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ABSTRACT

In many cancers, significantly down- or upregulated genes are found within 
chromosomal regions with DNA copy number alteration opposite to the expression 
changes. Generally, this paradox has been overlooked as noise, but can potentially 
be a consequence of interference of epigenetic regulatory mechanisms, including 
microRNA-mediated control of mRNA levels.

To explore potential associations between microRNAs and paradoxes in non-
small-cell lung cancer (NSCLC) we curated and analyzed lung adenocarcinoma (LUAD) 
data, comprising gene expressions, copy number aberrations (CNAs) and microRNA 
expressions. We integrated data from 1,062 tumor samples and 241 normal lung 
samples, including newly-generated array comparative genomic hybridization (aCGH) 
data from 63 LUAD samples.

We identified 85 “paradoxical” genes whose differential expression consistently 
contrasted with aberrations of their copy numbers. Paradoxical status of 70 out of 85 
genes was validated on sample-wise basis using The Cancer Genome Atlas (TCGA) 
LUAD data. Of these, 41 genes are prognostic and form a clinically relevant signature, 
which we validated on three independent datasets. By meta-analysis of results from 
9 LUAD microRNA expression studies we identified 24 consistently-deregulated 
microRNAs. Using TCGA-LUAD data we showed that deregulation of 19 of these 
microRNAs explains differential expression of the paradoxical genes.

Our results show that deregulation of paradoxical genes is crucial in LUAD and 
their expression pattern is maintained epigenetically, defying gene copy number 
status.
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INTRODUCTION

Integration of array comparative genomic 
hybridization (aCGH) with mRNA microarray data has 
revealed significant associations between occurrence 
of copy number aberrations (CNAs) and differential 
gene expression in diverse cancers [1–7]. However, 
significantly downregulated genes have been often found 
to reside within chromosomal regions with increased 
number of copies (gains) and vice versa, creating a 
paradoxical signal. For example, Phillips et al. reported 
that 14% of the genes downregulated in prostate cancer 
reside within regions of DNA copy number gains, and 
approximately 9% of upregulated ones reside in regions 
of DNA copy number loss [1]. Usually, this paradox is 
ignored as a noise, but can potentially be a consequence 
of interference of other regulatory mechanisms controlling 
mRNA transcription [8].

In recent years, the cancer research community 
has investigated how epigenetic regulators, known as 
microRNAs (miRNAs), form prognostic signatures and 
affect regulatory pathways that can lead to tumorigenesis. 
miRNAs are short non-coding RNAs that regulate the 
translation of mRNA by serving as guide molecules 

in mRNA silencing, mediated by various associated 
proteins [9]. Targeting most protein-coding transcripts 
[10], miRNAs are involved in diverse biological 
processes, including development and homeostasis [11, 
12]. Moreover, growing evidence implicates miRNAs 
as factors associated with major human pathologies, 
including cancer [13–16].

In 2012 approximately 13% of all new cancer 
cases worldwide were cancers of lung (and bronchus), 
making lung cancer one of the most frequent cancer 
type (surpassed only by breast cancer in women) [17]. 
Despite smoking cessation, and advances in detection and 
treatment, lung cancer remains the main cause of cancer-
related death worldwide for both men and women [18]. 
With nearly 160,000 deaths annually it kills more people 
than other common cancers combined, including colon, 
breast and prostate [18]. The most common type of lung 
cancer is lung adenocarcinoma (LUAD), comprising 
approximately 45% of all lung cancer cases [19, 20].

In this paper, we integratively analyzed gene 
expression and CNA data from 12 publicly available 
LUAD datasets, and new CNA data obtained from 63 
LUAD samples profiled at our institution (Figure 1). By 
combining and analyzing data from 1,062 tumor tissue 

Figure 1: Flowchart depicting sequence of analyses/computational steps as performed and datasets as used. For more 
details see Materials and Methods section.
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samples and 241 normal samples we identified genes 
whose differential expression consistently was in contrast 
to aberrations of their copy numbers. Paradoxical status 
of these genes was then validated on the sample level, 
using TCGA LUAD gene expression and CNA data. 
Furthermore, to assess whether the paradoxical expression 
patterns were caused by epigenetic disruptions in lung 
tumors, we compiled miRNA expression data from 406 
LUAD samples and 321 normal lung samples. Using 
miRNA:gene associations from mirDIP [21] and the 
measure of co-expression, we showed that this paradox 
can be explained by 19 miRNAs consistently deregulated 
in LUAD.

RESULTS

Identification of the paradoxical genes

First, we examined the frequency and statistical 
significance of autosomal CNAs across 3 LUAD aCGH 
datasets, including our new data and two publicly available 
datasets (see Materials and Methods). We identified 
multiple chromosomal regions with significantly (p < 0.05, 
randomization test) high frequency of gains (more than 
two copies) or losses (less than two copies); frequencies 
and corresponding p-values are listed in Supplementary 
Data 1. The most extensive positive aberrations identified 
occur on the q-arm of chromosomes 1, 7 and 8 as well 
the p-arm of chromosomes 5 and 7 (Figure 2A). The most 
significant copy number losses occurred on the q-arm of 
chromosomes 6, 9, 13, 15, and 18, along with the p-arm of 
chromosomes 8 and 9.

