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ABSTRACT

Motivation: Finding functionally analogous enzymes based on the
local structures of active sites is an important problem. Conventional
methods use templates of local structures to search for analogous
sites, but their performance depends on the selection of atoms for
inclusion in the templates.

Results: The automatic selection of atoms so that site matches
can be discriminated from mismatches. The algorithm provides not
only good predictions, but also some insights into which atoms are
important for the prediction. Our experimental results suggest that
the metric learning automatically provides more effective templates
than those whose atoms are selected manually.
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1 INTRODUCTION

The influx of newly sequenced genomes has sparked the
development of function-prediction methods that use global
sequence/structure comparison for the annotation of genes and
proteins (Loewenstein e al., 2009). For enzyme proteins, many
such methods attempt to predict functions from protein sequences
and structures based on the Enzyme Commission (EC) classification
scheme (Loewenstein et al., 2009).

The EC classification scheme, which has been used worldwide
for many years, is based mainly on the whole chemical structures
of substrates and products, and on the cofactors involved (Webb,
1992). However, because the EC classification scheme neglects
protein sequence and structure information, it is sometimes difficult
to detect a correlation between an enzyme sequence/structure and
functions based on it. For instance, some homologous enzymes that
are a result of divergent evolution from the same ancestral enzyme
might catalyze different reactions, whereas some non-homologous
enzymes from different superfamilies might catalyze the same
reaction because of the convergent evolution. The enzyme pair
trypsin and subtilisin, which shares the Ser-His-Asp catalytic triad,
is a typical example of ‘analogous enzymes’ produced by convergent
evolution (Wright, 1972). Nagano (2005) analyzed the catalytic
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mechanisms of 270 enzymes (mainly hydrolases and transferases)
from 131 superfamilies, which are manually compiled in the enzyme
reaction database, EzCatDB. Analysis of the enzyme reactions has
revealed several analogous reactions that are observed in non-
homologous enzymes (Nagano et al., 2007). EzCatDB also provides
a hierarchic classification of enzyme reactions, RLCP, which clusters
the same reaction types together based on basic Reaction (R),
Ligand group involved in catalysis (L), type of Catalytic mechanism
(C), and residue/cofactors located on Proteins (P) (Nagano, 2005).
Consequently, both the homologous reaction and the analogous
reaction can be clustered together in the RLCP classification if they
share the same catalytic mechanism and the same type of catalytic
site (Nagano, 2005).

Results of a recent study also suggest that such cases of active
sites shared by analogous enzymes are not rare (Gherardini et al.,
2007). Consequently, for enzyme-function prediction, it is necessary
to examine the specific local structures of the active sites that
might reflect enzyme functions, rather than the global structures,
such as the domain level or the chain level (Loewenstein et al.,
2009). Regarding local structure comparison methods to detect
similar active sites, several ‘template-based’ methods have been
reported (Barker and Thornton, 2003; Chou and Cai, 2004; Fetrow
and Skolnick, 1998; Ivanisenko et al, 2004; Kleywegt, 1999;
Laskowski et al., 2005; Stark and Russell, 2003; Torrance et al.,
2005; Wallace et al., 1997). Those template-based methods search
for the occurrence of a predefined template structure that consists of
active-site residue atoms, within target protein structures. However,
some questions and problems remain in relation to the template-
based methods: (i) the prediction accuracy might be dependent
on the number and types of atoms in the templates. Because it is
sometimes very difficult to determine which atoms in the catalytic
site should be included in the templates, even experts on enzyme
structure and function might have to create the best template through
trial and error. (ii) Some atoms in the catalytic site might be more
important for the catalytic reaction than other atoms are. According
to a previous report, the sidechain of catalytic residues is used (92%)
much more frequently than the mainchain (only 8%) (Bartlett et al.,
2002). Moreover, charged and/or polar residues tend to be involved
in catalysis (Bartlett ef al., 2002). Are such catalytically necessary
atoms also important for the templates? (iii) These template-based
methods also yield a huge number of mismatches along with site
matches. Is it possible to reduce the number of mismatches?

In this study, we developed a new metric learning algorithm
to detect catalytic sites effectively in terms of search accuracy of
RLCP classification (Nagano, 2005). One famous template-based
method, TESS (Wallace et al., 1997) uses geometric hashing to
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search for local structures. JESS (Barker and Thornton, 2003)
uses kd-tree data structures. Ultimately, both methods compute the
unweighted RMSD for the search results. To improve the accuracy
of the template search, we use the metric learning algorithm by
determining the weights of the atoms in the templates. That method
also enables us to compare the importance of the atoms within the
template, particularly between the atoms in the manually created
template and those in the automatically refined template, based on
their determined weight values.

