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ABSTRACT: We introduce a new algorithm for the construction of the two-
electron contributions to the Fock matrix in multilevel Hartree−Fock (MLHF)
theory. In MLHF, the density of an active molecular region is optimized, while the
density of an inactive region is fixed. The MLHF equations are solved in a reduced
molecular orbital (MO) basis localized to the active region. The locality of the
MOs can be exploited to reduce the computational cost of the Fock matrix: the
cost related to the inactive density becomes linear scaling, while the iterative cost
related to the active density is independent of the system size. We demonstrate the
performance of this new algorithm on a variety of systems, including amino acid
chains, water clusters, and solvated systems.

■ INTRODUCTION

The most expensive step in a Hartree−Fock (HF) calculation
is typically the construction of the two-electron contributions
to the Fock matrix. While the formal scaling is N( )4 , where N
is a measure of the system size, it reduces asymptotically to

N( )2 ; only N( )2 integrals are non-zero in the limit of large
N. Furthermore, for sparse density matrices, the number of
numerically significant exchange terms is reduced to N( ),
even if identifying these terms strictly implies a steeper
scaling.1 Much effort has been devoted to lower the quadratic
scaling of the Coulomb term in the Fock matrix. For
sufficiently large N, the Coulomb contributions can also be
calculated in N( ) time.2

One strategy to achieve an N( ) Coulomb matrix is to
introduce hierarchies of fine and coarse grains for close and
remote interactions, respectively. With the Barnes−Hut
method,3 the scaling was lowered to N N( ln ), while the
continuous fast multipole method (CFMM) of White et al.2

was the first scheme to reach linear scaling. Many alternative
tree-like algorithms have since been developed, with the main
goal of reducing the prefactor.4,5 For the exchange term, the
focus has been on efficiently identifying the numerically
significant exchange integrals. The widely adopted LinK
algorithm of Ochsenfeld et al.1 presorts the contributing
integrals while also incorporating permutational symmetry.
Other strategies to further reduce the prefactor have been
suggested.6,7

An important reduction in the time required by the
computation of the two-electron integrals has also been
obtained through the density fitting (DF)or resolution-of-
identity (RI)approximation.8 Applied on the Coulomb term
first,9,10 and later on the exchange component,11 this approach
approximates the four-center electron repulsion integrals by
two- and three-center expressions. The method itself does not

scale linearly with respect to the system size, but it has been
combined with CFMM12 and localized orbitals13 to yield an
asymptotic N( ) scaling. As an alternative to RI, Cholesky
decomposition can be used in the integral approximation.14,15

Graphical processing units (GPUs) have also proven to be
an important asset in the speed-up of the two-electron integral
computation;16 the introduction of double precision support
has allowed for mixed precision approaches that balance
accuracy and GPU performance.17

Once the Fock matrix has been constructed, a self-consistent
field (SCF) algorithm often performs an N( )3 diagonalization
step to obtain the next guess for the molecular orbital (MO)
coefficients. However, due to the sparsity of the atomic orbital
(AO) density matrix, this step can be replaced by an N( )
density optimization.18−21 A purification procedure, such as
McWeeny’s purification,22,23 is used to enforce hermiticity, N-
representability, and idempotency. A detailed review of linear-
scaling SCF methods can be found in Ref 24.
Another strategy to achieve linear-scaling HF is to use

fragmentation methods that divide the full space into boxes or
monomers.25 After the definition of the fragments, an SCF
procedure is typically performed on each of them. The
interaction between fragments can be accounted for in several
ways, such as through overlapping buffer regions around the
fragments.26,27 When the property of interest is localized in a
known region of the system, multiscale and multilevel methods
can be used. The rationale behind these techniques is that one
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canwithout loss of accuracy in the targeted property
restrict the most expensive quantum mechanical treatment to
an active region of the system. The environment is treated
either as a continuum,28−30 at a molecular mechanics
level,31−33 or by using a less expensive quantum mechanical
model.34−41

The multilevel Hartree−Fock (MLHF) method was
introduced by Sæther et al.42 This approach bears some
resemblance to the local SCF method43,44 and is closely related
to the QM/ELMO method recently proposed by Macetti and
Genoni.45

In MLHF, the total density is written as a sum of an active
and an inactive density matrix, where only the active density is
optimized. Interactions with the environment are included
through a constant contribution to the Fock matrix. The
MLHF method is designed for systems where the active region
is small with respect to the full system size, such as solvated
systems or proteins with a well-defined active site. It offers a
reliable reference wave function for reduced space coupled
cluster calculations of intensive properties, where the
correlation treatment is restricted to a set of active MOs.46−48

