

Received 7 September 2016 Accepted 18 September 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; imidazo[2,1b][1,3,4]thiadiazole; hydrogen bonding; C— $H \cdots \pi$ interactions.

CCDC reference: 1504989

Supporting information: this article has supporting information at journals.iucr.org/e

The crystal structure of 6-(4-chlorophenyl)-2-(4methylbenzyl)imidazo[2,1-*b*][1,3,4]thiadiazole-5carbaldehyde

A. Sowmya,^a G. N. Anil Kumar,^a* Sujeet Kumar^b and Subhas S. Karki^b

^aDepartment of Physics, M. S. Ramaiah Institute of Technology, Bangalore, India, and ^bDepartment of Pharmaceutical Chemistry, KLE University's College of Pharmacy, Bangalore 560 010, India. *Correspondence e-mail: anilgn@msrit.edu

In the title imidazo[2,1-*b*][1,3,4]thiadiazole derivative, $C_{19}H_{14}ClN_3OS$, the 4-methylbenzyl and chlorophenyl rings are inclined to the planar imidazo-[2,1-*b*][1,3,4]thiadiazole moiety (r.m.s. deviation = 0.012 Å) by 64.5 (1) and 3.7 (1)°, respectively. The molecular structure is primarily stabilized by a strong intramolecular C-H···O hydrogen bond, leading to the formation of a pseudo-seven-membered *S*(7) ring motif, and a short intramolecular C-H···N contact forming an *S*(5) ring motif. In the crystal, molecules are linked by pairs of C-H···S hydrogen bonds, forming inversion dimers. The dimers are linked by C-H···O and C-H··· π interactions, forming chains propagating along [110].

1. Chemical context

The search for potential drugs to fight cancer and the design of molecules with limited side effects, particularly to the immune system, is an emerging area of research. Imidazo[2,1-*b*][1,3,4]-thiadiazole derivatives have been reported for their promising biological activities, and the most recent studies indicate their potential as antitumor agents (Karki *et al.*, 2011). However, active heterocyclic pharmacophores particularly at position 5 of the imidazo[2,1-*b*][1,3,4]thiadiazole moiety have shown significant activities; substitution of aldehydes at the 5-position resulted in an improvement of their anticancer activity (Kumar *et al.*, 2014), whereas a substituted phenyl group enhanced the anti-tubercular activity (Ramprasad *et al.*, 2015). In view of the above, we report herein on the synthesis and crystal structure of title imidazo[2,1-*b*][1,3,4]thiadiazole derivative.

OPEN 🗑 ACCESS

2. Structural commentary

The molecular structure of the title compound is illustrated in Fig. 1. The carbaldehyde group is coplanar with the imidazothiadiazole ring system and cis to the chlorophenyl ring. Bond C12=O1 is cis to the C13-C14 bond, which favours the formation of an intramolecular C15-H15...O1 hydrogen bond (Table 1). The imidazole and thiadiazole rings show different π conjugations, resulting from their fused nature and also due to the groups attached to them. This is evident from the differences in the bond lengths S1-C9 [1.772 (4) Å] and S1-C10 [1.724 (2) Å] of the thiadiazole ring, indicating that the resonance effect caused by the imidazole ring is stronger than that caused by the thiadiazole ring. As a result, the imidazole system is more resonance stabilized. Additionally, the imidazothiadiazole moiety is planar and rigid with maximum deviations of 0.0182(2) and -0.0078(3) Å for atoms N2 and C13, respectively, from the mean plane. The 4chlorophenyl ring makes a dihedral angle of 3.7 $(1)^{\circ}$, whereas the 4-methylbenzyl ring is inclined at an angle of $64.5 (1)^{\circ}$ with respect to the mean plane of the imidazothiadiazole ring system. The molecular structure is primarily stabilized by the strong intramolecular C15-H15···O1 hydrogen bond, leading to the formation of a pseudo-seven-membered hydrogen-bonded S(7) ring motif, and an intramolecular C19-H19···N3 interaction forming an S(5) ring motif, thus locking the molecular conformation and eliminating conformational flexibility (Fig. 1 and Table 1).

3. Supramolecular features

In the crystal, the solid-state structure is stabilized primarily by a pair of C-H···S hydrogen bonds, forming inversion dimers (Table 1 and Fig. 2). These dimers are linked by pairs of C-H···O hydrogen bonds and C-H··· π interactions, forming chains propagating along [110]. There are no halogen interactions involving the chlorine atom, and no aromatic π - π stacking interactions present.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom *et al.*, 2016) gave

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at 50% probability level. The intramolecular interactions are shown as dashed lines (see Table 1).