The Consurf algorithm (Ashkenazy et al., 2010), which has been
developed to detect conserved positions in proteins, is distinct from
template-based methods, but related to our study. The algorithm
computes evolutionary conservation scores from multiple sequence
analysis, in order to project the scores onto 3D structures. It
depends on sequences around the active site, although analogous
sites acquired by convergent evolution have no conserved regions
around the sites. In contrast, our algorithm emphasizes only active
sites so that analogous sites can also be detected.

This article is organized as follows. The next section presents
a new algorithm of metric learning to search for functionally
analogous enzymes. Numerical experiments in various conditions
are conducted to confirm the effectiveness of our algorithm. Those
conditions are described in Section 3. The results and discussion are
presented in Section 4. The last section concludes this article with
future work. Mathematical notations are given in Supplementary
Material.

2 PRINCIPLES

2.1 Problem setting

Such template-based methods such as TESS (Wallace et al., 1997) are local
structure searching (LSS) algorithms, which search for the occurrence of a
predefined template structure that comprises active-site residue atoms, from
unknown protein structures. In the first place, the template structure must be
created by carefully selecting the atoms in the active site of the query enzyme
protein, for the LSS algorithm. Here, the set of selected atoms is called a
query template. The number of atoms is denoted by n. The LSS algorithm
searches for proteins having a local structure with n atoms that is similar to
the query template, from a database of protein tertiary structures, such as the
Protein Data Bank (PDB). The output of the LSS algorithm could be a set
of sites such as that presented in Table 1, where £ represents the number of
hits. The conventional usage of the LSS algorithm is to compute the mean
square deviation from the query template to each of the hits, and then to
sort the hits based on the deviation values to discriminate site matches from
mismatches, where site matches belong to the same functional class as the
query template, and mismatches do not.

In this article, we propose weighting each atom to achieve better
prediction. Conventional approaches use the unweighted mean square
deviation to measure how similar a hit is to the query. To give mathematical
deviations, we designate the query template and a hit by X9 and X/,
respectively. Query template X9"Y has n atoms and the three-dimensional
coordinates are stored in the matrix as X% = [x]"7, ... x" ] eR3"
where ¥ € R? is the coordinate of the j-th atom in the query template.
Similarly, hit X’ is the ordered set of three-dimensional coordinates. It is
expressed as X' =[x}, ...,x],| € R>*" where x| is the j-th atom in the hit. The
unweighted mean square deviation is defined by the minimal value of the
function

l = 2
Eunwei(Xquerqu/§R, V)= ; Z Hx/t_]uery - (Rx]/- +v) H .
j=1

Table 1. Variables of a dataset generated using the LSS algorithm

Atoml Atom2 Atomn Class
Site 1 X1,1 X1,2 X1.n V1
Site 2 X2, X222 X2.n y2
Site ¢ Xo,1 X2 X¢.n ye

The ¢ sites are presumed to be hits by the LSS algorithm. Their functional classes are
known. The vectorx; ; € RR3 and the scalar y; € {1}, respectively, represent the coordinate
of the j-th atom and the binary class label of the i-th site.

over rotation Re@? and translation v e R3. We denote the optimal values
of the rotation matrix and the translation by Re©?® and R, respectively.
The unweighted root mean square deviation (Unweighted RMSD) is also
used frequently (Kato et al., 2004). The function Eynyei takes the average of
distances without weighting atoms. Our proposal is the use of the weighted
version of the distance. Letting w € A" be the weight vector, we define the
weighted mean square deviation as

n
N N 2
E(Xq“ery,X’;R,f),w)=E wj ij‘?”ery—(RxJ’-—i-ﬁ) H .
=1

In this study, rotation R and translation # are precomputed so that they are
optimized in the sense of the unweighted mean square distribution. One
might consider, instead of using rotation R and translation 7, optimizing
the two variables so that the weighted mean square deviation is minimized.
Although it is possible to optimize the rotation and the translation as well as
the weights simultaneously, such an approach makes the learning algorithm
fairly complicated.

