
July 2017 | Volume 8 | Article 8751

Review
published: 31 July 2017

doi: 10.3389/fimmu.2017.00875

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Robert Weissert,  

University of Regensburg,  
Germany

Reviewed by: 
Arthur Liesz,  

Ludwig-Maximilians-Universität 
München, Germany  
Anna Fogdell-Hahn,  

Karolinska Institutet, Sweden  
Andreas Meisel,  

Charité Universitätsmedizin Berlin, 
Germany

*Correspondence:
Mathias Gelderblom  

m.gelderblom@uke.de

Specialty section: 
This article was submitted to  

Multiple Sclerosis and 
Neuroimmunology,  

a section of the journal  
Frontiers in Immunology

Received: 21 March 2017
Accepted: 10 July 2017
Published: 31 July 2017

Citation: 
Thom V, Arumugam TV, Magnus T 

and Gelderblom M (2017) 
Therapeutic Potential of Intravenous 

Immunoglobulin in Acute Brain Injury.  
Front. Immunol. 8:875.  

doi: 10.3389/fimmu.2017.00875

Therapeutic Potential of intravenous 
immunoglobulin in Acute Brain injury
Vivien Thom1, Thiruma V. Arumugam2, Tim Magnus1 and Mathias Gelderblom1*

1 Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 2 Department of Physiology, 
Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Acute ischemic and traumatic injury of the central nervous system (CNS) is known to 
induce a cascade of inflammatory events that lead to secondary tissue damage. In
particular, the sterile inflammatory response in stroke has been intensively investigated in 
the last decade, and numerous experimental studies demonstrated the neuroprotective 
potential of a targeted modulation of the immune system. Among the investigated immu-
nomodulatory agents, intravenous immunoglobulin (IVIg) stand out due to their beneficial 
therapeutic potential in experimental stroke as well as several other experimental models 
of acute brain injuries, which are characterized by a rapidly evolving sterile inflammatory 
response, e.g., trauma, subarachnoid hemorrhage. IVIg are therapeutic preparations
of polyclonal immunoglobulin G, extracted from the plasma of thousands of donors. In 
clinical practice, IVIg are the treatment of choice for diverse autoimmune diseases and 
various mechanisms of action have been proposed. Only recently, several experimental 
studies implicated a therapeutic potential of IVIg even in models of acute CNS injury, and 
suggested that the immune system as well as neuronal cells can directly be targeted 
by IVIg. This review gives further insight into the role of secondary inflammation in acute 
brain injury with an emphasis on stroke and investigates the therapeutic potential of IVIg.
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STeRiLe iNFLAMMATiON OF THe CeNTRAL NeRvOUS  
SYSTeM (CNS)

Acute tissue damage is known to trigger a highly conserved cascade of inflammatory events. This 
inflammation is vital for the immediate response of the host to invasive pathogens in the settings 
of acute infection and it is characterized by a rapid recruitment of neutrophils to the side of injury.  
Similar to the inflammation in response to microorganisms, trauma, ischemia, or chemically induced 
tissue damage elicit a rapid inflammatory reaction. Due to the absence of microorganisms, this inflam-
matory response is termed “sterile inflammation” (1). Sterile inflammation shows several similarities 
with innate immune responses toward microorganisms. Both microbially induced inflammation 
and sterile inflammation are characterized by the initial generation of danger-associated patterns 
(DAMPs), production of inflammatory cytokines as well as chemokines, and subsequent recruit-
ment of leukocytes. In the CNS, sterile inflammation is mainly associated with an exacerbation 
of the tissue damage, induced by the initial event. In the case of cerebral ischemia, inflammation  
of the peri-infarct area contributes to a subsequent growth of the infarct core in the first days and is 
thereby contributing to a secondary worsening of the neurological outcome (2). However, at later 
stages inflammation might also be important for the resolution of the tissue damage and long-term 
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recovery, even though these processes are currently only poorly 
understood (3). In addition to inflammation associated with acute 
injuries, there is also convincing evidence for the importance of 
chronic inflammatory processes in degenerative diseases of the 
brain, including Parkinson’s and Alzheimers disease (4).

Development and Consequences  
of inflammation in Stroke
Pathophysiology of Cerebral Ischemia
Ischemic stroke is a devastating disease and represents the most 
common cause of long-term disability in adults as well as the third 
leading cause of death in the western world. Due to the improv-
ing management of risk factors, the incidence of stroke in the 
western world has decreased over the past decades. Nevertheless, 
the prevalence has risen based on a reduced mortality (5). This 
shift will probably become even more prominent in the future due 
to improved treatment, but particularly on the basis of an increase 
in life expectancy and a net aging population. Considering the 
annual direct and indirect costs emerging for the treatment of 
stroke patients an enormous economic burden is emerging. 
Typically, an occlusion of a major artery, leading to disruption of 
blood supply, causes an ischemic stroke and the only treatment 
option is the early restoration of blood flow. Available treatment 
strategies include drug-induced thrombolysis as well as endovas-
cular treatment with thrombectomy, but the major limiting factor 
is the onset-to-treatment time.

Focal disruption of cerebral circulation (ischemia) as well as 
the subsequent reperfusion contributes to brain injury. Initially, 
the restriction of blood flow leads to a rapid decrease of oxygen 
and glucose. Since brain tissue and particularly neurons are almost 
exclusively dependent on these substrates, they cease to function 
within minutes. Subsequently, activation of numerous signaling 
cascades, oxidative stress, mitochondrial dysfunction, and peri-
infarct depolarization are initiated among other cellular events 
and cause neuronal necrosis as wells as apoptosis (6). Cells in 
the ischemic core are irreversibly damaged and quickly undergo 
necrosis. The surrounding tissue, the so-called penumbra, is still 
viable, but dysfunctional and extremely vulnerable. After the 
initial restriction of blood supply, reperfusion and reoxygena-
tion lead to an aggravation of tissue damage particularly in the 
penumbra area, through the induction of a severe inflammatory, 
albeit sterile response (7).

