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Abstract

Purpose: In image-guided adaptive brachytherapy (IGABT) a quantitative evaluation of the dosimetric changes between
fractions due to anatomical variations, can be implemented via rigid registration of images from subsequent fractions
based on the applicator as a reference structure. With available treatment planning systems (TPS), this is a manual
and time-consuming process. The aim of this retrospective study was to automate this process. A neural network (NN)
was trained to predict the applicator structure from MR images. The resulting segmentation was used to automatically
register MR-volumes.
Material and Methods: DICOM images and plans of 56 patients treated for cervical cancer with high dose-rate (HDR)
brachytherapy were used in the study. A 2D and a 3D NN were trained to segment applicator structures on clinical T2-
weighted MRI datasets. Different rigid registration algorithms were investigated and compared. To evaluate a fully auto-
matic registration workflow, the NN-predicted applicator segmentations (AS) were used for rigid image registration with
the best performing algorithm. The DICE coefficient and mean distance error between dwell positions (MDE) were used
to evaluate segmentation and registration performance.
Results: The mean DICE coefficient for the predicted AS was 0.70 ± 0.07 and 0.58 ± 0.04 for the 3D NN and 2D NN,
respectively. Registration algorithms achieved MDE errors from 8.1 ± 3.7 mm (worst) to 0.7 ± 0.5 mm (best), using
ground-truth AS. Using the predicted AS from the 3D NN together with the best registration algorithm, an MDE of
2.7 ± 1.4 mm was achieved.
Conclusion: Using a combination of deep learning models and state of the art image registration techniques has been
demonstrated to be a promising solution for automatic image registration in IGABT. In combination with auto-
contouring of organs at risk, the auto-registration workflow from this study could become part of an online-dosimetric
interfraction evaluation workflow in the future.
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1 Introduction

The standard of care for locally advanced cervical cancer
(LACC) consists of external beam radiotherapy (EBRT)
with concomitant chemotherapy followed by brachytherapy
(BT) [1,2]. Magnetic Resonance Imaging (MRI) based
image-guided adaptive brachytherapy (IGABT) is consid-
ered an essential part of this gold-standard, resulting in
excellent local control and reduced toxicity [2]. It uses
three-dimensional MR-images of the patient with the appli-
cator in-situ to create an individualized treatment plan, con-
sidering the 3D dose distribution and patient anatomy. The
dose is prescribed to dose-volume parameters and optimized
towards evidence-based dose limits according to interna-
tional recommendations [1,3]. Needles can be used in com-
bination with the intracavitary applicator to further shape the
dose distribution which results in improved target coverage
[4].

A common schedule is to deliver BT in 4 fractions with
two implants. Treatment planning, including imaging, appli-
cator reconstruction and segmentation of targets and organs-
at-risk (OAR), is usually performed on fraction 1 and frac-
tion 3. A verification MRI is acquired prior to fraction 2
and 4 to detect major variations in implant geometry or anat-
omy. This can trigger various interventions (repositioning,
adjustment of organ filling or replanning). Similar work-
flows have often been reported in the multicenter
EMBRACE-I study [2], where 52% of the patients receiving
MRI-guided adaptive BT in up to four high dose-rate (HDR)
fractions were treated more than once with the same plan
(EMBRACE study office, personal communication, Decem-
ber 1, 2021).

For IGABT planning or re-planning before another frac-
tion is treated, an essential step is the applicator reconstruc-
tion [5]. Following imaging with the applicator in-situ, the
source path needs to be accurately defined within the patient
anatomy. For this purpose, modern treatment planning sys-
tems (TPS) offer a library of virtual 3D surface models of
different applicators which are directly linked to correspond-
ing source paths. In the TPS these models are manually
aligned with the applicator depicted in the imaging volume.
This is a critical step as geometrical reconstruction errors can
lead to significant dose deviations in targets and OAR [6,7].