Due to the active−inactive partitioning, the MLHF
equations can be solved in the space of the localized active
MOs. The cost of diagonalization is therefore independent of
the system size. Furthermore, the locality of the MOs can be
used to reduce the cost of the AO Fock matrix; several terms
do not contribute to the active MO matrix and can be
neglected.42,49 This fact has, however, only been partially
exploited in previous implementations.42,46,50

In this article, we present an efficient MLHF Fock matrix
algorithm that fully exploits the local nature of the active MOs.
The environment density contributions can be calculated at a
cost that scales as N( ), while the iterative cost, consisting of
active density contributions, is independent of the system size.
Our MLHF implementation is based on a conventional direct
HF implementation. We emphasize that any improvement in
HF algorithmssuch as RI or CFMMcan be incorporated
into an implementation of the MLHF method.

■ MLHF THEORY
In MLHF,42 the total density matrix is partitioned into an
active and an environment (or inactive) density, Da and De

= +D D Da e (1)

The active, environment, and total density matrices are
required to separately fulfill the hermiticity, trace, and
idempotency conditions. The environment density is deter-
mined and fixed at the beginning of the calculation, whereas
the active density is obtained by minimizing the HF energy.
Using eq 1, with terms given in the AO basis, we can express

the HF energy for a closed-shell system as

= + + [ ] +D G DE E E h2Tr ( )HF a e
a e

nuc (2)

where

= [ ] + [ ] ∈{ }hD D G DE 2Tr Tr ( ) , x a, ex
x x x

(3)

Here, hnuc is the nuclear repulsion energy, h is the one-electron
Hamiltonian integral matrix, and

∑[ ] = −αβ
γδ

αβγδ αδγβ γδG D g g D( ) (2 )x x

(4)

is the two-electron contribution to the Fock matrix. The two-
electron Hamiltonian integrals are denoted as gαβγδ, where α, β,
γ, and δ are AO indices.
The environment density, De, enters the energy minimiza-

tion through the Fock matrix

= + +F h G D G D( ) ( )a e (5)

By projecting the Fock matrix onto the localized MO basis, we
obtain a set of MO Roothaan−Hall equations that are solved
iteratively to optimize Da. Convergence acceleration can be
achieved through, for example, direct inversion of the iterative
subspace.49,51,52 The h and G(De) terms are computed once at
the beginning of the calculation and transformed to the current
MO basis in every iteration.42,49 Therefore, one only needs to
accurately represent the two-electron contributions in the
active MO basis. In this basis, G(Dx) is given by

∑[ ] = −α β
αβγδ

αβγδ αδγβ γδG D C C g g D( ) (2 )pq p q
x x

(6)

Here, p and q refer to MO indices, and C contains the active
MO coefficients.
The active and inactive orbital spaces can be obtained from

an idempotent starting guess for the total density. A common
starting guess is a superposition of atomic densities53 (SAD),
DSAD. However, DSAD is not idempotent. To fulfill
idempotency, DSAD can be used to build a Fock matrix
which is then diagonalized.42 Due to the sparsity of the SAD
guess, which is block-diagonal, this is an N( )2 Fock matrix
construction with a small prefactor.53 Alternatively, it is
possible to use a more accurate starting guess, such as a
superposition of molecular densities (SMD),54 with methods
like McWeeny’s purification.22,23 The small prefactor of matrix
multiplications can make this N( )3 procedure advantageous
compared to the construction and diagonalization of a Fock
matrix.
To determine the initial active occupied orbitals, we perform

a restricted partial Cholesky decomposition of the initial
idempotent density55,56

∑= +

= +

α βαβ αβ

αβ αβ

D C C D

D D

p
p p

e

a e
(7)

where the index p is restricted to the active occupied MOs.
The decomposition is restricted in the sense that pivoting
elements are required to correspond to AOs on a set of active
atoms.
For the active virtual space, we use projected atomic orbitals

(PAOs).57,58 The PAOs are generated by projecting out the
occupied components (both active and inactive) from the
subset of AOs centered on the active atoms, {α̅}

∑χ χ δ= − [ ]α
β

β βα βα̅ ̅ ̅DS( )PAO

(8)

Since the obtained PAOs are linearly dependent, an
orthonormalization procedure, for example Löwdin ortho-
normalization,59 is required to form non-redundant and
orthogonal PAOs.
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■ LINEAR-SCALING ALGORITHM FOR THE FOCK
MATRIX