Postischemic Inflammation
Apart from early excitotoxic mechanisms promoting neuronal 
and glial cell death, the initial lesion enlarges within few hours 
and days after the ischemic event. This results in deterioration 
of the neurological deficit and poor functional outcome. A large 
number of reports support the hypothesis that inflammation is 
rather a cause than merely a consequence of brain injury. Infarct 
growth resulting from activation of the immune system by 
ischemia and subsequent reperfusion is recognized as a major 
element in all stages of the pathophysiology of ischemic stroke 
(as illustrated in Figure  1), including long-lasting regenerative 
processes (3). A reduction of infarct size as well as brain edema 
and improvement of neurological impairment could by achieved 

in the middle cerebral artery occlusion (MCAO) animal model 
by implementing various immunological alterations, such as 
using immuno-deficient mice, blocking antibodies against 
pro-inflammatory cytokines, and adhesion-molecules as well as 
anti-inflammatory treatment (8–13).

In response to the initial brain damage dying cells in the infarct 
core region release, DAMPs such as adenosin triphosphate (ATP) 
(14, 15) heat shock proteins (16), and high mobility group box 1 
protein (HMGB1) (17), which activate pro-inflammatory mem-
brane receptors, such as toll-like receptors (TLRs) and the recep-
tor for advanced glycation end products (RAGE) in the penumbra 
region. Microglia are among the first immune cells to be activated 
by DAMPs after stroke (18). The rapid proliferation of resident 
microglia as well as subsequent infiltration of macrophages can 
be observed within the first hours following ischemia (19). Both 
cell types can produce inflammatory cytokines, such as tumor 
necrosis factor α (TNFα) and Interleukin (IL)-1β (8, 20) upon 
activation of TLRs, RAGE (21), and non-obese diabetic (NOD)-
like receptor family pyrin domain containing protein (NLRP) 1 
and NLPR3. It is well established that activation of TLR2 (22), 
TLR 4 (21), TLR 8 (23), and NLRP inflammasomes (24, 25) have 
been implicated in the context of postischemic inflammation. In 
addition, it was also shown that ATP as a DAMP activates the 
purinergic receptor such as P2X7 and contributes to postisch-
emic infarct development (26, 27).

In addition to the hypoxia and ROS-induced breakdown of 
the blood–brain barrier (BBB), upregulation of endothelial adhe-
sion molecules and pro-inflammatory cytokines, such as IL-1β 
and TNFα, promote further migration of leukocytes to the site of 
inflammation through the induction of chemoattractant signals 
(28). Lymphocytes only constitute a small fraction of infiltrating 
cells, but still play a prominent role in the evolvement of pos-
tischemic inflammation, although the temporal sequence does 
not correspond to established concepts of adaptive immunity. 
Mice deficient in lymphocytes have smaller infarcts (29) and 
specific depletion of the different T cell subpopulations T helper 
cells, cytotoxic T  cells, and γδ T  cells also revealed protective 
effects (12, 13). Whereas CD8 cells are important for perforin-
mediated cytotoxicity (30), interferon γ (IFNγ) secreted by CD4 
cells enhances the TNFα production of infiltrating macrophages 
(8). γδ T  cells, in turn, produce large amounts of IL-17 in an 
IL-23-dependent manner (13), which synergistically with TNFα 
promotes neutrophil recruitment via the chemokine C-X-C motif 
ligand 1 (CXCL-1) (8). Conversely, administration of anti-IL-17 
antibodies diminishes infarct size and improves neurological out-
come. Just recently, the role of the inflammatory cytokine IL-21, 
which is mainly produced by CD4 cells, was also highlighted in 
the evolvement of postischemic inflammation (31). However, 
the role of regulatory T cells (Tregs) is more controversial. It was 
shown that the depletion of Tregs via the administration of anti-
CD25 increased lesion size and neurological deficit (32), which 
led to the hypothesis that Tregs are protective in stroke and that 
their beneficial function depends on IL-10 (33). Contrary to these 
findings, Treg depletion through diphteria toxin injection in the 
DEREG mouse, a model to exclusively deplete Tregs, did not 
show an effect on lesion size (34). Furthermore, cells of the innate 
immune system are also involved in the processes of postischemic 
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FigURe 1 | Depiction of the evolvement and amplification of postischemic inflammation. Hypoxia and glucose deprivation cause severe cell damage and dying cells 
release DAMPS and ROS, which activate resident immune cells. Subsequent production of inflammatory cytokines contributes to the breakdown of the blood–brain-
barrier (BBB) and promotes the infiltration of cells of the adaptive as well as innate immunity, which cause a severe inflammatory response and deteriorate the initial 
brain damage.
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inflammation. The presence of DCs in the ischemic lesion, for 
instance, is a well-documented feature after stroke, although the 
functional relevance remains unknown so far (35). Neutrophils 
account for a substantial number of infiltrating cells (19) and 
blockade of the IL-17 axis diminishes neutrophil invasion and pro-
tects from ischemic stroke (8). Generally, preventing neutrophil 
migration to the brain has a beneficial effect (36) and neutrophils 
contribute to further brain damage by producing ROS, proteases, 
and inflammatory cytokines. Still, they also might have anti-
inflammatory and neuroprotective functions and a more detailed 
understanding regarding their role in postischemic inflammation 
is needed (37). In contrast to the detrimental activation of the 
immune system in the CNS, a systemic immunosuppression 
caused by overactivation of the sympathetic nervous system 
is a common phenomenon following stroke (38). The clinical 
relevance is underlined by an increased frequency of pulmonary 
as well as urinary tract infections and can be partially attributed 
to a long-lasting lymphopenia and impaired cytokine production 
(39). Furthermore, a loss of innate-like B  cells in the spleen, 
which can rapidly produce immunoglobulin G (IgG) and IgM in 
a T cell-independent manner and are important in the first-line 
of antibacterial defense, can be observed (40). Consistent with the 
loss of B cells murine and human studies have found that ischemic 
stroke can lead to decreased levels of IgG (41) and IgM (40).

Apart from the deleterious effects, the immunological pro-
cesses are also a prerequisite for the structural and functional 
reorganization of the injured brain tissue (3). The inflammatory 

processes after stroke are self-limiting within the first week after 
the initial events. Microglia as well as infiltrating macrophages 
are important for the phagocytosis of dead cells and debris  
(18, 42). They are a source of tropic factors, growth factors (43), 
and IL-10 (44), thereby facilitating tissue repair. Furthermore, 
there is evidence that production of growth factors, such as 
insulin-like growth factor 1 (45) and vascular endothelial 
growth factor (VEGF) (46), are conducive to neuronal repair. 
Controversially, some molecules comprise destructive as well 
as protective capacity. Matrix metallopeptidase 9 (MMP-9), for 
example, not only exacerbates brain damage in the early phase 
after stroke (47) but also contributes to neurovascular remodeling 
and promotes poststroke recovery by converting pro-VEGF into 
an active form (48). Taken together, activation of the immune 
system contributes to poststroke inflammation and augments 
secondary brain damage after stroke. Furthermore, a systemic 
immunosuppression and an increased susceptibility to infections 
are observed after stroke. However, it is also important to note 
that postischemic inflammation may also be involved in regen-
erative processes. Therefore, it is important to dissect specific 
detrimental and protective mechanisms when developing new 
immunomodulatory treatment strategies.