To identify genes whose differential expression 
remained consistent across patient cohorts, we performed 
integrative analysis of 10 publicly available gene 
expression datasets, comprising 740 LUAD samples and 
241 normal tissue samples. Among 15,323 genes that 
were subjected to the robust rank analysis, we identified 
1,309 genes that were significantly deregulated across the 
datasets (p < 0.01, robust rank aggregation), where 701 of 
these were downregulated genes, and 608 are upregulated. 
Excluding 9 non-protein-coding genes, reduced the 
numbers to 600 upregulated and 700 downregulated genes 
(see Supplementary Data 2). Non-protein coding genes 
involve downregulated C17orf91, and eight upregulated 
miRNA sequences: MIR7112, MIR6847, MIR7113, 
MIR671, MIR4647, MIR93, MIR25, MIR4721, all of 
which are intragenic miRNAs residing within upregulated 
genes. In subsequent meta-analysis of miRNA expression 
in LUAD, we found none of these miRNAs to be 
significantly deregulated.

We identified 132 (14.6%) downregulated genes 
residing in regions with decreased number of copies and 
102 (22%) upregulated ones residing in regions with 
increased number of copies (p < 2.2E-16, Chi-squared 

test). Importantly, 63 consistently downregulated and 22 
consistently upregulated genes reside on chromosomal 
regions with opposite direction of aberration – gains and 
losses, respectively (Figure 2). Hereafter, we refer to these 
85 genes as paradoxical genes (Supplementary Table 1).

Validation of the CNAs and differential 
expression of the paradoxical genes

While we identified paradoxical genes using data 
from diverse patient cohorts, we sought to validate our 
findings in an independent, homogeneous datasets. We 
used data from TCGA comprising: CNA, mRNA-seq and 
miRNA-seq LUAD data from 514 LUAD and 57 normal 
samples. This dataset was selected for validation solely 
on the basis of the CNA, mRNA and miRNA expression 
data availability, without considering clinicopathological 
characteristics of the data. Five of the 85 paradoxical 
genes could not be evaluated due to the missing 
CNA or expression data. From the remaining 80, we 
successfully validated 70 genes (p < 1E-4, randomization 
test), whose copy aberration status and differential 
expression confirmed results from the integrative analysis 
(Supplementary Figure 1, Supplementary Table 1). Further 
analysis only considers these 70 validated paradoxical 
genes.

To test whether paradoxical deregulation occurs 
in the individual samples, we measured frequencies 
of paradoxical co-occurrence of up-/downregulation 
(expression z-score >/< +/-1.647) and losses/gains 
(log2 CNA >/< +/-0.2) of the paradoxical genes across 
individual TCGA LUAD samples (Figure 3). We found 
that frequency of paradoxical deregulation ranges from 
9% (NFKBIA) to 74% (NPR1) of samples, median 
frequency equal to 46% and mean 44%. For all the 70 
genes frequency of paradoxical deregulation exceeds the 
frequency of regular (non-paradoxical) deregulation.

Co-occurrence between deregulated miRNAs 
and paradoxical genes

We hypothesize that differential expression of 
paradoxical genes can be to a large extent explained 
by deregulation of the miRNAs that target these genes, 
either directly or through regulatory mediators, such 
as transcription factors. We thus performed meta-
analysis of 9 papers reporting differentially expressed 
miRNAs in LUAD to identify consistently deregulated 
miRNAs. We found 24 such miRNAs (p < 0.05, robust 
rank analysis, see Methods section), 13 of which were 
upregulated (hsa-mir-21, hsa-mir-182, hsa-mir-210, hsa-
mir-9, hsa-mir-183, hsa-mir-135b, hsa-mir-130b, hsa-
mir-200b, hsa-mir-191, hsa-mir-31, hsa-mir-196b, hsa-
mir-196a, hsa-mir-200a, ordered by significance) and 11 
downregulated (hsa-mir-126, hsa-mir-145, hsa-mir-30a, 
hsa-mir-218, hsa-mir-139, hsa-mir-195, hsa-mir-486, hsa-
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mir-143, hsa-mir-144, hsa-mir-34c, hsa-mir-16) (Figure 4, 
Supplementary Data 3).

We then tested co-occurrence between the miRNAs 
deregulation and emergence of the paradoxical genes 
within the same cohort of patients. We first assessed 
differential expression of the 24 consistently deregulated 
miRNAs using TCGA-LUAD miRNA-seq data. Nineteen 
significantly deregulated miRNAs (out of 24, p = 1.18E-
8, hypergeometric test) validated the results of the meta-
analysis (hsa-mir-130b, hsa-mir-135b, hsa-mir-139, 

hsa-mir-143, hsa-mir-144, hsa-mir-182, hsa-mir-183, 
hsa-mir-195, hsa-mir-196a, hsa-mir-196b, hsa-mir-200a, 
hsa-mir-200b, hsa-mir-21, hsa-mir-210, hsa-mir-218, 
hsa-mir-30a, hsa-mir-31, hsa-mir-486, hsa-mir-9). While 
five miRNAs (hsa-mir-191, -34c, -126, -145, -16) did not 
validate; hsa-mir-191, -34c failed to pass the validation 
criteria only due to insufficient expression fold change, 
although their expression was altered significantly 
(Supplementary Table 2). Therefore, only 19 validated 
miRNAs are used for further analysis.