Table 1	
Hydrogen-bond geometry (Å, °).	

Cg is the centroid of the C2-C7 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C15-H15···O1	0.93	2.20	3.047 (3)	151
C19−H19···N3	0.93	2.42	2.788 (3)	103
$C19-H19\cdots S1^{i}$	0.93	2.83	3.733 (2)	165
C6-H6···O1 ⁱⁱ	0.93	2.46	3.384 (3)	170
$C18-H18\cdots Cg^{i}$	0.93	2.92	3.648 (12)	136

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 2, -z.

55 hits for molecules containing the imidazo[2,1-*b*][1,3,4]thiadiazole moiety. A search for 2-benzyl-6-phenylimidazo[2,1-*b*][1,3,4]thiadiazoles gave ten hits, and five of these compounds contain a 6-phenylimidazo[2,1-*b*][1,3,4]thiadiazole-5-carbaldehyde moiety. It is interesting to note that the aldehyde group generally accepts a hydrogen bond, and that the *para*-substituted halogens do not generate any significant weak interactions in the crystal packing, except for a $C-H\cdots F$ interaction in 2-(4-fluorobenzyl)-6-phenylimidazo[2,1-*b*][1,3,4]thiadiazole-5-carbaldehyde (OWIFAC; Banu *et al.*, 2010), the 4-fluorobenzyl analogue of the title compound.

5. Synthesis and crystallization

The title compound was obtained according to a reported procedure (Kumar *et al.*, 2014). The Vilsmeier reagent was prepared at 273–278 K by adding dropwise phosphorous oxychloride (2.3 g, 15 mmol) into a stirred solution of DMF (10 ml). The 6-(4-chlorophenyl)-2-(4-methylbenzyl) imidazo-[2,1-*b*][1,3,4]thiadiazole (4 mmol) was added slowly to the Vilsmeier reagent with stirring and cooling for 2 h. Further stirring was continued for 6 h at 353–363 K. The reaction

Figure 2

A view along the a axis of the crystal packing of the title compound. The intermolecular interactions are shown as dashed lines (see Table 1) and, for clarity, H atoms not involved in these interactions have been omitted.

research communications

mixture was then poured into 100 ml of water. The precipitate obtained was filtered, and neutralized with a cold aqueous solution of sodium carbonate. The solid obtained was filtered, washed with water and dried. Single crystals were obtained by slow evaporation of a solution in ethanol/DMF (2:1 v:v).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically, with N-H = 0.86 Å and C-H = 0.93–0.96 Å, and constrained to ride on their parent atoms with $U_{\rm iso}({\rm H})$ = $1.5U_{\rm eq}({\rm C-methyl})$ and $1.2U_{\rm eq}({\rm C,N})$ for other H atoms.

Acknowledgements

The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science and DST India, for the data collection on the CCD facility. GNA thanks MSRIT for encouragement.

References

- Banu, A., Lamani, R. S., Khazi, I. M. & Begum, N. S. (2010). Mol. Cryst. Liq. Cryst. 533, 141–151.
- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Karki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). *Eur. J. Med. Chem.* 46, 2109–2116.
- Kumar, S., Hegde, M., Gopalakrishnan, V., Renuka, V. K., Ramareddy, S. A., De Clercq, E., Schols, D., Gudibabande Narasimhamurthy, A. K., Raghavan, S. C. & Karki, S. S. (2014). *Eur. J. Med. Chem.* 84, 687–697.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	C ₁₉ H ₁₄ ClN ₃ OS
M _r	367.84
Crystal system, space group	Triclinic, P1
Temperature (K)	296
a, b, c (Å)	5.6138 (18), 9.018 (2), 16.514 (5)
α, β, γ (°)	80.533 (13), 87.519 (14), 83.353 (14)
$V(\dot{\Lambda}^3)$	818 0 (A)
7 (A)	2
L Rediction type	
(mm^{-1})	0.27
μ (IIIII) Crustel size (mm)	0.37 0.20 × 0.15 × 0.10
Crystal size (mm)	$0.20 \times 0.13 \times 0.10$
Data collection	
Diffractometer	Bruker SMART CCD area- detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2012)
T_{\min}, T_{\max}	0.941, 0.971
No. of measured, independent and	12059, 2966, 2530
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.059
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.606
(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.110, 1.05
No. of reflections	2966
No. of parameters	228
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.40, -0.26