The Postischemic Inflammatory Response in Human 
Stroke and Translational Approaches
Most of our current pathophysiological knowledge of the 
postischemic inflammatory mechanisms derives from murine 
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experimental models employing the temporary MCAO mouse 
model. Despite the difficulty of obtaining postischemic human 
brain tissue, there is growing evidence of a similar critical inflam-
matory reaction following stroke in humans, which is based on 
histopathological postmortem studies and radiological find-
ings. Repetitive magnetic resonance imaging (MRI) showed an 
enlargement of the ischemic lesion over time by 20% in selected 
patients (49) as well as the existence of a penumbra area (50). 
Migration patterns of infiltrating leukocytes were observed 
by single photon emission computed tomography and MRI. 
Neutrophils (51) as well as monocular phagocytes (52) infiltrated 
the ischemic hemisphere and also microglia were shown to be 
activated in the human brain following ischemic stroke (53). 
Brain autopsies validated these findings and showed an infiltra-
tion of neutrophils in the ischemic hemisphere within the first 
48 h (54). Furthermore, infiltrating macrophages (52, 55), DCs, 
and T cells (56) could be found 3 days after stroke onset. Apart 
from the presence of immune cells, there is also evidence for 
poststroke inflammation. The pro-inflammatory transcription 
factor nuclear factor kappa-light-chain-enhancer of activated 
B cells (NFκb) and chemokines such as CXCL2 were upregulated 
(57). Furthermore, activated microglia could be detected in the 
penumbra area (58). Supporting the importance of IL-17, an enor-
mous increase of IL-17 positive cells was found in the ischemic 
hemisphere (59), mostly in co-localization with infiltrated T cells 
(8). In addition, IL-17 messenger ribonucleic acid (mRNA) was 
found to be elevated in leukocytes from stroke patients (60).

In summary, there is substantial preclinical and clinical 
evidence for a pivotal role of postischemic inflammation in the 
pathophysiology of ischemic stroke and subsequent induction of 
further damage to the brain. Considering the limited time win-
dow of the available therapies, solely aiming at the restoration of 
blood supply, there is an urgent need of new treatment strategies. 
These should not only be applicable in a less restricted period of 
time but also target the inflammatory and regenerative processes 
after stroke. Despite the promising results in the mouse model, 
clinical trials testing neuroprotective and anti-inflammatory 
agents have largely failed so far (3, 61). The underlying cause of 
the translational roadblock can be attributed to the experimental 
model. First of all, different genetic backgrounds and significant 
difference in the composition and the function of the immune 
system exist between human and mouse (62). Furthermore, 
there are important varieties in brain morphology, anatomy of 
cerebral vasculature, and metabolism (6, 63, 64). Other relevant 
factors influencing the translation of preclinical studies concern 
the experimental model regarding the age of the animals and 
comorbidities, the stroke model in terms of distal versus proximal 
occlusion as well as transient versus permanent ischemia, out-
come measurements, study quality, and selection of patients (65).

A recent example partly elucidating these issues is the 
investigation of the ability of natalizumab to reduce the detri-
mental effects of postischemic inflammation. Natalizumab is a 
monoclonal antibody against CD49d, an α4-integrin, preventing 
the migration of leukocytes into the brain in a very late antigen-
4-dependent manner and is approved for the treatment of multi-
ple sclerosis (MS). Anti-CD49d treatment was tested in different 
animals and distinct models of MCAO with varying periods 

of ischemia regarding the transient model. One group found a 
reduction of infarct size in the focal permanent model (30), in 
general resulting in small cortical infarcts, whereas another group 
could not reproduce these results (66). Comparable results were 
published for the transient model, where lesion size increases 
with the duration of ischemia. Short as well as extended periods 
of occlusion resulted in protection in some studies (30, 67, 68) but 
not exclusively (30, 66). In response to those deviating results a 
preclinical randomized controlled multicentre trial was initiated, 
which found that anti-CD49d treatment significantly reduced 
lesion size in the permanent model, but only when data from all 
centers were analyzed together, whereas there were no differences 
in the transient model (69). Nevertheless, a clinical study testing 
a single intravenous injection of natalizumab was conducted 
from December 2013 to April 2015, showing that natalizumab 
did not reduce infarct volume, but improved clinical outcome as 
measured by the modified Rankin Scale (mRS) (70).

Similar controversial is the published data on the immu-
nomodulatory drug fingolimod, which acts as a functional analog 
of sphingosin-1-phosphate and, therefore, inhibits lymphocyte 
migration from the lymph nodes to the CNS. Conflicting data 
are published, mostly describing an impact of fingolimod (13, 
71–74) but also challenging the effectiveness (75). Lately, how-
ever, two clinical pilot trials succeeded in showing a beneficial 
effect. Initially, they found in an open-label, evaluator-blinded 
fashion that fingolimod treatment is safe, attenuated the primary 
end point infarct growth and improved neurological outcome 
measured with the National Institutes of Health Stroke Scale and 
mRS in a cohort of 22 matched patients, who were not eligible 
for thrombolysis, given at a mean time of 22  h after symptom 
onset (76). The follow-up randomized, open-label, evaluator-
blind multicenter trial investigated the effect of early fingolimod 
treatment in addition to thrombolysis (77). 47 patients, with 22 
receiving fingolimod and rt-PA, were enrolled in the study and 
significant beneficial effects for the primary endpoints changes in 
lesion volume and extent of clinical improvement from baseline 
to day 1 as well as for the secondary endpoints extent of lesion vol-
ume growth and clinical improvement from day 1 to day 7 were 
observed. However, an unusual high rate of reperfusion of more 
than 60% was described in the second study and it needs to be 
considered that these studies have a proof of principle character 
and further multicenter, randomized, double-blind, and placebo-
controlled trials will be necessary to confirm these results.