Figure 2: Association between chromosomal copy number aberrations and differential expression of genes. (A) 
Frequencies of gains (pointing outbound) and losses (pointing inbound) of the given chromosomal region as obtained from integrative 
analysis of three aCGH datasets. The aberration frequencies are depicted in range from 0-50% and regions with significant frequency of 
aberrations are highlighted by color (orange – losses, green – gains). Precise chromosomal locations of these paradoxical genes are depicted 
in the circular plot. (B) Tumor-vs-normal expression fold change of the paradoxical genes, obtained across 10 publicly available datasets. 
In Figures A and B, symbols of the downregulated genes are labeled red, while the symbols of the upregulated genes are labeled blue. (C) 
Venn diagram showing overlaps between up-/downregulated genes and genes residing within the regions of chromosomal copy number 
gain, or loss.
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Figure 3: Frequency of deregulation and CNAs of paradoxical genes. Barplot at the left shows frequencies of paradoxical and 
non-paradoxical co-occurrence of deregulated expression and CNAs. Barplots depicting frequencies of up- and downregulation (middle), 
gain and losses (right) of 70 validated paradoxical genes, as occur across TCGA LUAD samples. Colors of the gene labels indicate their 
deregulation/CNA status as obtained from the integrative analysis.
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Association between deregulated miRNAs and 
paradoxical genes

According to mirDIP [21], 46 of the 70 paradoxical 
genes (65.7%) are targeted by subsets of the 19 deregulated 
miRNAs (p = 4.8E-3, hypergeometric test; Figure 5). 
Moreover, for 35 of these 46 targeted paradoxical genes, 
we found at least one deregulated miRNA that targets 
the given gene with its expression status contrasting 
the expression status of the given gene, implying that 
paradoxical expression of this gene could be explained by 
the miRNA deregulation.

To further asses the association between expression 
of individual miRNAs and paradoxical genes we 
calculated partial correlation between them [22], 
using copy number status of the paradoxical genes as 
a controlling variable. We found 369 significantly co-
expressed miRNA:gene pairs (27% of all miRNA:gene 
combinations), 362 (98.1%) of which are explanatory, i.e., 
there is a positive correlation between miRNAs and genes 
deregulated in the same direction, or negative correlation 
between inversely deregulated ones (Figure 6A). We found 
64 paradoxical genes (91.4%) whose correlation with at 
least one of the 19 validated miRNAs is among the top 5% 
of the correlations measured between 10E+4 random pairs 
of genes and miRNAs, and whose paradoxical expression 
can be explained by deregulation of the upstream miRNA.

As downstream effects of the deregulation of 
individual miRNAs may be combined, we aimed to 
evaluate potential associations between expression of 
individual paradoxical genes and en bloc expression of 
the deregulated miRNAs. We calculated coefficients of 
multiple (multivariate) correlation (CMC) between the 
paradoxical genes and deregulated miRNAs. The value 
of CMC can be interpreted as the correlation between 
dependent variable (gene expression) and its best 
prediction that can be computed linearly from the set of 
independent variables (expression of miRNAs). We found 
23 paradoxical genes (32.9%) with CMCs in the top 5% of 
the values of the same measure as calculated across 17,745 
genes covered by TCGA-LUAD RNA-seq data (p = 1.7E-
14, hypergeometric test; Figure 6B).

Clinical significance of the paradoxical genes

Using KMplot [23], we assessed the association 
of the 70 paradoxical genes with patient disease-
free survival. We found 41 (58.6%) of these genes as 
significantly associated with survival (FDR < 0.05). We 
assume that down-regulation of significantly positive 
genes (HR < 1, FDR < 0.05) as well as the up-regulation 
of significantly negative ones (HR > 1, FDR < 0.05) 
worsens the survival prognosis. Under this assumption, 
with the exception of three genes (ELMO1, DENND3, 

Figure 4: Ranking of the differentially expressed miRNAs as reported across 9 LUAD miRNA studies. The lower the rank 
the greater the reported significance (and/or expression fold change) of the corresponding miRNA. Height of the bars denotes total number 
of reported miRNAs in each study.
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SPINT1), the actual deregulation of paradoxical genes 
is associated with a negative impact on patient survival 
(Figure 7A; Supplementary Table 3). This implies that 
the gene expression paradoxes we identified here mostly 
worsen the prognosis of LUAD patients.

Using TCGA-LUAD RNA-seq and matching 
clinical data, we constructed a multivariate Cox prognostic 
model, where expressions of the paradoxical genes served 
as prognostic variables. The model was validated using 
three independent publicly available gene expression 
datasets and associated clinical data: Botling et al. [24], 
Okayama et al. [25] and Der et al. [26] (Figures 7B-7D). 
The resulting concordance index, area under ROC curve, 
hazard ratio between risk groups and associated P-value, 
demonstrated robust prognostic potential of paradoxical 
genes signature.