Weighting is equivalent to adjusting the metric (Amari and Nagaoka,
2000) in the space of the coordinate set of n atoms. It will be revealed
empirically in Section 4 that the metric should be determined automatically
to achieve good prediction of the hits produced by the LSS algorithm. Hits
with a distance less than the threshold are predicted as site matches. To
determine the values of the weight parameters of the metric, w, hits whose
functions are known are used for metric learning. Then, the data, an example
of which is shown in Table 1, are obtainable. In the table, the number of
known hits is £. Vector x; j € R3 stores the three-dimensional coordinate of
the j-th atom in the protein for the i-th site. Variable y; € {£1} is the class
label of the protein for the i-th site where the value is +1 if the site is a site
match; otherwise, it is —1.

Two symbols, Z; and Z_, are used to denote the index set of site matches
and mismatches, respectively: Z, ={ieNy|y;=+1} and Z_={ieN;|y;=
—1}. The i-th site is denoted by the matrix XD =[x;,...,xin] € R3*", which
corresponds to the i-th row in Table 1.

A new algorithm will be presented to perform automatic weighting, as
described below.

2.2 Metric learning

Ideal weighting should produce weighted distances that separate site matches
from mismatches completely by a threshold. In the ideal case, the distances
of all site matches are less than threshold 6 e R :

VieI,:  EX™Y XD:R; ;. w)<6, ¢h)
and the distances of all mismatches are greater than 6:

VieI_:  EX™Y XO:R; %,w)>0 ()

where (R;, ;)= argming.o3 yer3 Eunwei (X1, XUty R v).

Figure 1 presents an illustrative example describing the difference between
unweighted RMSD and weighted RMSD. The figure has five site matches and
five mismatches. The situation in which unweighted RMSD cannot separate
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(a) (b)

weight [ Weight

Atom DN O Atom @
Site match 1l Site match 1l |
Site match 2 Site match 2| |
Site match 3| | Site match 3| |
Site match 4 Site match 4

Site match 5| Site match 5 |
Mismatch 1 || Mismatch 1 | |
Mismatch2 Il Mismatch2 I
Mismatch 3 | Mismatch 3 |
Mismatch 4 | | Mismatch 4 | |
Mismatch 5 I | Mismatch 5 I |

Fig. 1. Example of metric learning. Computing RMSD is a typical means to
search for site matches from numerous hits aligned with a query template.
It involves taking the unweighted average of distances of each atom. This
toy example shows a case in which each of the five site matches and five
mismatches is aligned with a query template having 10 atoms. In this case,
no threshold separates site matches from mismatches perfectly as long as
the average of distances is unweighted, as shown in (a). Three mismatches
and two site matches can be predicted incorrectly if the threshold depicted
in (a) is used. Our metric learning algorithm finds a weight for each atom
to generate a distance that separates site matches from mismatches. For this
example, weighted RMSD supports a complete separation of site matches
from mismatches, as shown in (b).

site matches from mismatches as in Figure la often happens, but the data
are separable completely by adjusting the weights, as shown in Figure 1b.

In practice, however, a situation in which no weighting can separate
site matches from mismatches completely can also happen. Supplementary
Figure 5 shows the results of using template 1jfh. Supplementary Figure
Sc depicts the distribution of unweighted RMSD for site matches and
mismatches. Even if the weighted RMSD is used, this dataset cannot be
separated by any weights. Therefore, the above conditions of weights, given
in (1) and (2), are too strict for practical use. To relax the condition, each site is
allowed to violate the inequalities to some degree. Non-negative variable &;
is introduced to describe the quantity of the violation and to modify the
inequalities to

VieZ,:  EQXYY XO:R; bi,w)<0+E&,

VieZ_:  EX™Y XD:R; p:,w)>0-&,

which can be summarized to

vieNe:  yi(BOOY XO:R;,5;,w)-6) <é.

The total error is evaluated using the sum of the mean violation
of positives, as ﬁ ZieLr & and the mean violation of negatives, as
ﬁZiez, &. Our intention is to find the metric that can achieve the
minimum total error. To avoid over-fitting, a constant upper bound C €R
of the £-norm of the weight vector ||w||» < C is used. The value of C is set
to 2/n in our experiments. The upper bound has the effect of regularization
(Hastie et al., 2003). Then, the algorithm that is used to learn the metric is
described as

1 1
min  —— E &+ — E &
[AE A
+ ieZ_

¢
wrt OeRy, EeR:, weA", 3)

subjto  VieNg: y; (E(Xq“ery,X(i);Ri,ﬁi,w)—@) <&,
Iwlloo <C.