Computer programs: SMART and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), CAMERON (Watkin et al., 1996), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

- Ramprasad, J., Nayak, N., Dalimba, U., Yogeeswari, P., Sriram, D., Peethambar, S. K., Achur, R. & Kumar, H. S. S. (2015). *Eur. J. Med. Chem.* **95**, 49–63.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, Oxford, England.

supporting information

Acta Cryst. (2016). E72, 1460-1462 [doi:10.1107/S2056989016014754]

The crystal structure of 6-(4-chlorophenyl)-2-(4-methylbenzyl)imidazo[2,1-*b*] [1,3,4]thiadiazole-5-carbaldehyde

A. Sowmya, G. N. Anil Kumar, Sujeet Kumar and Subhas S. Karki

Computing details

Data collection: *SMART* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *CAMERON* (Watkin *et al.*, 1996) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

6-(4-Chlorophenyl)-2-(4-methylbenzyl)imidazo[2,1-b][1,3,4]thiadiazole-5-carbaldehyde

Crystal data

C₁₉H₁₄CIN₃OS $M_r = 367.84$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.6138 (18) Å b = 9.018 (2) Å c = 16.514 (5) Å $\alpha = 80.533$ (13)° $\beta = 87.519$ (14)° $\gamma = 83.353$ (14)° V = 818.9 (4) Å³

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{\min} = 0.941, T_{\max} = 0.971$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.110$ S = 1.052966 reflections 228 parameters Z = 2 F(000) = 380 $D_x = 1.492 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1890 reflections $\theta = 3.3-26.4^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.20 \times 0.15 \times 0.10 \text{ mm}$

12059 measured reflections 2966 independent reflections 2530 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 1.3^{\circ}$ $h = -6 \rightarrow 6$ $k = -11 \rightarrow 11$ $l = -20 \rightarrow 20$

0 restraints Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.289P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta \rho_{\text{max}} = 0.40 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.26 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015) Extinction coefficient: 0.015 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.13628 (9)	0.55026 (6)	0.09398 (3)	0.01783 (18)
C11	0.76563 (10)	1.05603 (6)	-0.41113 (3)	0.02857 (19)
01	-0.2181 (3)	1.11191 (15)	-0.14801 (9)	0.0188 (4)
N1	-0.2122 (3)	0.76902 (19)	0.06190 (10)	0.0169 (4)
N2	-0.0436 (3)	0.77957 (18)	-0.00135 (10)	0.0149 (4)
N3	0.3040 (3)	0.69994 (18)	-0.05952 (10)	0.0158 (4)
C1	0.2608 (4)	0.3316 (3)	0.48434 (13)	0.0254 (5)
H1A	0.3880	0.3909	0.4910	0.038*
H1B	0.3278	0.2319	0.4766	0.038*
H1C	0.1580	0.3249	0.5325	0.038*
C2	0.1165 (4)	0.4061 (2)	0.41000 (12)	0.0182 (5)
C3	-0.0867 (4)	0.3460 (2)	0.38955 (13)	0.0194 (5)
Н3	-0.1379	0.2620	0.4234	0.023*
C4	-0.2144 (4)	0.4091 (2)	0.31943 (12)	0.0170 (5)
H4	-0.3490	0.3668	0.3070	0.020*
C5	-0.1425 (4)	0.5349 (2)	0.26779 (12)	0.0164 (5)
C6	0.0587 (4)	0.5973 (2)	0.28907 (13)	0.0187 (5)
H6	0.1082	0.6825	0.2559	0.022*
C7	0.1852 (4)	0.5335 (2)	0.35916 (13)	0.0183 (5)
H7	0.3182	0.5768	0.3722	0.022*
C8	-0.2861 (4)	0.6024 (2)	0.19192 (13)	0.0202 (5)
H8A	-0.3853	0.5279	0.1800	0.024*
H8B	-0.3928	0.6887	0.2045	0.024*
C9	-0.1409 (4)	0.6527 (2)	0.11621 (12)	0.0171 (5)
C10	0.1526 (4)	0.6762 (2)	0.00375 (12)	0.0159 (5)
C11	-0.0221 (4)	0.8823 (2)	-0.07365 (12)	0.0152 (4)
C12	-0.2119 (4)	1.0071 (2)	-0.09103 (13)	0.0174 (5)
H12	-0.3429	1.0065	-0.0545	0.021*
C13	0.1975 (4)	0.8283 (2)	-0.10865 (12)	0.0153 (5)
C14	0.3268 (4)	0.8852 (2)	-0.18484 (12)	0.0157 (4)
C15	0.2369 (4)	1.0111 (3)	-0.24086 (13)	0.0242 (5)
H15	0.0863	1.0608	-0.2313	0.029*
C16	0.3697 (4)	1.0622 (3)	-0.31028 (14)	0.0257 (5)
H16	0.3084	1.1459	-0.3471	0.031*
C17	0.5944 (4)	0.9882 (2)	-0.32487 (13)	0.0198 (5)
C18	0.6866 (4)	0.8621 (2)	-0.27129 (13)	0.0185 (5)