Pathway enrichment analysis of the 
paradoxical genes

To elucidate biological functions of the paradoxical 
genes we performed a comprehensive pathway enrichment 
analysis. Using Pathway Data Integration Portal 
(pathDIP) [27] we identified 22 pathways significantly 
enriched by the 70 paradoxical genes (FDR < 0.05, 
hypergeometric test). A list of all pathways and respective 
gene memberships is provided in Supplementary Data 4. 
Interestingly, several of the enriched pathways are related 
to lipid metabolism and signaling (adipogenesis, LPA 
receptor mediated events, regulation of lypolysis) are key 
players in carcinogenesis [28]. Moreover, several enriched 
guidance molecule pathways (ephrin signaling, semaphorin 
interactions, integrin, DCC-mediated attractive signaling) 

Figure 5: The network of interactions between deregulated miRNAs and their paradoxical gene targets as obtained 
from mirDIP. Rectangles and circles represent miRNAs and genes, respectively. Red color denotes downregulated transcripts, while blue 
denotes upregulated ones. Size of nodes corresponds to number of interactions (degree). Solid red lines indicate miRNA:gene interactions 
between inversely deregulated transcripts, indicating potential causal associations.
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are noted as cancer-drug targets [29]. PTEN-dependent 
cell cycle arrest, apoptosis pathway as well as hemostasis 
are known to play a role in cancer [30–32].

DISCUSSION

Integrating three LUAD aCGH datasets, we 
identified several chromosomal regions with extensive 
copy number aberrations. Weir and colleagues [33] 
reported similar profile of copy number aberrations in 
371 LUAD samples, confirming gains on 1q, 5p, 7p, 7q 
and 8q as well as deletions on 6q, 8p, 9p, 9q, 13q, 18q 
(Table 1). Lee et al. [34] obtained similar results using 
Molecular Inversion Probe assays on 12 LUAD samples, 

confirming gains on 1q, 5p, 7p, 7q and 8q and losses on 
6q, 8p, 18q (but not losses on 9p, 9q, 13q and 15q). While 
the individual aberrations vary greatly among individuals, 
as even the most frequent aberrations appear only in less 
than 50% of samples, the overall CNA profile of LUAD is 
conserved across the patient cohorts.

By integrative analysis of multiple gene expression 
and copy number datasets, we found significant 
association between CNA status and differential 
expression of genes. Similar associations were previously 
reported in other cancer types [2–5, 7]. However, we 
also discovered 85 paradoxical genes whose expression 
was in opposite direction to their CNA. Seventy of these 
genes were subsequently validated across a homogeneous 

Figure 6: Correlation between deregulated miRNAs and paradoxical genes. (A) Partial correlations between deregulated 
miRNAs and paradoxical genes as measured across TCGA LUAD data (red denotes negative correlation, blue denotes positive correlation, 
darker shade indicates significant correlations, p < 0.05). Plus signs denote partial correlation with causal explanation of gene deregulation, 
minus signs denote correlations that are significant but non-explanatory. (B) Barplot showing multiple correlations between paradoxical 
genes and en block deregulated miRNAs as calculated across TCGA LUAD data. Curve on the right depicts distribution of the same 
measure across all the genes in the TCGA LUAD data. Dashed line denotes 95th percentile of the distribution; there are 23 (32.9%) 
paradoxical genes whose multiple correlation coefficient falls among the top 5% of the highest values.
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Figure 7: Clinical significance of the paradoxical genes. (A) Venn diagram showing overlapping subsets of paradoxical genes 
with up-/ downregulated expression and subsets with positive (HR < 1, FDR < 0.05) and negative (HR > 1, FDR < 0.05) association 
with LUAD prognosis, as obtained from KMplot. (B–D) Kaplan-Meier plots showing survival curves in the three independent validation 
cohorts, as stratified based on the Cox proportional hazards calculated from paradoxical genes expression. Numbers in the bottom left, 
indicate resulting hazard ratio (HR), associated statistical significance of patient stratification (p), concordance index (c-index), area under 
ROC curve (AUC) calculated at five years.

LUAD data cohort from TCGA. Paradoxical expression of 
these genes was validated even on the individual samples, 
proving that such paradoxical gene expression is a well 
preserved feature of the molecular profile of LUAD.

Expression of paradoxical genes is associated 
with miRNAs consistently deregulated across multiple 
LUAD patient cohorts. Deregulation of these miRNAs 
inverts the effects of the genomic aberrations occurring 
in tumors. This is demonstrated by significant overlap 
between paradoxical genes and targets of these miRNAs, 
as well as by the two methods we applied here to measure 
correlation between the paradoxical genes and given 
miRNAs. Although correlation does not imply causality, 
the results of our analysis strongly suggest that differential 
expression of paradoxical genes is caused by deregulation 
of miRNAs.

We tested prognostic relevance of the paradoxical 
genes and found 41 (58.6%) paradoxical genes significantly 
associated with patient survival. Paradoxical expression 
of 39 genes has negative impact on prognosis. We also 
developed paradoxical gene signature that was validated 
on a three independent validation datasets [24–26].