FcγRs AND iNTRAveNOUS 
iMMUNOgLOBULiN (ivig)

Among many other immunomodulatory drugs, IVIg have been 
shown to be beneficial in experimental stroke in recent studies. 
IVIg contain polyclonal IgG and many different mechanisms of 
action have been proposed, of which the Fc fragment-dependent 
pathways seem to be of major significance. IVIg are established 
as a first-line therapy in different kinds of autoimmune disease. 
Although the mechanisms in stroke are not well understood so 
far, they possess promising therapeutic potential through neuro-
protective and immunomodulatory pathways.
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FigURe 2 | Illustration of the different FcγRs in human and mice. All activating FcγRs in mice as well as human FcγRI and FcγRIIIA express a common γ and a 
ligand binding a chain. After phosphorylation of the immunoreceptor tyrosin-based activating motif (ITAM), a signal cascade involving spleen tyrosin kinases (SYK), 
Bruton’s tyrosine kinase (BTK), and phospholipase Cγ (PLCγ) becomes initiated, leading to intracellular calcium influx and cell activation. Upon engagement of the 
inhibitory receptor, in turn, phosphorylation of the immunoreceptor tyrosin-based inhibitory motif (ITIM) leads to suppression of BTK and PLCγ. Since activating and 
inhibiting receptors are co-expressed and affect the same signaling pathways, the ratio of the different FcγRs sets a threshold for cell activation.
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Fcγ Receptors
Fc receptors are found on the surface of a variety of cells and 
specifically bind to the Fc region of immunoglobulins (Igs). 
Four different subclasses of Fc receptors for IgG (FcγRs) have 
been identified in mice, including the activating receptors FcγRI, 
FcγRIII, and FcγRIV as well as the inhibitory receptor FcγRIIB 
(78). All FcγRs belong to the Ig superfamily. The activating recep-
tors share a common γ-chain that comprises an immunoreceptor 
tyrosin-based activating motif (ITAM) (79) and express an indi-
vidual ligand-binding α-chain, whereas the inhibitory FcγRIIB is 
a single chain receptor containing an immunoreceptor tyrosin-
based inhibitory motif (as illustrated in Figure 2).

Besides microglial, endothelial, and mesangial cells as well as 
osteoclasts (78), FcγRs are particularly expressed by leukocytes. 
The majority of immune cells co-express activating and inhibitory 
FcγRs and the ratio of these receptors expressed by individual 
cells set a threshold for cell activation. Apart from distinct FcγRs, 
four different subclasses of IgG, in mice IgG1, IgG2a, IgG2b, and 
IgG3, with varying affinities toward the FcγRs are known. FcγRI 
shows high affinity and specificity for the different IgG isotypes, 
in contrast to FcγRIIB and FcγRIII that have lower binding 
capacities but recognize a broader spectrum (80). FcγRIV, in turn, 
seems to be the most important receptor for effector function 

of IgG2a and IgG2b (81). Moreover, it needs to be considered 
that the low-affinity receptors FcγRIIB, FcγRIII, and FcγRIV can 
only interact with multimeric IgG, which is present in immune 
complexes (ICs). This prevents unspecific binding, whereas FcγRI 
is saturated with monomeric serum IgG, but also requires ICs for 
activation (82). These kinetics suggest that the low-affinity recep-
tors can regulate immunity more effective since the high-affinity 
binding to monomeric IgG of FcγRI hampers interaction with ICs 
(78). Apart from FcγRs IgG also binds to the neonatal Fc recep-
tor (FcRn), which is expressed by vascular endothelium. FcRn 
prevents catabolism of IgG and is important for IgG half-life (83).

Triggered by the crosslinking of ICs with the α-chain of the 
activating FcγRs, the ITAM becomes phosphorylated, leading 
to the activation of members of the family of spleen tyrosin 
kinases (SYK) (78, 84). Subsequently, SYK-dependent phospho-
inositides increase the activity of phospholipase Cγ (PLCγ) and 
Bruton’s tyrosine kinase (BTK) (78, 84) leading to an increase 
of intracellular calcium levels. Upon activation of FcγRIIB, in 
turn, the SH2-containing inositol polyphosphate 5-phosphatase 
(SHIP) hydrolyzes phosphoinositides (85). This events lead to 
a reduction of the activity of kinases, such as PLCγ and BTK, 
and, therefore, diminish the increase of intracellular calcium  
(78, 84). Hereby, activating as wells as inhibitory receptors affect 
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the same signaling pathway and FcγRIIB exhibits important nega-
tive regulatory function in this manner. The loss or impairment 
of this inhibitory receptor can lead to autoimmunity as well as a 
prolonged immune response (86). The balance of activating and 
inhibitory receptors can be altered by the surrounding cytokine 
environment. The diverse role of Fc receptors in autoimmunity is 
elucidated by the fact that Fc receptor common γ-chain (FcRγ) 
knockout mice are resistant to the induction of autoimmune 
disease or show a milder course of disease, whereas FcγRIIB 
knockout mice often show worse outcome compared to wild-type 
mice (87–89). Mechanistically, it could be shown in nephrotoxic 
nephritis that DCs from FcγRIIB knockout animals show a 
more pronounced expression profile of cytokines associated 
with T cell activation that is absent in FcRγ-deficient mice (90). 
Furthermore, autoimmune-prone mouse-strains show a reduced 
expression of FcγRIIB, which is due to a promoter polymorphism 
in the Fcgr2 region (91). However, it needs to be considered that 
the FcRγ-chain is not only expressed by activating FcγRs but is 
also associated with a variety of other receptors, such as the T cell 
receptor (TCR)-CD3 (cluster of differentiation) complex, FcαR, 
FcεR, Nkp46, and IL3 (79, 92), when using the FcRγ knockout 
animals.

Human Fc receptors have a similar nomenclature and sign-
aling pathways, but possess different expression patterns and 
binding affinities. So far, six different FcγRs have been identified. 
The high-affinity receptor FcγRI and the low-affinity recep-
tors FcγRIIA, FcγRIIC, and FcγRIIIA are activating receptors, 
whereas FcγRIIB is inhibitory and the function of FcγRIIIB is yet 
unknown (93). The different IgG isotypes in humans are named 
IgG1, IgG2, IgG3, and IgG4, which bind to the different FcγRs in a 
concentration-dependent manner (94). Functionally, in humans 
IgG1 and IgG3 are the most pro-inflammatory IgG subclasses, 
whereas in mice IgG2a and IgG2b show a high inflammatory 
activity (78).