supporting information

H18	0.8365	0.8122	-0.2816	0.022*
C19	0.5524 (4)	0.8117 (2)	-0.20223 (13)	0.0171 (5)
H19	0.6135	0.7266	-0.1663	0.021*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S 1	0.0166 (3)	0.0178 (3)	0.0168 (3)	0.0008 (2)	-0.0021 (2)	0.0024 (2)
Cl1	0.0260 (4)	0.0312 (3)	0.0236 (3)	0.0007 (2)	0.0075 (2)	0.0052 (2)
01	0.0177 (8)	0.0161 (8)	0.0209 (8)	0.0003 (6)	-0.0028 (6)	0.0018 (6)
N1	0.0156 (10)	0.0195 (9)	0.0147 (9)	-0.0018 (7)	-0.0001 (7)	-0.0003 (7)
N2	0.0126 (10)	0.0169 (9)	0.0148 (9)	-0.0014 (7)	-0.0014 (7)	-0.0011 (7)
N3	0.0155 (10)	0.0146 (9)	0.0160 (9)	-0.0001 (7)	-0.0027 (7)	0.0002 (7)
C1	0.0276 (14)	0.0288 (12)	0.0171 (11)	0.0048 (10)	-0.0011 (10)	-0.0007 (9)
C2	0.0189 (12)	0.0200 (11)	0.0138 (10)	0.0065 (8)	0.0032 (9)	-0.0037 (8)
C3	0.0230 (13)	0.0156 (11)	0.0169 (11)	0.0009 (8)	0.0053 (9)	0.0013 (8)
C4	0.0155 (12)	0.0185 (11)	0.0171 (11)	-0.0013 (8)	0.0027 (9)	-0.0044 (8)
C5	0.0141 (12)	0.0188 (11)	0.0146 (10)	0.0026 (8)	0.0008 (8)	-0.0014 (8)
C6	0.0172 (12)	0.0172 (11)	0.0198 (11)	-0.0003 (8)	0.0041 (9)	0.0003 (9)
C7	0.0143 (12)	0.0217 (11)	0.0191 (11)	0.0002 (8)	0.0000 (9)	-0.0051 (9)
C8	0.0140 (12)	0.0238 (12)	0.0205 (11)	-0.0014 (8)	-0.0010 (9)	0.0026 (9)
C9	0.0148 (12)	0.0197 (11)	0.0169 (11)	-0.0012 (8)	-0.0045 (9)	-0.0024 (8)
C10	0.0151 (12)	0.0140 (10)	0.0183 (11)	-0.0002 (8)	-0.0033 (9)	-0.0022 (8)
C11	0.0162 (12)	0.0165 (10)	0.0123 (10)	-0.0026 (8)	-0.0017 (8)	0.0006 (8)
C12	0.0132 (12)	0.0197 (11)	0.0197 (11)	-0.0016 (8)	-0.0012 (9)	-0.0044 (9)
C13	0.0143 (11)	0.0153 (10)	0.0165 (11)	-0.0008 (8)	-0.0062 (8)	-0.0024 (8)
C14	0.0166 (12)	0.0156 (10)	0.0157 (10)	-0.0027 (8)	-0.0027 (8)	-0.0038 (8)
C15	0.0180 (13)	0.0289 (13)	0.0216 (12)	0.0060 (9)	0.0020 (9)	0.0015 (10)
C16	0.0210 (13)	0.0272 (12)	0.0227 (12)	0.0059 (9)	-0.0001 (10)	0.0079 (9)
C17	0.0212 (13)	0.0228 (11)	0.0149 (11)	-0.0023 (9)	0.0003 (9)	-0.0015 (9)
C18	0.0157 (12)	0.0181 (11)	0.0212 (11)	0.0027 (8)	0.0010 (9)	-0.0049 (9)
C19	0.0181 (12)	0.0133 (10)	0.0193 (11)	0.0007 (8)	-0.0033 (9)	-0.0017 (8)