Further analysis engenders the following theorem.

THEOREM 1. The problem in (3) can be reduced to a linear program (Hinrichs
et al., 2009).

The proof is given in the Supplementary Material. Linear programming
has been studied well for many years as a class of convex programming (Boyd

P i P i
Learning Stage Prediction Stage

Protein Structures Protein Structures

S =

Protein Structures

¥

‘ LSS Algorithm LSS Algorithm

Sites Sites l

Metric Learning

Template

‘ LSS Algorithm

il

Si
\Weights ‘ -

Weighted RMSDs

Superimposition

Unweighted RMSDs

Fig. 2. Flow of the respective algorithms. In the conventional algorithm,
the sites found by LSS algorithms are predicted using unweighted RMSD.
In our algorithm, the sites are predicted using weighted RMSD. The weights
are obtained using metric learning from known active sites.

and Vandenberghe, 2004). There are several efficient solvers for linear
programming problems (Dantzig, 2004).

Supplementary Figure 5d shows the resultant distribution of the weighted
RMSD achieved by the metric learning algorithm using template 1jfh.
Although no weighting can separate site matches from mismatches, the
metric learning algorithm achieves almost complete separation of site
matches from mismatches, with only a few exceptions.

The procedures using the metric learning algorithm are summarized in
Figure 2. Metric learning is performed in the learning stage. In the prediction
stage, unknown local sites are superimposed onto templates with Euclidean
metric and then weighted RMSDs are computed.

3 METHODS

To illustrate the usefulness of the metric learning algorithm, experiments
that search for active-site structures were conducted over PDB datasets.
To create query templates for the active-site structures, 48 protein structures
were selected. The LSS algorithm that uses those templates was applied to
the PDB dataset. In the next section, the experimental results are shown
for the 45 templates presented in Supplementary Table 3. A query template
comprises a set of atoms in a protein structure. To generate a query template,
we roughly selected amino acid residues that play catalytic roles in enzyme
proteins. In EzCatDB (Nagano, 2005), each amino acid in the active site
is classified into one of four types: catalytic-site residue, co-factor binding
site residue, modified residue and mainchain catalytic residue. For catalytic-
site residues and modified residues, atoms from the sidechains of residues
are automatically included in the query template, whereas all atoms are
included in the query template for co-factor binding site residues. For
mainchain catalytic residues, only the mainchain atoms are included in the
query template. The qualities of the query template created in this manner
would not depend on the abilities or knowledge of the persons who created
the template. In this study, the query template created in this manner is
defined as a ‘rough template’. The conventional approach requires that we
choose carefully those atoms which are involved in enzyme reactions, based
on literature information, to create an appropriate query template. A query
template produced in this manner can be designated as the ‘precise template’.
As described in this article, it will be shown whether the rough templates
combined with metric learning can discriminate more effectively than the
manually created precise templates. To this end, the precise templates for the
45 proteins were created by selecting atoms carefully from the corresponding
atoms in the rough templates. Here, the atoms in the precise template are
designated as ‘inner atoms’, whereas the remaining atoms in the rough
template are designated as ‘outer atoms’.

In the first stage, an LSS algorithm reported by Wallace et al. (1997)
was adopted to identify candidates for active sites in the PDB datasets. To
investigate the performance of algorithms, 5692 PDB structures registered
in EzCatDB were implemented for the PDB datasets. Among all the hit
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local sites, local sites whose PDB ids belong to the corresponding reaction
type, in the RLCP classification (Nagano, 2005), and which include residues
registered as active sites in EzCatDB, were extracted as site matches. In
contrast, local sites whose PDB ids do not belong to the corresponding
reaction type in the RLCP classification, or which include residues that are
not registered as active sites in EzCatDB, were considered as mismatches.
In our experiments, these obtained sites were used as the dataset for the
evaluation of the algorithms. The number of site matches and the number of
mismatches are shown in Supplementary Table 3.

To evaluate the performance of the metric learning algorithm, half of the
proteins in the datasets were used to learn the metric, and the remainder were
used to evaluate the predictions based on the obtained metric. Evaluation
criteria of two kinds were adopted: area under the curve (AUC) and
sensitivity. AUC is the area under the receiver operating characteristic (ROC)
curve, which plots the ratio of correctly predicted site matches against the
ratio of wrongly predicted site matches over different possible thresholds.
The sensitivity was computed with the threshold that is adjusted so that
the specificity would be equal to 0.95. This procedure was repeated 100
times and the average of AUCs was considered to be the performance of
each algorithm. Herein, note that ‘site matches’ and ‘mismatches’ in the LSS
algorithm are treated as ‘positives’ and ‘negatives’ on computing these two
criteria for performance evaluation, respectively.