State of the art IGABT treatment planning consists of: (i)
applicator reconstruction, (ii) target and OAR delineation
and (iii) dose optimization [1]. Depending on case complex-
ity, the process takes a trained team of physician and physi-
cist upwards of one hour to complete. Studies have shown
that while systematic dosimetric uncertainties due to anatom-
ical variations between subsequent fractions are low, random
intra- and interfraction organ motion can have a significant
dosimetric impact [8].
However due to time-constraints the scans are usually
only visually inspected. A quantitative evaluation of the
dosimetric changes due to anatomical variations currently
requires the following steps within the TPS:

(i) Reconstruction of the exact applicator position on planning
and control MRI

(ii) Definition of a set of reproducible applicator landmark points
in planning and control MRI

(iii) Landmark-based rigid registration of planning and control
MRI

(iv) Propagation and/or adaptation of OAR contours
(v) Propagation of dose distribution

Two reasonable assumptions are made. First, the
applicator is a rigid structure. MRI-compatible applicators
are made from hardened plastic and thus deformations of
the structure between subsequent fractions due to
anatomical stresses are minimal. Second, as the applica-
tor is the dose delivery device, the dose distribution is
fixed to the applicator, and the target is fixed to the
applicator by firm vaginal gauze packing. Therefore the
target volume experiences no relative motion between
fractions [9].

These assumptions make brachytherapy unique among
other treatment techniques in radiation oncology. They allow
the use of rigid registration based on the applicator for dose
propagation.

Nevertheless, until now registering two BT MR-image
series based on the applicator is a time-consuming process
with no fully automatic commercial solutions available.
While MRI offers superior soft-tissue contrast and is
regarded as the gold standard for IGABT, it comes at the
price of inferior applicator and needle representations as
compared to CT. This increases the complexity of applicator
reconstruction and poses an additional challenge for auto-
matic image registration algorithms based on mutual
information.

The required time investment limits the quantitative
evaluation of inter and intra-fraction motions of OAR in
clinical routine. An automatic solution for quantifying
the dosimetric impact of organ motion could potentially
lead to reduced differences between reported and deliv-
ered dose and improve outcome/-modelling for patients
[10]. This study aims at developing a solution for the first
part of an automated workflow for routine monitoring of
interfraction variations.

In recent years, neural networks (NN) and related archi-
tectures have demonstrated success in various applications
involving medical imaging [11,12]. They achieve excellent
segmentation performance [13] and are driving a new wave
of research in automated treatment planning in radiation
oncology [14].



Fig. 1. 3D visualization of the exported applicator dwell positions
in the patient coordinate system.
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In this study we i) compare different applicator-based
rigid image registration algorithms for MR-IGABT, and ii)
train a NN to predict the applicator structure to automate
the registration process.

We hypothesize that by using the applicator structure as a
reference, it is possible to register two MR-image series of
subsequent BT fractions accurately and automatically for
different applicator and needle geometries.

2 Materials and Methods

2.1 Patient Cohort

A cohort of 56 patients was available for this study. The
retrospective use of clinical data was approved by the insti-
tutional ethics board (1400/2018).

Patients were treated at our institution between 2016 and
2019 for LACC. Patients received treatment according to the
EMBRACEII protocol [15], which includes 25 � 1.8 Gy
EBRT and four fractions of HDR BT to reach a High-Risk
CTV D90 planning aim dose of 90-95 Gy EQD210Gy (Bio-
logically equi-effective dose in 2 Gy fractions, a/b = 10 Gy).

The T2-weighted MR-images were acquired for treatment
planning after applicator insertion using an open MR scan-
ner (Siemens Magnetom C!, 0.35T, TSE, TR: 3290 ms,
TE: 100 ms). Three image series, in para-transversal, sagittal
and coronal orientation were recorded sequentially for clin-
ical use. For this study, the para-transversal image series
was used. All images had an in-plane resolution of
256 � 256, and voxel dimensions of 1.17 � 1.17 � 5 mm.