Geometric parameters (Å, °)

S1—C10	1.724 (2)	C5—C8	1.521 (3)	
S1—C9	1.772 (2)	C6—C7	1.390 (3)	
Cl1—C17	1.749 (2)	С6—Н6	0.9300	
O1—C12	1.218 (2)	C7—H7	0.9300	
N1-C9	1.299 (3)	C8—C9	1.498 (3)	
N1—N2	1.378 (2)	C8—H8A	0.9700	
N2-C10	1.355 (3)	C8—H8B	0.9700	
N2-C11	1.395 (3)	C11—C13	1.408 (3)	
N3—C10	1.323 (3)	C11—C12	1.458 (3)	
N3—C13	1.389 (2)	C12—H12	0.9300	
C1—C2	1.518 (3)	C13—C14	1.472 (3)	
C1—H1A	0.9600	C14—C19	1.401 (3)	
C1—H1B	0.9600	C14—C15	1.400 (3)	

supporting information

C1—H1C	0.9600	C15—C16	1.383 (3)
$C^2 - C^7$	1 390 (3)	C15—H15	0.9300
$C^2 - C^3$	1 395 (3)	C_{16} $-C_{17}$	1 388 (3)
$C_3 - C_4$	1 393 (3)	C16—H16	0.9300
C3—H3	0.9300	C17-C18	1.384(3)
C4-C5	1 391 (3)	C18 - C19	1.301(3) 1.382(3)
C4—H4	0.9300	C18—H18	0.9300
C_{5}	1 401 (3)	C10 H10	0.9300
05-00	1.401 (3)	C19—1119	0.9500
C10—S1—C9	87.97 (10)	H8A—C8—H8B	107.5
C9—N1—N2	108.08 (16)	N1—C9—C8	122.86 (19)
C10—N2—N1	118.52 (17)	N1—C9—S1	116.07 (16)
C10—N2—C11	108.08 (17)	C8—C9—S1	121.03 (15)
N1—N2—C11	133.36 (17)	N3—C10—N2	113.00 (18)
C10—N3—C13	104.36 (16)	N3-C10-S1	137.61 (15)
C2-C1-H1A	109.5	N2-C10-S1	109.37 (15)
C2-C1-H1B	109.5	N2-C11-C13	103.37 (17)
H1A—C1—H1B	109.5	N2-C11-C12	117 73 (19)
$C_2 - C_1 - H_1C$	109.5	C_{13} C_{11} C_{12}	138 89 (19)
HIA-CI-HIC	109.5	01-C12-C11	1272(2)
H1B-C1-H1C	109.5	01-C12-H12	116.4
C7-C2-C3	117 96 (19)	C11—C12—H12	116.4
C7-C2-C1	121 3 (2)	N3-C13-C11	111 17 (18)
C_{3} C_{2} C_{1}	121.3(2) 120.7(2)	N3-C13-C14	117 41 (18)
$C_2 - C_3 - C_4$	120.7(2) 121.3(2)	$C_{11} - C_{13} - C_{14}$	131 42 (18)
C2C3H3	119.4	C19 - C14 - C15	117 89 (19)
$C_2 = C_3 = H_3$	119.4	C19 - C14 - C13	118.83 (18)
$C_{5} - C_{4} - C_{3}$	120.6 (2)	$C_{15} - C_{14} - C_{13}$	123 27 (19)
$C_5 - C_4 - H_4$	110 7	C_{16} C_{15} C_{14} C_{15} C_{14}	120.7(1)
$C_3 - C_4 - H_4$	119.7	C16-C15-U14	119.6
C4-C5-C6	119.7	C_{14} C_{15} H_{15}	119.6
$C_4 = C_5 = C_6$	110.10(1)	C_{15} C_{16} C_{17}	119.0 110.0(2)
$C_{4} - C_{5} - C_{8}$	119.00(19) 122.20(10)	$C_{15} = C_{16} = C_{17}$	119.9 (2)
$C_{0} = C_{0} = C_{0}$	122.20(1)) 120.8(2)	C17 C16 H16	120.1
C7 C6 H6	110.6	$C_{17} = C_{10} = 110$	120.1 120.8(2)
$C_{1} = C_{0} = H_{0}$	119.0	$C_{18} = C_{17} = C_{10}$	120.8(2)
$C_{2} = C_{7} = C_{6}$	119.0	$C_{16} = C_{17} = C_{11}$	119.38 (17)
$C_2 = C_7 = U_7$	121.1(2)	$C_{10} = C_{17} = C_{17}$	119.84(10)
$C_2 = C_7 = H_7$	119.4	$C_{19} = C_{18} = C_{17}$	110.9 (2)
$C_0 = C_2 = C_2$	117.4	$C_{17} = C_{18} = H_{18}$	120.5
C_{9}	115.50 (16)	C17 - C18 - C18	120.3 121.70(10)
$C_{2} = C_{2} = H_{2}$	108.4	C18 - C19 - C14	121.79 (19)
$C_0 = C_0 = H^{0}D$	100.4	$C_{10} = C_{19} = \overline{C_{10}} $	119.1
	100.4	С14—С19—П19	119.1
Сэ—Со—пор	100.4		
C9—N1—N2—C10	-0.5 (2)	C9—S1—C10—N2	-0.02 (15)
C9—N1—N2—C11	-177.9(2)	C10—N2—C11—C13	0.5 (2)
C7—C2—C3—C4	1.4 (3)	N1—N2—C11—C13	178.12 (18)