While the majority of the paradoxical genes are 
novel and their association with LUAD prognosis has 
not been investigated thoroughly, there are 17 validated 
paradoxical genes that have been previously associated 
with prognosis of other cancers: ADAM28 [35, 36], 
ANGPT1 [37], CA2 [38], CA24 [39], DAB2 [40], HOXA5 
[41, 42], IL6 [43], KLF10 [44], MCL1 [45], NES [46], 
NUSAP1 [47], PDZD2 [48], RGS17 [49, 50], RUNX1T1 
[51, 52], SELC14L1 [53], SEMA5A [54] and SEPP1 [55] 
(Table 2).
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Table 1: List of the large scale copy number aberrations in LUAD

CNA Arm Frequency [%] Weir et al., 2007 [33] Lee et al., 2012 [34]

Gain: 1q 30-45 x x

5p 22-45 x x

7p 19-34 x x

7q 16-20 x x

8q 15-35 x x

Loss: 6q 7-13 x x

8p 7-26 x x

9p 13-20 x

9q 7-12 x

13q 7-12 x

15q 7-8 x

18q 8-21 x x

Frequency indicates range of relative number of aberrations occurring across the span of the given region. Checkmarks 
indicate aberrations confirmed by the above studies.

Table 2: List of validated paradoxical genes whose association with cancer prognosis has previously been reported

Gene Association to cancer prognosis Ref.

ADAM28 Overexpression correlates with cell proliferation and lymph node metastasis [35]
Serological and histochemical marker for NSCLC [36]

ANGPT1 Role in the prognosis of patients with oral squamous cell cancer [37]
CA2 Downregulated in gastric cancer and proposed as an independent prognostic factor for patient survival [38]
CD24 Expression at early stages of breast cancer indicates a highly invasive tumor [39]
DAB2 An important tumor suppressor, frequently downregulated in various tumors [40]
HOXA5 Downregulation is associated with poor prognosis in NSCLC [41]

Shown to prevent tumor progression and metastasis in colon cancer [42]
IL6 SNP associated with risk of multiple cancers [43]
KLF10 Potential clinical predictor for progression of pancreatic cancer [44]
MCL1 Key molecule for acquiring epithelial-to-mesenchymal transition-associated chemo-resistance in NSCLC [45]
NES Marker of cancer stem cells [46]
NUSAP1 Encodes protein that is proposed biomarker for prostate cancer recurrence [47]

PDZD2 Shown to induce senescence or quiescence of prostate, breast and liver cancer cells via transcriptional 
activation of p53 [48]

RGS17 Induces tumor cell proliferation lung and prostate cancers [49]
Regulator of cell survival and chemoresistance in ovarian cancer [50]

RUNX1T1 Predictor of liver metastasis in pancreatic endocrine tumours [51]
Associated with proliferation and senescence inhibition in t(8;21)-positive leukaemic cells [52]

SELC14L1 Proposed marker for predicting prognosis and progression of prostate cancer [53]

SEMA5A Over-expressed pancreatic cancer cells, regulates tumorigenesis, proliferation, invasion and metastasis, 
and serve as a target for diagnosis and treatment of pancreatic cancer [54]

SEPP1 Inversely related to pancreatic cancer risk [55]
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From the panel of consistently deregulated miRNAs, 
several were recently associated with cancer progression 
and prognosis. Most notably, miRNAs hsa-mir-21 and 
-196b are well established oncomirs [56], and hsa-mir-
196a is known to be associated with NSCLC [57]. The 
role of hsa-mir-30a varies across human cancer types [58]. 
Hsa-mir-135b reverses chemoresistance of NSCLC [59]. 
Hsa-mir-139 is associated with aggressive tumor behavior 
and disease progression in breast cancer [60], and is 
believed to inhibit bladder cancer proliferation and self-
renewal [61]. Hsa-mir-143 inhibits tumor growth of breast 
cancer [62]. Hsa-mir-144 has been shown to induce cell 
cycle arrest and apoptosis in pancreatic cancer cells [63]. 
Hsa-mir-182 promotes prostate cancer progression [64]. 
Hsa-mir-195 inhibits the proliferation and invasion of 
pancreatic cancer cells [65]. Hsa-mir-218 downregulation 
contributes to epithelial-mesenchymal transition and tumor 
metastasis in lung cancer [66]. Hsa-mir-130b is a part of 

the new prognostic marker for patient risk assessment and 
as an indicator of therapy resistance in prostate cancer 
[67]. Similarly, hsa-mir-183 in combination with hsa-mir-
19b were recently proposed as biomarkers of lung cancer 
[68], and miRNAs hsa-mir-145 and -9 as biomarkers for 
early-stage cervical cancer [69].