All patients were treated with a combination of intracav-
itary BT applicators with/without interstitial needles. Two
different applicator models were used: the Vienna Ring
Applicator [4,16], and Venezia Applicator (Elekta, Venen-
daal). Different ring diameter and tandem length combina-
tions were used. An overview of the configurations can be
found in the Appendix Table A.1.

For each patient in our cohort, we exported two
brachytherapy fraction treatment plans from the treatment
planning system. By convention we refer to the first applied
fraction as “fixed fraction”, and the second as “moving frac-
tion”. All patients were treated with the same applicator for
both fractions. All data was anonymized prior to export in
DICOM format, using the TPS anonymization functionality.

2.2 Data Preprocessing

Two additional pre-processing steps were performed on
the DICOM data after export. First, the contours of the appli-
cator, which are usually not available in the TPS (Oncentra�

Brachy – Elekta, Venendaal), were generated with an Elekta
Applicator Slicer research plugin (Elekta, Venendaal) and
treated as ground-truth masks. The plugin used the MRI
and treatment plan with reconstructed applicator model to
generate a standard radiotherapy (RT) structure file for the
intracavitary applicator geometry. The resulting applicator
mask was further processed with a hole filling algorithm to
create continuous applicator geometries [17].

It is important to note that, even if the plugin was com-
mercially available, the described method to extract these
ground-truth segmentations would not be feasible for an
automatic workflow, as it requires prior manual placement
of an applicator library model.

Second, a python script was written to read and export all
available dwell positions of the applicator from the treatment
plan for the purpose of evaluating registration performance.
Dwell positions were exported as x,y,z-coordiantes in the
patient coordinate system. Only clinically relevant dwell
positions were considered for the calculation of the registra-
tion error. (Fig. 1, Appendix Table A1).

2.3 Study Design

A summary of the major steps in this study is shown in
Fig. 2. A NN was trained to predict the applicator segmen-
tation, which was then used for rigid registration of MR-
volumes from subsequent BT fractions. Different registra-
tion methods were compared. In a first step, ground-truth
applicator masks were used to identify the most accurate reg-
istration approach. The method with the best results was then
repeated with the predicted segmentations from the NN.

To get an unbiased measure of segmentation and registra-
tion performance, 10 randomly selected patients were split



Fig. 2. Summary of major steps in this study. For each patient in our cohort, two brachytherapy fraction treatment plans, and corresponding
MRI-volumes and applicator segmentations were exported from the treatment planning system. An auto-segmentation neural network was
trained to predict the applicator structure in unseen MR-volumes. Finally, different applicator-based rigid image registration algorithms
were compared, initially with ground truth (GT), and eventually with predicted applicator segmentations (AS). The registration accuracy
was evaluated by using the distance between dwell positions as a metric. *) For some patients only one fraction was available.

Table 1
Summary of patient cohorts. BT: Brachytherapy; IC: Intercavitary;
ICIS: Intercavitary/interstitial

Cohort n patients n BT fractions Technique

Train 46 78 IC: 15ICIS: 31
Test 10 20 IC: 5ICIS: 5
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from the overall cohort and used as a test set. The remaining
patients were used to train the NN. A description of the rel-
evant cohorts’ parameters can be found in Table 1.

For seven patients only one fraction was available. While
these were used to train the neural network, they were not
considered for the test set as no moving fraction was avail-
able (Table 1).

2.4 Image registration

The goal of the image registration was to align the fixed
and the moving MR-volume as accurately as possible, with
respect to the rigid applicator. Registration scripts were writ-
ten using the python implementation of the Insight Toolkit
(ITK) (Kitware, Clifton Park, NY), and the ITK implemen-
tation of elastix [18,19], using default parameters.
Many uncertainties are still rooted in the use of deform-
able image registration (DIR) for brachytherapy [20]. Large
anatomical deformations caused by organ movement, and
the presence of the rigid applicator in the region of interest
affect the registration performance. Applicator-based rigid
registration however was found to be suitable for various
tasks in clinical workflows for BT [20], and was therefore
chosen for this work. Hence only rotation and translation
were used as options for spatial transformations.