Because rough templates have less dependence on the qualities of the
query template as compared with precise templates, the use of rough
templates would be favorable to achieve good prediction. Here, the following
terminologies are defined to distinguish the methods using rough templates
or precise templates in discussing the experimental results for comparison.

ConpITION 1 [Euclidean Metric with Rough Templates (EMR)]. In the
Euclidean method with rough templates, the rough template is adopted to
perform prediction based on the unweighted RMSD.

Consequently, EMR has a control condition that uses the rough template
without metric learning.

CONDITION 2 [Metric Learning with Rough Templates (MLR)]. MLR is a
method that adopts rough templates and performs prediction based on the
weighted RMSD, where the weights are determined using the metric learning
algorithm.

Here, inner atoms in the rough templates were selected as the catalytic
atoms. They are expected to play an important role in catalysis. Therefore,
the inner atoms are considered more important than the outer atoms, to obtain
better predictions. A condition that uses additional constraints, which would
make the weights for inner atoms no smaller than those for outer atoms, has
been prepared as follows:

ConbITION 3 [MLR with constraints favorable to inner atoms (MLR-CI)].
In the MLR-CI, the constraints favorable to the inner atoms are set, so
that the weighted RMSD from the rough templates is adopted to perform
predictions. The metric learning algorithm to determine the weights can
solve the optimization problem in (3) with additional constraints (¥j; €
\7""”‘”,Vj2GN,,\J""””),w_,~I >wj, where Jmer(CN,) is the index set of
the inner atoms.

By expanding the idea of MLR-CI, further constraints were applied to
obtain a better metric by introducing a priori knowledge. The importance of
inner atoms for the catalytic reaction should not be equal; some atoms might
be more important than the others. One might infer that a priori information
will engender further improvement. To confirm that notion, several atoms (at
least three) that are more important for catalytic reaction than the other atoms
were selected carefully for each precise template. These atoms are designated
as the ‘catalytically essential atoms’. Consequently, the constraints that the
weights for catalytically essential atoms should not be smaller than those of
the other inner atoms were also introduced.

CoNDITION 4 [MLR with constraints favorable to catalytically essential atoms
(MLR-CE)]. MLR-CE adopts the weighted mean square deviation from

the rough templates. The metric learning algorithm solves the optimization
problem in (3) with the following additional constraints: (¥j; € J™" Vj, €
N, \ Jinmery, wj, = wj, and (Vj1 € T, V2 eNy\ T ), wj; >wj, where T is
the index set of the catalytically essential atoms.

The outer atoms might contain only irrelevant information for prediction.
If the effects of irrelevant information are too large, then the metric learning
algorithm would fail to get rid of the inappropriate effect. Better prediction
is obtainable if all the outer atoms are removed. This would lead to use of
the following method.

ConpITION 5 [Euclidean Metric with Precise Templates (EMP)]. EMP is
a method that adopts the unweighted RMSD from the precise templates to
perform predictions.

Metric obtained by learning might engender improvement. Moreover, its
variants, which employ constraints favorable to the catalytically essential
atoms, might be obtained. Consequently, the following two methods were
introduced.

CONDITION 6 [Metric Learning with Precise Templates (MLP)]. MLP is a
method that adopts the weighted mean square deviation from the precise
templates to make predictions. The weights are determined using the metric
learning algorithm given in (3).

ConbITiON 7 [MLP with the constraints favorable to the catalytically
essential atoms (MLP-CE)]. MLP-CE is a method that adopts the weighted
mean square deviation from the precise templates. The method adds the
following constraints to the optimization problem in (3): (Vj;1 € J,Vj, €
N \T), wj; 2 wj,.