C1—C2—C3—C4	-177.03 (18)	C10—N2—C11—C12	-178.46 (17)
C2—C3—C4—C5	-0.2 (3)	N1—N2—C11—C12	-0.9 (3)
C3—C4—C5—C6	-1.1 (3)	N2-C11-C12-O1	175.43 (19)
C3—C4—C5—C8	-179.56 (19)	C13-C11-C12-O1	-3.1 (4)
C4—C5—C6—C7	1.1 (3)	C10—N3—C13—C11	0.1 (2)
C8—C5—C6—C7	179.56 (19)	C10—N3—C13—C14	179.35 (17)
C3—C2—C7—C6	-1.4 (3)	N2-C11-C13-N3	-0.4 (2)
C1—C2—C7—C6	177.07 (19)	C12-C11-C13-N3	178.2 (2)
C5—C6—C7—C2	0.1 (3)	N2-C11-C13-C14	-179.49 (19)
C4—C5—C8—C9	-139.6 (2)	C12-C11-C13-C14	-0.8 (4)
C6—C5—C8—C9	41.9 (3)	N3-C13-C14-C19	-2.5 (3)
N2—N1—C9—C8	-177.12 (17)	C11—C13—C14—C19	176.5 (2)
N2—N1—C9—S1	0.5 (2)	N3—C13—C14—C15	178.33 (18)
C5-C8-C9-N1	-146.1 (2)	C11—C13—C14—C15	-2.7 (3)
C5—C8—C9—S1	36.4 (3)	C19—C14—C15—C16	-1.1 (3)
C10—S1—C9—N1	-0.27 (17)	C13—C14—C15—C16	178.0 (2)
C10—S1—C9—C8	177.37 (18)	C14—C15—C16—C17	0.0 (4)
C13—N3—C10—N2	0.2 (2)	C15—C16—C17—C18	0.9 (3)
C13—N3—C10—S1	-178.12 (18)	C15—C16—C17—Cl1	-178.23 (18)
N1—N2—C10—N3	-178.50 (16)	C16—C17—C18—C19	-0.8 (3)
C11—N2—C10—N3	-0.5 (2)	Cl1—C17—C18—C19	178.40 (15)
N1—N2—C10—S1	0.3 (2)	C17—C18—C19—C14	-0.4 (3)
C11—N2—C10—S1	178.32 (13)	C15-C14-C19-C18	1.3 (3)
C9—S1—C10—N3	178.4 (2)	C13—C14—C19—C18	-177.90 (18)
			· · ·

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H···A	D—H	H…A	$D \cdots A$	D—H…A
С15—Н15…О1	0.93	2.20	3.047 (3)	151
C19—H19…N3	0.93	2.42	2.788 (3)	103
C19—H19…S1 ⁱ	0.93	2.83	3.733 (2)	165
С6—Н6…О1 ^{іі}	0.93	2.46	3.384 (3)	170
C18—H18…Cg ⁱ	0.93	2.92	3.648 (12)	136

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*+2, -*z*.