Five different rigid image registration algorithms were
investigated:

“Default Rigid” (DR); used the full MRI-volumes and no
applicator mask. “Applicator ROI” (AROI); used applicator
masks to define valid sampling regions in MRI-volumes.
“Applicator Mask” (AM); used no MRI and registered bin-
ary applicator masks directly. “Distance Map” (DM); used
no MRI and registered distance maps generated from the
applicator masks [21]. “Prediction” (DM*); Same as DM
but used predicted applicator masks from the NN.

Two loss functions were used among the algorithms.
Mutual Information (MI); a probabilistic loss using voxel
information, and Kappa statistic (KS); a loss function specif-
ically designed to register binary images (masks) [22].

Table 2 provides an overview of all tested configurations.
Registration performance was evaluated on the test set.
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2.5 Automatic Applicator Segmentation

Two NN were trained to predict the applicator segmenta-
tion in MR-volumes. An often-used network architecture for
medical image segmentation is U-NET [23], a CNN consist-
ing of an encoder that learns global feature representations,
followed by a decoder that upsamples these representations
for pixel-wise classification. Influenced by recent advances
in deep learning, a derived architecture called UNET-
Transformer (UNETR) demonstrated superior performance
for volumetric organ segmentation in medical images [24].

Because of the limited amount of available training data,
we trained a 2D U-Net and 3D UNETR to compare which
architecture delivers the best results. Both models use a
Loss-function that computes both DICE Loss [25] and Cross
Entropy Loss, and returns the sum of the two losses [26].

Data preparation involved: interpolation of voxel spacing
to 1 � 1 � 3 mm3, and voxel intensity range min-max-
scaling from 0 and 2000 to 0 and 1 for MRI. Data augmen-
tation was used to artificially enlarge the dataset and improve
model performance, including random flip, and rotation with
a probability of 20%, along all axes (3D UNETR) or in the
transversal plane (2D U-Net).

The 2D U-Net was trained using the para-transversal MR-
slices as input, and outputs a single-channel label map of the
same size. To boost model performance, a pretrained
ResNet34 [27] was used in the encoder path. The model
was trained using the fastai library [28]. Training hyperpa-
rameters were learning rate: 0.001, weight decay: 0.01,
Adam optimizer, and a batch size of 12.

The 3D UNETR model used MRI volumes as input, and
outputs a single-channel label map of the same size. Data
augmentation further included random cropping of
192 � 192 � 32 voxel volumes. Prior to training, a hyperpa-
rameter search was executed [29], using the DICE coeffi-
cient as a performance metric (Equation (2)). The best
parameters were found to be learning rate: 0.001, feature
size: 16, weight decay: 1e-5, dimension of hidden layer:
256 and with residual blocks, the Adam optimizer, and a
batch size of 1.

The final model was trained using 5-fold cross validation
(CV). Predictions were made by averaging over the outputs
of the 5-fold CV models. The network was trained using
PyTorch [30]. Model architecture and loss function used
implementations of the Medical Open Network for AI [31].

For both 2D U-Net and 3D UNETR, final model perfor-
mance was evaluated on the test set using the DICE metric
(Equation (2)).

2.6 Evaluation Metrics

The dwell positions of the reconstructed applicator were
used to evaluate the registration accuracy. Clinically used
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treatment plans were available for both the fixed and moving
fraction. The dwell positions derived from these applicator
reconstructions were interpreted as the ground-truth.

Hence for each set of dwell positions in the fixed fraction,
there existed a corresponding set of dwell positions in the
moving fraction. To achieve a precise and interpretable met-
ric of registration accuracy, the Euclidean distance between
each pair of points was calculated and averaged over all
positions, which resulted in a mean distance error in mm
(MDE).