4 RESULTS

4.1 Effects of metric learning

Figure 3a presents the average prediction performance. When rough
templates are adopted, metric learning significantly improves the
prediction performance; MLR achieved the AUC of 0.984 on
average, whereas EMR obtained the AUC of 0.947 on average.
These differences are statistically significant according to results
of the one-sample #-test (Rosner, 2000) (P-value of 7.28 x 1074).
In Supplementary Table 4, the AUC values are shown for all
the templates in this study. Values in bold and red indicate the
best AUC, although those underlined in blue indicate values for
which statistically significant differences were not found relative to
the best AUC. Here, the one-sample z-test was performed to detect
statistically significant differences. The significance level was set to
1%. It was observed that plenty of empirical evidence supported
the effectiveness of the metric learning algorithm. In 42 of the
45 templates, MLR (Condition 2) yielded the best performance
or performance that did not differ from the best performance. The
AUCs of MLR surpassed those of EMR in 30 templates, whereas
the AUCs were equal for both MLR and EMR in 12 templates.
Only in three templates—2ace, 2oke and 1dgy—was the AUC of
EMR better than that of MLR in terms of statistical significance.
However, the numbers of site matches in 2oke and 1dgy for
performance evaluation were, respectively, five (=[10/2] ) and two
(=15/2]). Those numbers are too small to obtain credible statistics
for performance evaluation. Regarding the eight templates, 1bls,
1af0, 2oke, 2dhc, 1g42, lisw, larg and 1cq7, the site matches were
separated completely from the mismatches, even without metric
learning. In six of the eight templates, MLR also separated site
matches from mismatches completely. These data suggest that metric
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(a)
EMR
MLR

MLR-CI

MLR-CE
EMP
MLP

MLP-CE

0.94 0.95 0.96 0.97 0.98 0.99
AUC

(b)
EMR
MLR

MLR-CI

MLR-CE
EMP
MLP

MLP-CE

0.7 0.8 09 1

Sensitivity

Fig. 3. Average AUCs and sensitivities. Forty-five templates are used for the experiments. The dataset was randomly split into a training set and a test set for
each template 100 times, and the AUC and the sensitivity were computed for the 100 test sets. The bars show the average AUCs and the average sensitivities
over the 100 trials and the 45 templates. EMR is the baseline method, whereas MLR is the main proposed method. The performances of the two methods
are statistically significantly different in terms of P-value (by one-sample ¢-test) (Section 4). The other methods are prepared to investigate various conditions

(Section 3).

learning could rarely worsen the prediction performance of the good
template datasets, which have already achieved favorable separation
via the Euclidean metric. It is also noteworthy that MLR achieved
complete prediction on four other templates (1eo4, 1f0o, 1ahg and
4tim), where EMR did not get complete prediction on the four
templates.

Sensitivity values at the specificity threshold of 0.95 were also
calculated. The AUC values for the ROC curves are often adopted for
the prediction performance evaluation. By changing the threshold,
various specificity values were obtained. The AUC values are the
average sensitivity values relative to all the specificity values, and
are often used for the evaluation of prediction performance (Kato
et al., 2005). However, the evaluation with the AUC values has
the following disadvantage. As shown in Supplementary Table 3,
the LSS algorithm often yields many mismatches. In such cases,
sensitivity at a low specificity tends to be pointless because it would
be almost impossible to check hits in the lower order, when hits
are checked in the order of highest to lowest. For this reason, the
sensitivity at specificity 0.95 was adopted for the evaluation. The
differences between EMR and MLR tended to be more remarkable
for the sensitivity values at specificity 0.95 than for the AUC
values. Average sensitivities are shown in Figure 3b. The average
of the sensitivity was improved from 0.813 to 0.949. The change
is statistically significant (P-value of 1.27 x 10~%). The individual
sensitivities are shown in Supplementary Table 5. Except for three
templates—2ace, 1kal and 2bvw—the sensitivity of EMR did not
exceed that of MLR statistically significantly.

Supplementary Figure 5 shows detailed results of the template
made from the active site of 1jth (a-amylase). This template
comprises 13 atoms from three amino acid residues. Supplementary
Figure 5c shows the frequency distribution of unweighted RMSD for
the training dataset with equal weights for the 13 template atoms. The
normalized distributions of 24 site matches and 6486 mismatches
in the training dataset are shown in the figure, so that the sums of
the frequencies for the site matches and mismatches could be 1.0
and 1.0, respectively. Here, site matches and mismatches could not
be separated in the distribution of the unweighted RMSD data. The
metric learning algorithm that used the 24 site matches and 6486
mismatches produced the weights for the atoms (see Supplementary
Fig. 5b and h). The weighted RMSD, calculated using the weight
values, is shown in Supplementary Figure 5d, suggesting that the
separation of site matches from mismatches could be improved. The
distributions of the unweighted and weighted RMSD datasets for the
evaluation, which were not used in the metric learning algorithm, are

shown in Supplementary Figure Se and f, respectively. Additionally,
in the case of the evaluation data, site matches and mismatches were
separated effectively. These data suggest that our metric learning
algorithm can improve generalization capability without overfitting
(Hastie et al., 2003).

