestures

Root mean square
(RMS), standard

deviation (SD) and
peak amplitude

SVM 95.8%

[112] IMU, EMG
sensor

Six hand gestures
(forward, clockwise,

left, backward,
anticlockwise, right)

Nine IMU features
extracted from wrist
Euler angle and six

EMG features
extracted from EMG

RMS signal

DSVM
Real-time

recognition
accuracy 90.5%

[124]

EMG signal
acquisition

system, data
glove

Thumb flexion,
finger flexion, thumb

opposition,
middle/ring/little

finger flexion, long
fingers flexion,

tradigital grasp,
lateral grip/key grip

MAV (mean of
absolute value)

Locally weighted
learning

79% for amputee
and 89% for

non-disabled
participants

Classes: LW = level-ground walking; RA = ramp ascent; RD = ramp descent; SA = stairs ascent; SD = stairs
descent; SO = stepping over an obstacle; IT = ipsilateral turning; CT = contralateral turning; SS = standing still;
LP = loading response; MST = midstance; TST = terminal stance; PS = pre-swing; IS = initial swing; MS = mid-swing;
TS = terminal swing. Feature: MAV = mean absolute value; ZC = zero crossing; SSC = slope sign changes;
WL = waveform length; SL = signal length.

5. Challenges and Future Development

Currently, fruitful results have been achieved by EMG-centered multisensory pattern recognition
methods in the rehabilitation field. However, there are still limitations in terms of accuracy, robustness,
data volume, and flexibility when current approaches are applied to practical applications. In this
section, we will explain the main issues and potential solutions and research directions of multisensory
EMG PR.

5.1. Low Data Quality

Low data quality is a pressing problem in EMG detection, especially under a multisensory fusion
scenario. Because the data quality of each dimension can significantly affect the final recognition
accuracy. Since bioelectrical signals are generally more susceptible to noise interference, in EMG
centered multisensory fusion, the data quality of EMG signals is the most important influential factor.

In Section 3, we explain the preprocessing of the EMG signal, whose purpose is mainly to
reduce the noise in the raw EMG signal. Although by the preprocessing technique, the deterministic
noise, e.g., charger noise, can be filtered and stochastic noise such as white noise can be compressed,
interference comes from the source of the bioelectric signal that is challenging to be removed by data
processing technique. First, the EMG crosstalk effect is an inevitable interference in EMG detection [22].
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It means that the amplitude of the EMG signal is not only contributed by the targeted muscle but
also influenced by the adjacent and surrounding muscles, hindering precise detection of the muscle
activity. Second, electrode shift also results in severe EMG signal misregistration, since the traditional
electrochemical gel electrode suffers difficulty in firmly attaching to the skin; a shift of merely 1 cm
would reduce the classification accuracy by 5% to 20% [125]. Third, even when the patient performs
the same locomotion under the same environment, the applied muscle force may slightly change due
to the impossibility in perfectly controlling the body, resulting in the variations of the EMG signals of
the selected muscles, and reducing the data quality [19].

Advanced sensing and detecting means could be possible solutions to the problem of low-quality
data. With the integration and miniaturization of sensory circuits, high-density EMG (HD-EMG)
has become a promising sensing approach. This type of sensing technique increases the coverage
and density of the electrodes. Hundreds of electrodes are integrated with a small size overlying a
restricted area of the skin [126,127]. The most significant benefit of HD-EMG is that the possibility of
subtracting information at the motor unit level greatly improved compared with conventional EMG,
minimizing the effect of EMG crosstalk at this precision level. The multiple electrodes are arranged in
the form of a two-dimensional array, for example, in the shape of 8 × 24 [127] or 8 × 16 [126], which will
produce an “EMG image”. The EMG image presents a comprehensive view of EMG signals both in
the time domain and spatial domain, providing far richer information than the conventional EMG
electrode placement method of implementing one or two electrodes at a single muscle. For example,
the HD-EMG arrays attached to the elbow area were used for the precise hand gesture recognition,
reaching the accuracy as high as 99.0% in classifying twenty-seven gestures [126]. A typical procedure of
utilizing the “EMG image” generated by the HD-EMG to conduct pattern recognition is demonstrated
in Figure 12. Even though abundant information can be extracted with the help of HD-EMG, it also
increased the burden of the acquisition and processing hardware. Because the sampling rate of EMG
signals requires at least 1000 Hz at each channel, an 128 channel HD-EMG system will produce over
128,000 observations in one second, which would make the data scale enormous and lead to challenges
in real-time processing.
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5.2. Inadequate and Undisclosed Data