Genomic instability is one of the cancer hallmarks 
[70] that results in CNAs and differential expression 
of various genes. However, paradoxical genes with 
expression patterns opposite to gene dosage status often 
are dismissed as noise and overlooked in genome-wide 
cancer gene discovery efforts [8]. Prognostic significance 
of the paradoxical genes suggests that their deregulation in 
LUAD is crucial for cancer progression and is maintained 
by the cancer cells despite the CNAs affecting expression 
of these genes in an inverse manner. We found that 
deregulation of the paradoxical genes is maintained at the 
epigenetic level by a group of deregulated miRNAs. These 

Table 3: Summary of the public datasets used in this study

Author & Year No. of samples (total/normal) Source & Notes

CNAs: Chitale et al., 2009 [93] 199 http://cbio.mskcc.org/public/

Job et al., 2010 [97] 60 E-TABM-926, ArrayExpress

Gene 
expression: Bhattacharjee et al., 2001 [98] 207/17 http://www.broadinstitute.org/MPR/lung/

Beer et al., 2002 [99] 96/10 GSE68571

Stearman et al., 2005 [100] 39/19 GSE2514

Yap et al., 2005 [101] 58/9 E-MEXP-231, ArrayExpress

Su et al., 2007 [102] 54/27 GSE7670

Landi et al., 2008 [103] 107/50 GSE10072

Rohrbeck et al., 2008 [85] 15/5 GSE6044

Hou et al., 2010 [86] 109/64 GSE19188

Girard et al., 2011 50/20 GSE31547, Unpublished

Okayama et al., 2012 [25] 246/20 GSE31210

miRNA 
expression: Yanaihara et al., 2006 [87] 208/104

Cho et al., 2009 [88] 20/10

Crawford et al., 2009 [89] 20/8

Dacic et al., 2010 [90] 12/6

Yu et al., 2010 [91] 40/20

Lee et al., 2011 [92] 12/6

Jang et al., 2012 [94] 206/103

Ma et al., 2014 [95] 108/54

Nadal et al., 2014 [96] 101/10

http://cbio.mskcc.org/public/
http://www.broadinstitute.org/MPR/lung/
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findings highlight the importance of integrative analysis, 
which combines information across diverse types of high-
throughput data.

MATERIALS AND METHODS

Copy number aberrations: sample collection, 
preparation and data processing

The samples used in this study were from the 
banked resected tumors collected in the BR.10 adjuvant 
chemotherapy trial [71]. The study has received approval 
by the Institutional Research Ethics Board. A total of 142 
formalin-fixed paraffin embedded (FFPE) and 16 snap-
frozen samples were included. Haematoxylin and eosin 
stained slides from FFPE blocks first were reviewed 
by a lung pathologist to locate tumor rich areas (tumor 
cellularity > 60%), and then the block was cored at this 
area. Cored specimens were de-paraffinized by incubation 
in xylene overnight, and then washed with ethanol and 
air dried. Qiagen ATL buffer (QIAamp© DNA extraction 
kit cat. 51306, Germantown, MD) were added. Specimens 
were digested by proteinase K at 55°C overnight at 
450rpm (Eppendorf© Thermomixer R, Fisher Scientific). 
DNA isolation followed the manufacturer's protocol 
(Qiagen, Cat. 51306, Germantown, MD). Samples of 
isolated genomic DNA were quantified by Nanodrop 1000 
(Thermo Scientific, Wilmington, DE) and electrophoresed 
in 0.8% agarose gel to visualize DNA size distribution. 
Severely degraded samples (80% of DNA fragments with 
size < 20bp) were excluded. Eight out of 142 FFPE and 
none of the snap-frozen samples were excluded. The final 
cohort contains 134 FFPE and 16 snap-frozen samples.

Test and reference DNA were labeled using Cy3 
and Cy5 dCTPs respectively; 200 ng of genomic DNA 
was labeled using the BioPrime DNA labeling system 
(Invitrogen). Prior to hybridization, test and reference 
labeled DNA were combined and purified using a 
ProbeQuant Sephadex G-50 Column (Amersham, 
GE Healthcare Life Sciences, Chicago, IL) to remove 
unincorporated nucleotides. Then 100 μg of Human Cot-1 
DNA (Invitrogen) was added to the labeled sample prior 
to precipitation with 0.1 volume 3M sodium acetate and 
2.5 volumes of ethanol. The DNA pellet was resuspended 
in 20 μl DIG Easy hybridization solution (Roche, 
Indianapolis, IN), 2.5 μl (20 μg/μl) sheared herring sperm 
DNA and 2.5 μl (100μg/μl) yeast tRNA (Calbiochem, San 
Diego, CA). DNA was denatured at 85°C for 10 minutes 
and repetitive sequences were blocked at 37°C for one 
hour prior to hybridization.

Prehybridization was carried out using 20 μl DIG 
Easy hybridization buffer (Roche), 2.5 μl 10% BSA and 
2.5 μl (20 μg/μl) sheared herring sperm DNA, at 45°C for 
1 hour. Hybridization was carried out at 45°C for 24-48 
hours. Arrays were washed for 5 x 5 min., in 0.1 x SSC, 
0.1% SDS at room temperature in the dark with agitation. 

Each array was then rinsed 5 times in a clean slide box 
containing 0.1 x SSC with agitation. Slides were then 
dried with (oil free) nitrogen air stream and stored in the 
dark until imaging.