Supplementary Figure 5g portrays a box plot of the distribution
of distances between the query template and each hit for each
atom. Two atoms, ‘OD1 ASP A 197° and ‘CB GLU A 233’, were
particularly inseparable. The weight values for these two atoms
turned out to be zero. Moreover, the remaining oxygen atoms gave
small weights, probably as a result of the inseparable distribution
between the site matches and the mismatches. Therefore, the metric
learning algorithm can automatically select important atoms from
the template atoms.

4.2 Effects of outer atoms

We compared MLR-CI (Condition 3) with MLR (Condition 2),
to investigate the effect of the constraint that the weights of the
outer atoms be smaller than those of the inner atoms. However,
we observed barely any improvement yielded by the additional
constraints, as shown in Figure 3 obtained from Supplementary
Tables 4 and 5. Of the templates shown in blue italic in
Supplementary Tables 4 and 5, 32 have outer atoms, and therefore
might give different predictions. The information in the tables
suggests that the constraint does not improve the prediction
performance. The AUCs of MLR-CI were significantly worse than
those of MLR for 19 templates, and the sensitivities of MLR-CI
were worse for nine templates. Actually, MLR-CI achieves better
AUC:s in only three templates, and better sensitivities in only four
templates.

The rough template of 1map comprises 17 atoms from two
residues. Thirteen atoms are inner atoms, whereas the other four
atoms, N, CA, C and O of LYS 258, are the outer atoms, which are
shown in gray in Supplementary Figure 6h. In the distribution of
distances for each atom (Supplementary Fig. 6g), despite the outer
atoms, the separations of site matches and mismatches are good. For
the inner atoms, CB, CG and CD1 of TYR 225, and CB of LYS 258,
the separations are unsatisfactory, resulting in small weights that are
nearly zero.

In MLR-CE and MLP-CE experiments (conditions 4 and 7,
respectively), the weights for the catalytically necessary atoms were
set not to be smaller than those for any other atoms. This constraint
could be a powerful prior knowledge for learning if it was true that
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the catalytically necessary atoms are useful for prediction. However,
MLR-CE and MLP-CE did not show remarkable improvements.
In fact, MLR-CE for 27 rough templates yielded significantly
worse AUC than MLR did (Supplementary Table 4). Furthermore,
the sensitivities of MLR-CE were worse for 14 rough templates
(Supplementary Table 5). The MLR-CE improves AUCs for only six
templates, and improves sensitivities for only five templates. Those
results imply that, even if some atoms are catalytically necessary,
they are not always important for prediction of active sites. Some
concrete examples are presented below for illustration.

In the case of the template larg (aspartate aminotransferase)
(Supplementary Fig. 4c), the weight value of the OH atom of TYR
225, which is catalytically important, was large—0.075—compared
with those of the atoms CD1, CD2, CEl and CE2, which were
nearly zero. This result suggests that the axis atoms of the phenyl
group, CB, CG, CA and OH, might be fixed, whereas the atoms,
CDl1, CD2, CEl and CE2, could be rotated along the axis atoms,
or at least positioned differently, depending on the active sites of
true positives. In contrast to the template 1arg, for the template 3daa
(D-alanine aminotransferase) (Supplementary Fig. 4d), the weight
values for the atoms of TYR 31 do not vary.

As for the weight values of acidic residues, the templates 1psa
(pepsin) and 1gk2 (lysozyme) showed entirely different tendencies
(Supplementary Fig. 4a and b). The weights for the oxygen atoms of
ASP 32 and ASP 215 were nearly zero in the template 1psa, although
the template 1gk2 gave larger weight values to the oxygen atoms
of ASP 221 and ASP 401. In both cases, the oxygen atoms of the
acidic residues are catalytically important and involved in enzymatic
reactions. However, in the case of 1psa, the catalytical importance
does not always affect the weight values in the prediction. These
data suggest the following:

e The inner atoms, which are directly involved in catalytic
reactions, are not always conserved from a structural viewpoint,
although the structures of the outer atoms are more conserved
than those of the inner atoms.