MDE ¼ 1
n

Xn

i¼1

j xi � yij jj2 ð1Þ
Fig. 3. Results of the auto-segmentation network from two example p
transversal slice through the tandem, (b) para-transversal slice throug
structure. Example 2 represents a case where the network misclassified
the MICE Toolkit (2020 NONPI Medical AB, Umeå, Sweden).
Where n is the number of dwell positions, and xi and yi
the coordinate vectors of the dwell position in fixed and
moving fraction, respectively. To transform the dwell posi-
tions from the moving to the fixed domain, the resulting
transformation matrix from the image registration was used.

To assess segmentation performance the DICE coefficient
was used.

DICE ¼ 2 X \ Yj j
Xj j þ jY j ð2Þ

Where X and Y are the predicted and ground truth mask of
the applicator. The coefficient measures the overlap between
the two structures and returns a value between 0 and 1, with
the latter representing a perfect match.
atients, and comparison with ground truth. Columns show (a) para-
h the ring of the applicator and (c) 3D rendering of the applicator
parts the applicator. Images and 3D rendering were generated with



Fig. 4. Registration error for different algorithms. Algorithm definitions according to Table 2 - Overview of the different investigated
registration algorithms. Each box shows the distribution of the Mean Distance Error (MDE - average distance between dwell positions in
mm). The lower and upper ends of the box correspond to the 25th and 75th quartiles respectively. Whiskers extend up to 1.5*IQR (inter-
quartile range). Horizontal lines in the middle of each box represent the median value. Mean error and standard deviation are provided
above.
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3 Results

The mean DICE coefficient for the predicted applicator
segmentations on the test set using UNETR and 2D U-Net
was 0.70 ± 0.07 and 0.58 ± 0.04, respectively. Due to the
superior performance of the UNETR, the predictions of this
model were used for all further experiments. Fig. 3 shows
the output of UNETR for two example patients in compar-
ison with the ground truth.

The results of the different registration algorithms, evalu-
ated on the 10 patients in the test set, are summarized in Fig
4. DR, DROI and AM registration algorithms achieved
MDE errors of 8.1 ± 3.7 mm, 2.5 ± 1.1 mm, and 2.7
± 1.3 mm, respectively.

The best result was achieved by registering the distance
maps generated from the ground truth applicator structures,
resulting in an error of 0.7 ± 0.5 mm. Using the predicted
applicator structures instead, the error was 2.7 ± 1.4 mm.
For the latter, contributions of the different patient orienta-
tion components can be seen in Appendix Fig. A2. Fig. 5
shows an example of the registration result using the pre-
dicted applicator mask.

4 Discussion

4.1 Previous work

Automating steps of the treatment workflow is a current
and future research topic of interest in radiation oncology
[12,32,33]. Although work has been published on auto-
segmentation and applicator reconstruction using deep-
learning methods, there is limited information about auto-
matic image registration for BT, and no directly comparable
work was found. Zaffino et al. trained a Convolutional Neu-



Fig. 5. Example of registration result using the predicted applicator mask. Top row shows para-transversal slices through the center of the
ring. Bottom row shows para-transversal slice through the tip of the tandem. Distinct landmarks of the applicator are marked with green
circles (left, fixed fraction), and red circles (middle, moving fraction). The column on the right shows the registered and overlayed MRI-
volumes, including landmarks, of both fractions. Moving fraction colored in orange.
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ral Network (CNN) to automatically segment needles from
MR-images in gynecological BT with an average error of
2 ± 3 mm [34]. Hrinivich et al. used a 3D model to image
approach for automatic applicator reconstruction on MRI
[35], and reported dwell position errors within 2.1 mm.
Zhang et al. trained a CT-based UNET to reconstruct chan-
nel paths with a Hausdorff distance below 1 mm [36].