Taken together, humans and mice possess a similar repertoire 
of different FcγRs regarding their function and share common 
pathways. However, an important characteristic is the high rate 
of FcγR polymorphisms in humans (95), which affect binding 
affinities for IgG (94) and are associated with different kinds of 
autoimmune disease as well as immunological function (96).

immunomodulatory effects of ivig in 
Autoimmune Disease
Intravenous immunoglobulins are therapeutic preparations of 
polyclonal IgG, which are extracted from the plasma of thousands 
of donors. The different IgG subclasses are similarly distributed 
in IVIg preparations like in the blood of healthy individuals. 
Different mechanisms of action for IVIg in diseases models have 
been proposed. The Fc-mediated effects are most likely of major 
significance (97), which is supported by the fact that infusion of 
IgG preparations only containing the Fc fragment can protect 
mice as wells as humans from disease (98, 99). First of all IVIg 
can compete for activating FcγRs and, therefore, limit the access 
of activating ICs (100). In a similar manner, IVIg can inhibit 
complement deposition (101). The inhibitory receptor FcγRIIB 
seems to be essential for the protective effects, since protection by 

IVIg is lost in FcγRIIB-deficient mice and FcγRIIB is upregulated 
following IVIg treatment (88, 99). Mechanistically, FcγRIIB 
signaling can suppress B cell-mediated T cell-dependent immune 
responses (102). Specific intracellular adhesion molecule grab-
bing none-integrin receptor 1(SIGN-R1) and its human homolog 
dendritic cell-specific intracellular adhesion molecule-3 grabbing 
non-integrin, which is among others expressed by macrophages 
(103), have also been proposed to be important in IVIg function 
mediated by FcγRIIB. These two receptors can directly recognize 
specific sialic acid rich isoforms of IgG, which leads to an up to 
tenfold increase of effectiveness of IVIg (104) and induces a non-
inflammatory phenotype in a specialized subset of macrophages. 
Conversely, macrophage colony-stimulating factor 1 (M-CSF-1)-
deficient mice also loose IVIg protection, which might be due 
to a lack of M-CSF-1-dependent regulatory SIGN-R1 expressing 
macrophages (105). Furthermore, inhibition of BTK, a kinase 
downstream of FcγRs, whose activity is reduced upon FcγRIIB 
activation, leads to reduced mature IL-1β in the context of inflam-
mation (25), as well as preventing IL-1β, IL-17, IFNγ, and TNFα 
production upon FcγR stimulation (106).

Another proposed functional pathway is the ability of IVIg 
to neutralize anti-ideotypic antibodies in a F(ab)2 fragment-
dependent manner and, therefore, protect from disease (107). 
Other F(ab)2 fragment-dependent mechanisms include blockade 
of specific receptors, such as the Fas receptor via anti-Fas anti-
bodies (108), the binding of cytokines such as IL-5 as wells as 
granulocyte macrophage colony-stimulating factor (109) and 
the inhibition of TCR-mediated T  cell proliferation (110). In 
addition, IVIg do not only hemper T cell proliferation but can 
also influence the differentiation of T helper cells into Th17 cells 
via interference with the retinoic acid-related orphan receptor C 
(111) and can induce a shift toward a Th2 phenotype in childhood 
ITP and women with recurrent spontaneous abortion (112, 113). 
Furthermore, there is evidence that IVIgs increase the expression 
of IL-10 as wells as TGF-β in T regulatory cells (114) via specific 
epitopes in the Fc region of IgG (115). Interestingly, IVIg were 
also able to bind to peripheral blood T cells, which do not express 
FcγRs, through yet unknown receptors (116) and can reduce the 
production of inflammatory cytokines, such as IL-2, IL-3, IL-4, 
IL-5, IFNγ, and TNF in in vitro setting (117).

Taken together IVIg can act through a variety of different 
pathways. Apart from Fc and F(ab)2 fragment-dependent effects, 
IVIgs can either indirectly or even directly address cells that do 
not express FcγRs. The individual roles and mechanisms need to 
be explored individually in the different autoimmune diseases, 
also considering that there are probably joint effects.

FcγRs and ivig in Neurological Disease
Expression of FcγRs in the CNS
There is growing evidence for a pivotal role of Fc receptors in 
the pathophysiology of disorders of the CNS, but the existence 
of the distinct FcγRs within the cell types of the CNS are still not 
fully explored. Especially the functionality and expression profile 
of FcγRs in neurons remains controversial. Nevertheless, mRNA 
of all FcγRs has been found in primary mouse superior cervical 
ganglion cultures and an intracellular calcium increase upon 
stimulation with IgG could be detected (118). Considering that 
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FcγR signaling in immune cells causes an intracellular calcium 
increase via SYK and subsequent activation of BTK and PLCγ, 
it is conceivable that the same pathway is enabled in neurons. 
FcγRI has also been found on dorsal root ganglions, similarly 
causing intracellular calcium increase (119), whereas FcγRIII 
was expressed by primary neuronal cell cultures (120). FcγRIV 
could be detected in the hippocampal area and temporal cortex 
in mice brain (121). Likewise, the inhibitory receptor FcγRIIB 
is expressed by neurons (122) and has an important function in 
the cerebellum during development (123). Little is known about 
the regulation of these receptors in neurons, but elevated mRNA 
levels of all FcγRs could be found in response to an increase of 
intracerebral IgG in a model of experimental hypercholester-
olemia (121).

Microglia express all FcγRs (124) and their expression levels 
are upregulated in response to inflammation and cytokines, 
such as IFNγ, TNF, and IL-1β (125–128). Upon stimulation with 
monoclonal antibodies against the FcRγ-chains I, IIA, III, but not 
IIB human microglia can produce inflammatory cytokines such 
as macrophage inflammatory protein 1α (129). Furthermore, it 
could be shown that the expression of FcγRIV increases with age 
and upon lipopolysaccharide stimulation (130). An upregulation 
of all FcγRs in models of chronic neurodegeneration in response 
to inflammatory stimuli was also observed (131), whereas 
FcγRI and FcγRIIb were downregulated on microglia of AD 
patients after immunotherapy (132, 133). Apart from microglia, 
astrocytes and oligodendrocytes are also known to contribute 
to postischemic inflammation, but only limited data on the 
expression of FcRs are available in these cell types. Astrocytes 
have been reported to express FcγRI and FcγRIIB (134), whereas 
oligodendrocyte precursor cells (OPCs) express FcRγ as well as 
the alpha chain of FcγRI and FcγRIII (134). Stimulation with 
anti-FcRγ as well as IgG induces differentiation into myelinating 
oligodendrocytes, suggesting that FcγRs are expressed on cells of 
the oligodendrocytes lineage and are important for myelination. 
Conversely, the FcRγ mice show hypomyelination (135).