High-quality data acquisition is the premise of high-precision multisensory pattern recognition.
Meanwhile, for multi-sensor fusion, due to the large variability in the patient’s muscle and physical
condition and the difficulty in obtaining high-quality multisensory data, adequate and open-source
data is of equal importance. This section will explain the necessity of establishing a big and open
sensor data library in detail, and review some currently developing databases.
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Currently, most of the current EMG researches were recruiting a relatively small volume of the
volunteers to collect EMG signals, such as 5–20 healthy individuals or no more than five patients.
The relatively small size is owing to the limited access to experimental resources due to the insufficient
funding budget. Therefore, recruiting tens of participants is a balanced choice for verifying the
proposed algorithms for most research groups. Nevertheless, there are a few concerns about this choice.

Firstly, the variation of the EMG signal is usually significant in different individuals. A strong
correlation between EMG signals and the age, height, weight, exercise habits, and health status of
individuals are found in relevant studies [128]. The sample size of tens of experimenters is often
difficult to cover all these differences between various populations. Besides, researchers usually adopt
their experimental protocols and different sensing equipment, and it is not easy to investigate the
generality of the method proposed by one work across these influential factors.

Furthermore, the requirement of sensing equipment for robust EMG acquisition is quite high,
and the collection system is typically expensive. It may potentially hinder some labs or researchers
who do not have the experimental conditions from investigating EMG signals on the algorithm level.

An important approach for solving the above problem is to promote the concept of “big data-based
EMG,” which means that the verification method of EMG pattern recognition should shift from the
verification in small sample experimental data to the performance of the proposed algorithm based on
big data in different populations. Well-established datasets not only allows researchers to examine
the quality and correctness of their acquired data more conveniently but testing the generality of
their proposed methods in different datasets. In addition, larger datasets enable the application of
some advanced algorithms such as deep learning in digging the underlying information in EMG
signals [129].

In the past, the experiment data of EMG were mostly stored within the laboratories of individual
researchers rather than publishing online, which made it hard to gather multiple datasets. In recent
years, with the occurrence of “data paper,” researchers are encouraged to publish their experimental
data as an individual publication [130]. Such scientific publications promote the transparency of the
raw data, and thus more EMG datasets are being available. In addition, there are also studies dedicated
to establishing a standard dataset, trying to provide a standard experimental procedure and cover
as many different muscles, movements, and population as possible. A few influential datasets such
as Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM), The Ninapro
project [131] have emerged in recent years. However, there is still a long way to go in reaching the
consensus of a widely accepted protocol and establishing a thorough dataset.

5.3. Discrete Interpretation of Continuous Movements

The development of the data quality and quantity offers the possibility to develop more effective
processing techniques, especially in improving the simultaneity and continuity of the EMG-PR-based
control strategy, which are two key drawbacks at the state of the art technique. In this section, we will
explain how simultaneity and continuity problem is affecting the EMG PR performance, and provide
possible solutions and research directions in the light of the multisensory technique.

As mentioned earlier, the EMG PR technique is widely used in the real-time Human-Machine
Interface system (HMI). However, the broad use of clinical viable EMG based robots are still not
reported yet. The potential problem is that a complete pipeline, including sensing, signal transmission,
and processing, has to be done in order to recognize the current pattern. There is a time delay in this
procedure, and it is acceptable in some scenarios, such as sign language recognition, when only static
patterns like hand gestures are to be recognized. However, the patterns relevant to lower limbs are
mostly dynamic and require real-time and instant recognition, and therefore the time delay may greatly
influence the application of conventional PR technique in lower limb HMI devices.