4.2 MRI challenges

The advantages in terms of patient related outcome of
using MRI instead of CT in IGABT have been demonstrated
in the literature [2]. Investigating automatic image process-
ing routines for MR-guided BT is therefore an important
step towards future applications. However, MR-images for
gynecological BT pose several distinct challenges for auto-
matic contouring algorithms.

The applicators used in this study consist of two parts: the
ring and intrauterine tandem. Both produce a void signal on
T2-weighted MR-images.

In para-transversal slices the tandem can only be iden-
tified as a small circular structure. Similarly, the needles
of interstitial implants have a similar shape, and close
geometric proximity. In addition, there are other objects
like the Foley catheter, blood vessels or the partially
air-filled rectum that could potentially confuse auto-
segmentation algorithms.

Furthermore, the rings in this study contain several holes
that are used to guide interstitial needles. If holes fill with
fluid during insertion, they can provide marker-style land-
marks on MRI. These “markers” can help medical physicists
when reconstructing the applicator manually. However, it is
an inconsistent image feature, as it is subject to needle use
and other anatomical factors and can thus not be assumed
to be present beforehand.

Finally, the vaginal packing which holds the implant in
place can further obscure the representation of the ring.
Hence in a worst-case scenario it can be very challenging
to identify the applicator ring on MRI.

A distinct challenge for this work was the use of clinical
images from a low field (0.35 T), open MR scanner. The
results are based on the retrospectively used clinical image
data, with its limitations (non-isotropic, large slice thickness
and no additional sequences within an acceptable scan time).
Other MR scanners used in radiation oncology offer a higher
field strength and thus superior resolution [37]. It is likely
that with higher quality images the performance of image-
processing algorithms and registration methods used in this
work, would increase. As image series in sagittal and coro-
nal direction were also recorded for clinical use, a possible
extension of this work would be to include information from
these volumes as well.

Finally, it should be noted that the use of MRI for every
brachytherapy fraction is expensive and economically or
logistically not feasible in many countries [38]. Studies have
shown that using an applicator-based registration workflow,
it would be possible to use a combination of MRI for the first
fraction and subsequent CT based planning [9]. The work-
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flow presented in this study could be adapted to accommo-
date these scenarios as well.

4.3 Segmentation Results

While the achieved mean DICE similarity of 0.70 is not
particularly high, it indicates that the concept of using a neu-
ral network to automatically detect the applicator is feasible.
Our network demonstrated that it was able to segment appli-
cator structures of different configurations on MR-images,
with and without needles. In cases with interstitial needles,
it showed the ability to identify the tandem, and correctly
distinguish between catheters or potentially confounding
anatomical structures correctly (see Fig. 3, Example 1).

Overall, we see that the neural network can predict the
applicator structure well. However, in some cases the auto-
segmentation fails to capture parts of the geometry, leading
to larger registration errors. This may originate from a limi-
tation of this study, which is the comparatively small amount
of training data for the neural network [12,39]. This aspect
could be mitigated by switching to a 2D-model architecture
which uses MR-slices instead of volumes. However, our
results show a considerable difference between 2D and 3D
model performance. Considering that our 3D model was
trained from scratch while the 2D model uses pretrained
weights, indicates that volumetric context is an important
factor to applicator autosegmentation.

To learn more details about the modes of failure and
potential pitfalls, we analyzed the predicted segmentations.
Predictions with high errors originate from MRI volumes
where the network failed to accurately define the borders
of the ring, while detecting the tandem proved to be less
error prone. As can be seen in Fig. 3 - Example 2, the pack-
ing surrounding the ring can be a confounding factor for the
network.

4.4 Registration Results

The comparatively low performance of the default rigid
(DR) registration imply that the deformation of patient anat-
omy between BT fractions cannot accurately be captured by
rigid registration techniques, using only MRI information.

Out of all tested rigid registration algorithms, the conver-
sion of the applicator mask to a distance map and subsequent
registration (DM) yielded the best results. The registration
accuracy falls within reported uncertainties of manual appli-
cator reconstruction in gynecological BT [6,40]. A distance
of up to 2 mm is reported as acceptable for image registra-
tions of this kind [20].