In summary, there is much evidence that all FcγRs are 
expressed in neurons, microglial as well as other glial cells of 
the CNS. Particularly the inhibitory receptor FcγRIIB could be 
found on all cell types. Their existence seems to be not exclusively 
important in immunological processes but also in the context of 
development of the CNS.

immunomodulatory effects of ivig  
in Neurological Disease
Intravenous immunoglobulins are established as a first-line 
therapy in a variety of neurological disease. They are used in the 
treatment of CIDP, Guillain–Barré syndrome (GBS), myasthenia 
gravis, and inflammatory myopathies as well as in autoimmune 
encephalitis and neuromyelitis optica (136, 137). CIDP, for exam-
ple, is a heterogeneous autoimmune-mediated inflammatory 
demyelinating disease of peripheral nerves and several clinical 
trials showed that IVIg are beneficial (138). The pathophysiol-
ogy of disease remains unknown; but in a subset of patients, it 
appears to be mediated by IgG-autoantibodies against myelin. 
IgG isolated from this group of patients was able to induce disease 

in rats (91), suggesting that IgG can play an important role in 
the development of CIDP. Furthermore, the NODmouse strain, 
which has a promoter polymorphism in the Fcgr2 region (139), 
can develop spontaneous autoimmune peripheral polyneuropa-
thy under certain circumstances (140, 141). Conversely, FcγRIIB 
expression is impaired in B  cells of patients with CIDP but is 
upregulated following IVIg treatment (142). Likewise, for GBS, 
another disease of the peripheral nervous system (PNS), IVIg 
represent an established therapeutic regime. In approximately 
50% of patients with the GBS, autoantibodies against gangliosides 
can be found (143). One of the proposed mechanisms of IVIg 
action in GBS as wells as CIDP is the presence of anti-ideotypic 
antibodies that are able to bind and neutralize pathogenic autoan-
tibodies (144). Another exemplary IgG-mediated neurological 
disorder is myasthenia gravis, in which autoantibodies against the 
acetylcholine receptor are produced in a T helper cell-dependent 
manner. Mechanistically, IVIg protection in myasthenia gravis is 
also most likely promoted by anti-ideotypic antibodies.

Apart from the efficacy to treat PNS affecting diseases, data 
for IVIg on diseases of the CNS is more controversial. Although 
beneficial effects and potential therapeutic pathways have been 
observed in the mouse model of MS (145) and AD, for example, 
translation into the human system remains difficult so far.  
A major limiting factor in the context of diseases of the CNS 
is the BBB, which controls access of IVIg to the brain. In the 
healthy brain, IgG is present in small amounts and is able to 
cross the BBB in a controlled manner through yet unknown 
mechanism. The clearance from the CNS is mediated by the 
FcRn (146), which is expressed by brain endothelial cells (147, 
148). In the context of inflammation, when the BBB is disrupted, 
IVIg are able to enter the brain in a less restricted manner. 
Accordingly, following administration of IVIg in a model of 
experimental stroke, increased intracerebral IgG was observed 
in the ischemic brain (147, 148). IVIg is also able to cross the 
intact BBB in a saturation-dependent process and were found 
to co-localize with neurons as well as endothelial cells (149). 
Interestingly, administration of IVIg reduced the amount of 
endogenous IgG in this model, suggesting a competition for 
brain access. A positive impact of IVIg on the integrity of the 
BBB has also been reported, since IVIg treatment was able to 
prevent BBB-breakdown in sepsis (150).

For MS, which is suggested to be primarily a T cell-mediated 
disease, there is experimental evidence from the experimental 
autoimmune encephalitis (EAE) model that treatment with IVIg 
is beneficial. It could be shown that IVIg decreased the produc-
tion of inflammatory cytokines such as IFNγ and TNF (144, 151) 
on one side and led to an expansion of peripheral T regulatory 
cells and subsequent suppression of conventional T helper cells 
in an Fc-fragment independent manner on the other side (152). 
Apart from the impact on the cells of the adaptive immunity, 
there is also evidence for a direct involvement of FcγRs. It could 
be shown that FcRγ-deficient mice develop milder EAE (89), 
although this effect was attributed to γδ T cells that use this chain 
in other receptors than the FcγR. In addition, the FcRγ can be 
detected on OPCs in remyelinating plaques in MS as well as on 
microglia in inactive plaques (153). Despite the beneficial action 
in the experimental setting, the effect of treatment in humans is 
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controversial. Some small studies were able to show protection, 
whereas a large multicentre, randomized, double-blind, placebo-
controlled trial failed to reproduce the previous results (154).

ivig iN ACUTe BRAiN iNJURY

Current Knowledge of Fc Receptors  
and ivig in Stroke
Only little is known about the role of FcγRs in the context of 
postischemic inflammation, but various experimental studies 
emphasize a promising therapeutic effect of IVIgs in the in vivo 
stroke model as well as in in vitro settings by reducing infarct size 
and improving neurological outcome. The direct mechanisms 
remain unknown so far. First of all, it could be shown in the 
MCAO model that the common γ-chain knockout, which lacks 
all activating FcγRs, is protected from stroke (155). Compared 
to WT mice, the common γ-chain-deficient mice showed sig-
nificant reduction of infarct volume at 24, 72 h, and 14 days after 
stroke as well as an improved neurological outcome after being 
subjected to 60 min of transient focal ischemia. Mechanistically, 
it was assumed that FcγRs are important for the activation of 
microglia and induction of the inducible nitric oxide synthase 
(iNOS). Hence, microglia of the common γ-chain KO mice 
expressed fewer ionized calcium-binding adapter molecule 1, a 
protein that is upregulated in microglia upon activation, as well 
as less iNOS in immunohistochemistry and on protein level.