There are several attempts to resolve the problem of discrete interpretation. One of them is to
design the transition logic between two consecutive patterns skillfully, and some pioneers studies
are trying to design the transition strategy. In [42], overlapped windows are utilized to overcome
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the time delay problem, and the comparison between the overlapped windows and non-overlapping
windows are depicted in Figure 13. The increment of two consecutive and the overlapped window
is only 12 ms, generating approximate continuous decision flow. The majority vote method is used
to prevent misjudging problem. In addition, because the EMG signal is generated before the actual
motion, there are also studies using the currently collected signals to predict the patterns in the next
moment so that the robotic actuators could react in advance to adapt to the changing patterns [132,133].
However, the prediction method is only applicable in the periodical movement like gait, and still have
difficulties in predicting more complicated motions. So far, there is still no consensus on the best
transition method among EMG patterns, and the robust transition is a research interest in the EMG
PR field.Biosensors 2020, 10, x 22 of 30 
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With the development of multisensory fusion and the increasingly thorough study of human
body motion, the method of combining the biomechanical model with pattern recognition is also
attracting increasing attention. Some open-source software, like OpenSim, is developed to provide
present biomechanical models. With the help of the multisensory fusion, both the EMG signals and
other mechanical signals collected from the patient’s body can be used to calibrate and specialize
the raw biomechanical models. After that, with proper mapping strategies, these models can be
driven by EMG signals and, therefore, intuitively simulate the movement of human extremities,
providing crucial information for continuous control of HMI systems. For example, a model-based
control strategy is proposed in [134], using the EMG signal as the input for the carefully tuned and
calibrated hand-finger biomechanic model, and managed to continuously control a prosthesis hand
to finish the task of gripping in the response time of 16.2 ms per loop. The control schemes and
multisensory strategy is demonstrated in Figure 14. Nevertheless, the model-based method requires
tedious procedures to calibrate and tune the model, and it is proved difficult to separate the EMG
signals into distinct functional movements for the subject with small arms. At present, it is still in the
laboratory research stage.

5.4. Future Analysis

In the above three sections, we explain the challenges of multisensory EMG PR and the emerging
technologies potentially capable to solve these challenges. We believe that in the foreseeable future,
multisensory EMG PR has high possibility to develop in these three directions for the following reasons.
Firstly, the application of the novel EMG sensing technique, e.g., High-Density EMG, will greatly
improve the EMG signal’s quality. Besides, the spatial resolution of the EMG signals will also be
enhanced from the level of distinguishing different muscle tissues to the level of distinguishing single
cells, making it possible for EMG signals to apply in detection of very fine movements. Secondly,
more open source databases with high data quality, complete muscle measurement points and rich
application scenarios will be built, which will further reduce the obstacles of self-designed experiments
and attract more researchers to join the field of EMG signal analysis. Thirdly, with the reduction of EMG
research barriers, the research of EMG analysis algorithm will continue to increase, and more advanced
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algorithms to solve the traditional PR problem, such as the overlapping window and biomechanical
model mentioned in this paper, will be proposed and verified.
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6. Conclusions

Employing electromyography (EMG) centered multisensory integration pattern recognition (PR)
techniques demonstrates strong potential in precisely interpreting patients’ intentions and locomotion
modes, which are of significance for analyzing the progress of rehabilitation status. However,
commercialized products widely applied in hospitals or home-based internet of health things (IoHT)
have not been reported yet. This article aims to reveal the reason behind this phenomenon by
thoroughly reviewing the state-of-the-art research outcomes and providing a comprehensive analysis
of limitations. The content provided here not only allows readers to have a full picture view of this area
but also shows potential directions in further enhancing the development of applying EMG centered
multisensory fusion PR techniques in rehabilitation associated applications.
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