The remaining error most likely stems from the fact that
extracted segmentations from the TPS, even for the same
applicator, are subject to some variability.
A closer look at the registration error stratified by patient
orientation is shown in Appendix Fig. A2. Although not sig-
nificant, the error in cranio-caudal direction is more pro-
nounced. This is plausible, given that the MR-voxels have
their largest extent in this dimension. Studies have found that
the resulting dosimetric error from reconstruction uncertain-
ties is greatest in anterior-posterior direction [7]. Hence in
terms of dosimetric accuracy, a systematically larger error
in cranio-caudal direction would be more manageable.

Re-running the registration with the predicted masks
results in lower performance as compared to the ground-
truth baseline. This result could be expected as the neural
network is not able to fully replicate the ground-truth masks.
It shows that the registration algorithm relies on accurate
delineations of the applicator.

Our study shows that a registration error below 1 mm,
which is well below the reported desired accuracy of
2 mm [20], is achievable with our technique. Thus, using
an improved version of the auto-segmentation network or
similar approaches, would enable a fully automatic registra-
tion workflow.

Importantly, each inference on the model and the registra-
tion algorithm, takes less than 30 s on a standard computer.
This represents a significant time improvement from current
manual practices, which based on clinical experience takes
approximately 20 min. Furthermore, the quality of registra-
tion is independent of the experience of the operator. An
implementation of such a workflow would therefore be crit-
ical towards fully automated online dosimetric evaluation of
intra- and interfraction motion in IGABT.
4.5 Workflow

In clinical practice, the goal would be to automatically
assess dosimetric changes from one BT fraction to the next.
We assume a scenario where the patient completed the first
fraction and thus MRI and treatment plan are available, and
the same implant is used for the next fraction. An automated
workflow using our method would proceed with the follow-
ing steps: (1) Acquisition of control MRI. (2) Export of ini-
tial MRI, treatment plan and control MRI. (3) Execution of
our algorithm to (i) predict applicator segmentations and (ii)
register fixed and moving fraction. (4) Transfer of initial
dose distribution and structures to the resulting MRI. (5)
Adaptation of OAR contours. (6) Evaluation of dosimetric
changes (7) Informed decision if treatment plan needs to
be adapted.

Solutions for steps 4 and 6 already exist in the open-
source domain or could be done in a TPS that allows the
execution of custom scripts. NN have demonstrated
considerable success in predicting OAR structures on MRI



Table A1
All used tandem and ring configurations, and their respective
number of available dwell positions.

Model Applicator configuration: r(ing
diameter) [mm] i(ntrauterine
length) [mm]

n Total number of
dwell positions

Vienna r26i60 25 60
Vienna r30i60 24 64
Vienna r30i40 16 64
Vienna r34i60 16 69
Vienna r26i40 9 50
Venezia r26i60 3 60
Venezia r30i50 2 64
Venezia r30i60 2 64
Venezia r26i50 1 60

Fig. A2. Registration error using predicted applicator mask (see
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and could therefore be used for this purpose [13,39].
Alternatively, OAR contours could be adapted by a physi-
cian in the TPS, which would make the process semi-
automatic, but still more efficient than a fully manual
workflow.

5 Conclusion

The results of this study show that automatic applicator-
based image registration for MR-IGABT could be achieved
by combining classical image registration algorithms with
modern deep learning methods. It was demonstrated that
our automatic workflow achieved the desired accuracy in a
fraction of the time. The presented model would be attractive
as it could be used for different applicator and needle config-
urations. Such automation would represent an important step
towards future applications for routine monitoring of organ
motion during treatment and could help to reduce dosimetric
uncertainties.
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Appendix

See Table A1 and Figure A2.

DM* in Fig.4) stratified by patient orientation components. X: right
to left. Y: Anterior to Posterior. Z: Caudal to Cranial.
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