In addition to the effects mediated by inhibition of the acti-
vating FcγRs, it was recently shown that IVIg treatment likewise 
protects the brain from ischemia-induced reperfusion injury and 
the subsequent inflammatory response. Administration of IVIg, 
3 h post reperfusion significantly reduced the amount of infiltrat-
ing leukocytes 24 h after MCAO, which were identified as CD45 
high cells in flow cytometry (156). In line with recent preclinical 
studies showing a beneficial effect of the α4-integrin-inhibitor 
natalizumab in experimental stroke, the reduction of infiltrating 
leukocytes by IVIg could be mediated in an α4-integrin-inhibitor-
dependent manner as it has been shown in the EAE model 
(157). Of note, this study concluded that IVIg treatment is even 
detrimental in stroke, since they found more leukocytes occupy-
ing pial vessels, which is thought to be due to platelet-mediated 
pro-adhesive effects. Still, it needs to be considered that they did 
not examine the actual number of infiltrating cells.

Furthermore, IVIg treatment of primary neuronal cultures 
subjected to oxygen and glucose deprivation, an in vitro model 
of ischemic stroke, inhibited upregulation of TLR2, TLR4, and 
TLR8 (158). These findings could also be reproduced in  vivo 
where IVIg administration after transient MCAO significantly 
reduced ischemia-induced upregulation of TLR2, TLR4, and 
TLR8. The authors also observed an IVIg-dependent suppres-
sion of HMGB1-mediated TLR activation, which is released by 
dying cells as a danger signal in the context of ischemic stroke. In 
addition, it was found that IVIg attenuated the ischemia-induced 
increase of complement factor C3b, which is known to contrib-
ute to ischemic injury (159) and among others upregulates the 
intracellular adhesion molecule 1 (ICAM-1) in vivo and in vitro. 
In line with these findings, IVIg also specifically affect endothelial 

cells and diminish the upregulation of VCAM-1 and ICAM-1 in 
in vitro settings (160).

Another immunomodulatory IVIg mechanism includes the 
suppression of the NLPR1 and NLPR3 inflammasome-mediated 
neuronal cell death (24, 25). Treatment of primary neuronal 
cultures with IVIg subjected to simulated ischemia as well as 
mice subjected to MCAO, reduced levels of inflammasome com-
ponents such as NLRP1, NLRP3, and apoptosis-associated speck-
like protein containing a caspase recruitment domain (ACS). 
This, in turn, led to a reduction of caspase-1 and mature IL-1β as 
well as IL-18. Moreover, it was shown that selective inhibition of 
BTK with ibrutinib, whose activity is reduced after engagement 
of the inhibitory receptor FcγRIIB, diminishes ischemic injury 
by decreasing inflammasome NLPR3 activity and, therefore, 
conversion of pro-IL-1β (25). Conversely, the inhibition of SYK, 
a kinase upstream of BTK was also able to decrease lesion size in 
the MCAO model (161). Interestingly, IVIg protection in other 
autoimmune disease is lost in M-CSF-1-deficient (op/op) mice. 
Apart from an enormous reduction of microglia proliferation, 
these M-CSF-1-deficient mice show an enhanced sensitivity to 
ischemia-induced neuronal injury and cell death (162). M-CSF-1 
overexpression, in turn, leads to microglia proliferation, which 
does not show a difference in phenotype regarding the M1/M2 
model, but shows altered immune responses (163). Importantly, 
M-CSF-1 treatment of mice subjected to MCAO decreases infarct 
size (162) and the presence of M-CSF-1-dependent macrophages 
correlates with an increased expression of FcγRIIB (164).

Apart from ameliorating the inflammatory response after 
stroke the protective capacity of IVIg includes the induction of 
neuroprotective pathways. For instance, neuronal structure was 
more intact and had less ischemia-associated alterations on a 
histopathological level in IVIg-treated rats (165). IVIg treatment 
of primary neuronal cultures subjected to simulated ischemia 
for 12 h significantly reduced protein levels of factors involved 
in neuronal cell death like the phospho-SAPK c-Jun NH2-
terminal kinase (p-JNK) and phospho-p65 NFκB and inhibited 
the loss of the neuronal marker microtubulin associated protein 
2 (MAP2) (147, 158). These findings could be confirmed by 
immunoblots and immunohistochemistry, respectively, in  vivo 
in the transient MCAO model. Furthermore, IVIg could prevent 
simulated ischemia-induced endothelial disintegration in a 
brain endothelial cell line and increased the protective protein 
B-cell lymphoma 2 produced by these endothelial cells as well as 
by neurons (156). In line with these findings it could be shown 
that ischemia-induced decrease and reduced phosphorylation 
of low-density lipoprotein receptor-related protein 1, which is 
abundantly expressed by neurons, can be inhibited by IVIgs and, 
subsequently, prevents activation of cell death signaling proteins 
as NFκB and p-JNK (166).

Apart from the already described pathways, there are multiple 
other conceivable mechanism how IVIg facilitate protection in 
the context of ischemic stroke (Figure  3). They could inhibit 
complement deposition and induce a regulatory phenotype in 
macrophages in an Fc-fragment manner, as well as targeting 
the inhibitory receptor FcγRIIB, subsequently supressing T cell-
mediated immune responses. Similary, the production of inflam-
matory cytokines, such as IL-1β and TNFα, could be diminished 
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in FcγRs expressing cells. In addition, the F(ab)2 fragment could 
block receptors such as Fas (167) or inhibit TCR-mediated T cell 
proliferation. Also indirect effect such as increased IL-10 and 
TGF-β expression as well as a reduced production of inflam-
matory cytokine by T cells need to be considered. Ultimately, it 
remains unsolved wheter IVIg primarily operate via the Fc or 
F(ab)2 fragment, or if indirect mechanisms such as T cell inhibi-
tion predominate.