Array image capture and data normalization were 
performed as previously described [72]. Briefly, post-
hybridization arrays were scanned using a CCD-based 
imaging system (Virtek ChipReader), and quantitated 
using Soft-Worx Tracker spot analysis software (Applied 
Precision, Issaquah, WA).

Data were log2 transformed, and replicate clones 
having standard deviations > 0.075 or signal-to-noise 
ratios in each dye channel of < 3 were filtered out. A 
multi-step normalization was then performed to control 
for biases caused by the array (e.g., spatial biases or 
differences in background signal), the dyes used for 
labeling, or the DNA sample quality [73, 74]. The amount 
of “copycat'” correction required for each sample was 
plotted in a histogram of all samples; those that required 
too much correction and did not lie within a normal 
distribution were deemed to be poor quality DNA, and 
were eliminated from analysis. By these criteria, 35 
samples were eliminated, leaving 115 samples (including 
63 LUAD samples used here) from 113 patients for further 
analysis. Data from all 115 samples are publicly accessible 
through: http://ophid.utoronto.ca/aCGH/.

Analysis of the copy number aberrations data

In addition to our newly-produced CNA data, we 
analyzed two publicly available aCGH datasets acquired 
from LUAD tumor samples (see Table 3). Each of the 
public datasets was first normalized, segmented and 
additionally underwent post-segmentation normalization 
using methods provided by Bioconductor package 
CGHcall (v2.22.0) [75]. All three datasets then underwent 
a “calling” process using the CGHcall method from the 
same package, converting the continuous log-ratios on 
each probe, to one of the three discrete values (calls) 
corresponding to: (i) decreased number of copies (loss), 
(ii) normal copy and (iii) increased number of copies 
(gain) [75].

As the individual datasets come with different 
probesets, obtained copy numbers calls correspond to 
different chromosomal segments and cannot be compared 
directly. We then integrated results acquired from 
individual datasets by assigning a set of chromosomal 
positioning “anchors” that comprised the starts and ends 
of chromosomal locations of all the probes in the four 
datasets, as described by Guo et al. [76]. Then for each 
anchor, if the anchor was within the chromosomal location 
of the probe from any of the datasets, acquired vector of 
states corresponding to the probe were assigned to this 
anchor. Conversely, if an anchor was outside of any of the 
probes of the given dataset, a vector of missing values was 
created and assigned to the anchor. Anchors with missing 

http://ophid.utoronto.ca/aCGH/
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values from more than one datasets were removed. 
Number of losses and gains were calculated across the 
anchors and their statistical significance was evaluated 
by p-values, calculated by comparing actual gains/losses 
counts to those obtained from 106 permutations.

Analysis of gene expression datasets

We analyzed 10 publicly available gene expression 
datasets (Table 1) which satisfied the following criteria: 
(i) were originally from studies on tissue samples from 
surgically resected human LUAD tumors, (ii) contained 
at least one sample of noncancerous normal tissue for 
comparison, and (iii) were produced by using Affymetrix 
platforms to enable uniform processing and analysis of 
all the datasets. We first normalized and summarized 
each dataset by Gene Chip Robust Multiarray Averaging 
(gcrma, v2.38.0) [77]. For each individual dataset, we 
then evaluated differential expression of the genes using 
Bioconductor package limma (v3.32.7) [78]. Based on 
the expression fold change, genes were classified as 
either up- or downregulated, and then ranked according 
to statistical significance, which was evaluated by FDR-
adjusted p-value. Analyzing 10 datasets resulted in 10 
rankings for upregulated genes and 10 for downregulated 
ones. To identify consistently deregulated genes, obtained 
rankings were subjected to robust rank aggregation 
analysis implemented in R package RobustRankAggreg 
(v1.1) [79]. This analysis detects genes that are ranked 
consistently better than expected under the null 
hypothesis of uncorrelated inputs, and assigns a p-value 
as a significance score for each gene. The stability of 
the resulting significance scores was assessed by the 
leave-one-out correction, in which the same analysis was 
repeated 10 times, each time excluding one of the rankings. 
Acquired p-values from each round were averaged into a 
corrected p-value. Genes whose significance score was 
smaller than chosen threshold (corrected p < 0.01) were 
further considered as consistently significantly deregulated 
genes.

Meta-analysis of the miRNA expression

Compared to gene expression studies, fewer miRNA 
expression profiles from LUAD are available, and various 
platforms are used, often including custom arrays. 
Therefore, to provide analysis of miRNA expression in 
LUAD, instead of acquiring and processing expression 
data, we summarized reported results of 9 published 
miRNA expression studies (Table 1). Full text and (if 
applicable) supplementary data of each of the studies 
were carefully examined, and miRNAs with significantly 
altered expression were selected for further analysis. 
miRNA names were standardized according to miRBase 
(release 21) [80]. All miRNAs were classified as either 
up- or downregulated and ranked according to their 

reported statistical significance. If this was not reported, 
expression fold change was used instead. Examining 9 
studies we obtained 9 rankings for upregulated miRNAs 
and 9 for downregulated ones. Analogously to gene 
expression analysis described in the previous section, 
obtained miRNA rankings subsequently were subjected 
to the robust rank aggregation analysis and leave-one-
out correction of the obtained p-values. miRNAs whose 
significance score was smaller than a chosen threshold 
(corrected p < 0.05), comprised the resulting list of 
consistently significantly deregulated miRNAs.