* The distribution of distances for each atom in the mismatches
is important to separate site matches from mismatches. The
atoms that can separate site matches from mismatches are as
important in the prediction as the structurally conserved atoms.

e Although each template has different properties, metric
learning automatically finds the effective combination of atoms
that improves the prediction performance.

Torrance et al. (2005) also investigated whether functional atoms,
which carry out catalytic function, can discriminate site matches
from mismatches more effectively than mainchain atoms can.
According to their analyses, templates based on protein mainchain
positions are more discriminating than those based on functional
atoms from sidechains because sidechain atoms are more flexible
than the mainchain of a protein, especially in the presence of
ligand (Torrance et al., 2005). The inner atoms in our definition,
which correspond to their functional atoms, can discriminate
matches from mismatches less effectively than the outer atoms,
which tend to be closer to the mainchain positions. Therefore, our
results are apparently consistent with their results.

Furthermore, other results that might support the importance of
outer atoms for prediction were obtained. In the MLP method, only
atoms that are involved in catalytic reactions directly are included

in the templates. Therefore, no outer atoms are incorporated into
the computation for prediction. Although the MLP method is not
disrupted by irrelevant information from outer atoms, MLP does
not always achieve superior sensitivity to MLR. The AUCs and the
sensitivities of MLP were significantly worse than those of MLR
for 19 templates and 10 templates, respectively. The AUCs and the
sensitivities of MLP were better for only three templates—2ace,
Irpa and 1vez—which implies that it is not necessary to remove
outer atoms in advance for most cases, and that it would be a better
approach to use the metric learning algorithm to remove irrelevant
atoms automatically.

4.3 Effects on residue selection

The results shown so far suggest that our algorithm selects predictive
atoms in templates automatically. Even if users use rough templates,
the residues that compose templates still must be selected manually.
Our experiments adopt the TESS algorithm (Wallace et al., 1997) as
an LSS algorithm. The algorithm searches for local structures that
have the same residue types as those of the template. Therefore,
because no residue in the local structures, which should be hit
as the site matches, can be matched with the unrelated residue
in the template, the LSS algorithm can miss the site matches if
an unrelated residue is added to the template. In contrast, if a
necessary residue is removed, the algorithm will pick up many
mismatches. Supplementary Table 2 presents an example that shows
how the selection of residues affects the prediction performance.
The template lacb contains four residues: HIS 57, ASP 102, GLY
193 and SER 195. A new template was created by removing the
atoms in the residue GLY 193. Removal of the atom yields many
mismatches: from 6300 to 19066. Common hits to the previous
four-residue template and the new three-residue template are used to
investigate the effects of residue selection because it is necessary to
analyze the same dataset for comparison of these performances. The
MLR slightly reduced the sensitivity from 0.998 to 0.994. Actually,
EMR is also degraded by removal of a residue, but the changes in
sensitivity are much larger. Consequently, the performance depends
on selection of residues, but the change in MLR is small compared
with that in EMR. It should also be noted that selection of residues
is much easier than selection of atoms.

4.4 Effects on re-superimposition

In determining the metric, the parameters of the rigid-body
transformation are fixed. One could also superimpose the template
again and predict the sites with the obtained weights. The ‘re-
superimposition’ approach was tested to be compared with the
original ‘single superimposition’ approach. The re-superimposition
approach slightly reduced the average AUC from 0.984 to 0.977,
and the average sensitivity from 0.949 to 0.934. The P-values
of the differences are 0.004 and 0.021, respectively. The slight
degradation of the performance may be because both the approaches
optimize the metric for the first superimposition, not for the second
superimposition, although the re-superimposition approach uses the
metric for the second superimposition.

5 CONCLUSIONS

This article presents a new algorithm that learns the metric to assess
data obtained by LSS algorithms and discriminate site matches
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from mismatches. We design the parameterization for the metric
so that the parameters can be interpreted directly as weights of
atoms. An advantage of our algorithm is that redundant atoms are
removed clearly by making those weights zero. This characteristic is
obtained using the definition of the domain of the weight parameter.
The domain is the probability simplex, which plays the role of
£1-regularization (Hastie er al., 2003). Some literatures (Yu et al.,
2010) replace £;-regularization with another regularization. In our
algorithm, the {oo-norm of the weight vector is forced to be
bounded from above to improve the generalization performance.
This is equivalent to combination of £{-regularization with £o-
regularization. As described in this article, we reported the results
of family analyses that searches for active sites for one template. We
are now developing an algorithm for library analyses that predicts
the function of specified structures using a set of templates.
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