ivig in Other Models of Acute CNS- and 
ischemia-Reperfusion injury
Besides experimental evidence for positive IVIg effects in pos-
tischemic inflammation, there are other models of acute CNS 
injury in which IVIg have been shown to be beneficial. Similar to 
inflammatory processes following ischemic stroke, neuroinflam-
mation exacerbates the tissue damage in acute spinal cord trauma 
(168). Accordingly, several hallmarks of sterile inflammation 
have been observed following trauma: (i) microglia activation; 
(ii) upregulation of proinflammatory cytokines, including IL-1β, 
TNFα, and IL-6 as well as ROS and MMP-9; and (iii) infiltration of 
neutrophils, monocytes, and lymphocytes. The importance of the 
local inflammation is underlined by studies showing that immu-
nosuppressive treatment approaches with steroids have favorable 
effect on functional outcome. Nevertheless, the disadvantage of 
unspecific immunosuppressive agents is demonstrated by studies 
showing an increased risk of infection following steroid treatment 
in models of traumatic spinal cord injury. Consequently, more 
specific immunomodulatory treatment strategies are needed. The 
feasibility of immunmodulatory treatments in acute spinal cord 
injury was recently demonstrated by Gok et al. (169), describing 

that the treatment with IgG had significant beneficial effects on 
motor function in a rat model. Furthermore, electron microscopy 
revealed a significant decrease of intraneuronal vacuoles, as an 
indicator for more preserved neuronal ultrastructure. Another 
study on IgG in acute spinal cord injury also showed reduced scar 
formation and tissue preservation on a histopathological level 
(170). In addition, the authors detected a reduction in proinflam-
matory cytokines, such as TNFα, IL-1β, and IL-6 as well as MMP9, 
and showed that the IgG is able to enter the injured spinal cord 
while it mainly co-localized to astrocytes. Furthermore, protective 
IVIg effects were associated with reduced numbers of infiltrating 
neutrophils as wells as a diminished MPO activity. Overall, the 
reduction of inflammation showed improved functional recovery 
assessed by neurobehavioral test as well as significantly enhanced 
conduction velocity in electrophysiological measurements.

Sterile inflammation is also a well-known feature after 
traumatic brain injury (171). As a consequence of the initial 
trauma a tremendous release of DAMPs can be observed, which 
induced production of proinflammatory cytokines and infiltra-
tion of various immune cells. Incidentally, it was found that IgG 
significantly improved motor test scores compared to saline and 
reduced MPO activity, as it was used as an additional vehicle 
control in a study investigating the effect of ICAM-1 blockage in 
traumatic brain injury (172). Furthermore, it could be shown that 
IVIg treatment stabilized the BBB and reduced edema formation 
(173). These effects were accompanied by reduced amounts of 
IL-6 upon IVIg administration as well as less infiltrating mac-
rophages and increased neuronal density. Moreover, endothelial 
protection by IVIg was detected in a model of subarachnoidal 
hemorrhage (174).
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Intravenous immunoglobulin have also been investigated in 
other models of ischemia-reperfusion injury and a protective 
effect on the evolving inflammatory cascades has been observed. 
In mesenteric ischemia, a condition that can be associated with 
hypovolaemic shock, sepsis, and cardiac arrest (175), pretreat-
ment with IVIg reduced complement-mediated tissue damage 
(176). IVIg also significantly reduced mucosal injury on a histo-
pathological level and diminished C3 deposition in the intestinal 
mucosa. Interestingly, the number of infiltrating leukocytes was 
not altered by IVIg administration. Similarly, in a model of liver 
ischemia, sinusoidal congestion and cytoplasmatic vacuolation 
were diminished in IVIg-treated mice (177). These effects were 
associated with a reduced mortality in the IVIg-treated group. 
Taken together, there are multiple pieces of evidence from 
experimental studies that IVIg have significant protective effects 
on acute injuries of the CNS and other organs, in which sterile 
inflammation is part of the pathology.

implications for the Clinical Use of ivig  
in Acute Brain injury
Reflecting the available preclinical data on IVIg in acute brain 
injury, it seems promising to also use IVIg in a clinical setting. 
However, possible rheologic disadvantages need to be considered. 
It does not appear intuitively that an agent, which could possibly 
deteriorate perfusion due to the high viscosity, is suitable to treat 
diseases with reduced blood flow and impairment of microcircu-
lation. Indeed, IVIg-related thrombosis has been described in the 
literature sporadically (178). Nevertheless, the positive impact of 
IVIg seems to predominate these negative effects. Overall, these 
drawbacks might be overcome in future studies, if specific thera-
peutic effects can be attributed to single IVIg fractions, thereby 
allowing to reduce the necessary dosage.

Considering that peripheral immunosuppression and an 
increased risk of urinary tract as well as upper airway infec-
tions is a common epiphenomenon after stroke IVIg treatment 
shows another promising potential. Apart from reducing the 
inflammatory reactions after stroke, IVIg administration could 
also compensate for the transient decrease of IgG after stroke 
(41) and possibly reduce the risk of infections that deteriorates 
the outcome of stroke patients. In line with this assumption,  
it could be shown that IVIg can even enhance microbial-specific 
immune responses in preterm infants (179) and do not increase 
mortality in sepsis (180). One clinical trial exploring the effect 

of IVIg in human stroke was already initiated (clinicaltrials.
gov NCT01628055), but had to be stopped due to difficulties in 
patient recruitment.

CONCLUSiON

Taken together, there is growing evidence that the rapid activation 
of the immune system in response to acute sterile tissue damage 
can be detrimental for the affected organ. Particularly, posti-
schemic inflammation following stroke has been investigated 
extensively and multiple preclinical studies emphasize beneficial 
IVIg effects in models of acute brain injury, i.e., ischemic stroke, 
spinalcord, and traumatic brain injury. The already established 
use of IVIg in various neurological diseases is a major advantage. 
Furthermore, available data suggest that IVIg are specifically 
modulating harmful inflammatory processes, without relevant 
immunosuppressive side effects.

In general, IVIg exert protective effects in autoimmune disease 
via multiple mechanisms. Similarly, in acute brain injury, it is most 
likely that IVIg protection is mediated by the interaction with 
different targets concomitantly, which merge to a mutual effect. 
In this context, immunomodulatory pathways are among the 
most promising candidates. IVIg can target microglia as resident 
immune cells of the CNS as well as immune cells from the systemic 
immune compartment and endothelial cells. Furthermore, it is 
important to mention that IVIg can stabilize the BBB and even 
facilitate direct neuroprotection. Eventually, it currently remains 
concealed if IVIg effects are Fc or F(ab)2 fragment dependent and 
if IVIg can modulate cells indirectly, which are not expressing 
Fc receptors in this context. Although the currently existing data 
are promising, further research is needed to gain more insight 
into protective IVIg-dependent mechanisms and to explore the 
therapeutic potential of IVIg in acute brain injury.
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