Acquiring chromosomal locations and copy 
number status of the deregulated genes

Using Bioconductor package biomaRt (v2.22) 
[81] we determined the chromosomal locations of the 
deregulated genes from the Ensembl (v75, Feb. 2014) 
database and compared these locations with chromosomal 
coordinates of the aberrant regions. Deregulated genes 
whose chromosomal locations overlapped with aberrant 
regions were counted and statistical significance of the 
association between the aberrations and differential gene 
expression was then evaluated using Chi-square test.

Identification of the miRNA-target pairs

We used microRNA Data Integration Portal, 
v2.3.2.0 (mirDIP; http://ophid.utoronto.ca/mirDIP) [21] 
to acquire data on human miRNAs and their respective 
targets. mirDIP integrates data from 14 miRNA resources 
and supports a search for miRNA-target pairs under 
user-defined filters, including a number of independent 
confirmations of given pairs, confidence criteria, etc. We 
restricted our search to only miRNA-target pairs that fell 
among the top third of the most confident predictions 
from at least two different sources. miRNA names were 
standardized as described above, and symbols of their 
gene targets were standardized by HGNC symbol checker 
(http://www.genenames.org, version from September 
2015). To assess the significance of overlap between 
targets of deregulated miRNAs and paradoxical genes, we 
performed hypergeometric testing, using 15,323 genes that 
were subjected to robust rank analysis as a population and 
7,836 of these genes that, according to mirDIP are targeted 
by at least one of the deregulated miRNAs as a number of 
“successes” in the population.

Calculation of the miRNA:target partial 
correlation and multiple correlation coefficients

Partial correlation coefficients between gene and 
miRNA expressions were calculated using R package 
ppcor v1.1, using copy number of the given gene as a 
third – controlling variable. Statistical significance of the 
obtained values was calculated by two-sided comparison 

http://ophid.utoronto.ca/mirDIP
http://www.genenames.org
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with distribution of the same measure obtained across 
104 random miRNA:gene pairs. To distinguish whether 
correlations between miRNA and given genes may also 
imply causal association, we compared the sign of the 
correlation and copy number status of the miRNA and 
gene. If the miRNA and gene were deregulated in the 
same direction, mutual correlation must be positive to 
indicate a causal association. If the miRNA and genes 
were inversely deregulated, mutual correlation must be 
negative to indicate causal association.

Multiple correlation coefficients between gene and 
en bloc miRNA expression C was calculated as follows:

C 2 = cTR−1c

where c denotes a vector of Pearson coefficients 
of correlation between a given genes and miRNA 
expressions, R denotes a matrix of Pearson coefficients of 
correlation between miRNA expressions.

Evaluation of the prognostic significance of the 
paradoxical genes

Prognostic properties of the individual genes were 
evaluated by KMplot (http://kmplot.com/analysis/) 
[23], version 2015, using only LUAD patient data and 
corresponding disease-free survival censored at 10 years. 
If multiple probe sets were mapped to the same gene, 
we used only JetSet probes mapping to a given gene. 
Obtained hazard ratios (HR) and associated p-values were 
then summarized and multiple testing adjustment of the 
p-values was subsequently computed using false discovery 
rate (FDR) method.

To evaluate the multivariate prognostic potential of 
the paradoxical genes we developed a Cox proportional 
hazards model, where expressions of 70 validated 
paradoxical genes served as covariates. The model was 
derived using R package glmnet [82] (v2.0.2), applying 
LASSO (L1) regularization to prevent over-fitting. TCGA-
LUAD RNA-seq data were standardized by converting to 
z-scores and along with the corresponding clinical data 
were used as “training data”. The resulting model was then 
validated on three independent datasets, and its predictive 
performance was first evaluated by a concordance index 
(function survConcordance from R package survival 
[83], v2.38.3), and an area under receiver operating 
characteristics curve (AUC), measured at the fifth year 
after initial time point (function AUC.cd from the R 
survAUC package, v 1.0.5). Patients were then separated 
into two groups based on the predicted risk score, using its 
40th percentile as a threshold. This threshold was selected 
based on ROC analysis of the model using training 
data. Validated HR between these two groups, as well 
as associated statistical significance (log-rank test) were 
calculated (function survdiff from the survival package) 
and Kaplan-Meier survival curves of both groups were 
plotted (for more details see [84]).

Pathway enrichment analysis

Using Pathway Data Integration Portal v2.5.1.2 
(http://ophid.utoronto.ca/pathDIP), we performed 
comprehensive pathway enrichment analysis across 20 
major pathway databases [27]. We considered literature 
curated gene:pathway memberships as well as those 
predicted according to experimentally detected protein-
protein interactions (including interactions experimentally 
detected between orthologues plus FpClass interactions 
with minimum confidence level for predicted associations 
equal 0.95; for more details see pathDIP documentation).
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