The MLHF Fock matrix has two-electron contributions arising
from both the active and the environment density, that is,
G(De) and G(Da). The G(De) matrix is calculated at the
beginning of the calculation and subsequently transformed to
the initial active MO basis. In the SCF procedure, G(De) is
updated to the current MO basis in each iteration through an
MO-to-MO basis transformation. In contrast, G(Da) must be
recalculated in every iteration.
The two-electron contributions, and especially G(De), have

been found to dominate the computational cost in most
MLHF calculations.42,46 However, in previous implementa-
tions of MLHF, these terms were not constructed using
sufficiently optimized Fock matrix algorithms. In the original
algorithm, which was implemented in a local version of
LSDALTON,60 the locality of the active MOs was only
exploited to truncate the AO basis: the AOs that did not
contribute to any of the active MOs were discarded at the
beginning of the calculation. This screening algorithm, since it
only considers contributions to the MOs, does not exploit all
the information available when constructing specific Fock
matrix elements. While the algorithm reduces the asymptotic
scaling, it was found to be ineffective, except for very large
systems.42

The implementation in eT 1.0,46 on the other hand, relied on
a specialized Fock matrix algorithm which made use of the MO
coefficients to skip negligible contributions to G(Da).
However, while this reduced the iterative cost, it did not
strictly change the scaling of the underlying Fock construction
algorithm. It also did not apply screening to the construction of
G(De),46 thus making the non-iterative cost higher than
necessary.
The scaling of G(De) and G(Da) can be reduced to N( )

and (1) by fully exploiting the local nature of the active MOs.
This reduced scaling is readily understood by considering the
restriction of the AO indices to active and inactive sets, as
implied by the G(Dx) expression in eq 6. Here, we define the
set of active AOs as the AOs that contribute to the active MOs,
that is, the AOs that correspond to significant elements in the
active MO coefficients. Note that these active AOs are not only
centered on the active atoms but can also belong to atoms in
the inactive region that are close to the active atoms. Similarly,
we define the set of inactive AOs as those that contribute to the
environment density. The sets of active and inactive AOs
overlap.
Since the coefficients Cαp and Cβq in eq 6 refer to the active

set of MOs, only active α and β (in the sense defined above)
will contribute to G(Dx). In the case of G(Da), the γ and δ
indices in eq 6 are also active due to the Dγδ

a factor. All the AO
indices (α, β, γ, and δ) are thus active, and so the cost of
G(Da) will be (1).
For G(De), the Coulomb and exchange terms must be

considered separately. In the Coulomb contribution

∑[ ] = α β
αβγδ

αβγδ γδG D C C g D( ) 2pq p q
e e

(9)

the γ and δ indices are inactive, but they are also located on
atoms separated by a small distance; otherwise gαβγδ would be
zero. The number of surviving pairs γδ, and consequently the
cost of G D( )e , therefore scales as N( ). On the other hand,
the exchange contribution

∑[ ] = − α β
αβγδ

αδγβ γδG D C C g D( ) pq p q
e e

(10)

can be calculated as (1) because δ and γ are close to the
active indices α and β, respectively; otherwise gαδγβ would be
zero. The localization of the AO indices in the various two-
electron terms is depicted in Figure 1.

The G(De) term can be computed once in the beginning of
the MLHF calculation at an N( ) cost. The iterative cost of
MLHF is dominated by the (1) construction of G(Da). The
scaling is reduced by at least one order compared to
conventional HF, where the Coulomb and exchange terms
have a quadratic and linear-scaling cost, respectively.
The index restrictions required to efficiently calculate these

terms can be determined in a prescreening procedure. In our
implementation, lists of significant shell pairs are prepared
prior to entering the construction loop for the two-electron
contribution to the Fock matrix. These lists are shell-based,
instead of AO-based, because the integrals are computed in
shell batches by Libint 2.61 Prescreening allows us to avoid
looping over negligible terms when calculating the two-
electron contributions, thereby ensuring the correct scaling.
The screening algorithm is designed to calculate contribu-

tions to the MO Fock matrix to a given precision. The
algorithm is based on the observation that an element of the
AO matrix can be neglected when all contributions to the
corresponding MO matrix are below some specified threshold

τ[ ] ← >α βαβ αβγδ γδG D C C g D( )x x
(11)

τ[ ] ← >α βαβ αδγβ γδG D C C g D( )x x
(12)

Here, Cα = maxp|Cαp|, and τ and τ are the Coulomb and
exchange thresholds, respectively. The magnitude of the
integrals is estimated using the Cauchy−Schwarz inequality

| | ≤αβγδ αβαβ γδγδg g g1/2 1/2
(13)

For compatibility with the integral program,61 these conditions
are implemented for shells rather than individual AOs. When
expressed in terms of AO shells {si}, and with Cauchy−
Schwarz estimates for the integrals, the conditions in eqs 11
and 12 become

τ>C C g g D( )s s s s s s s s
1/2 1/2 x

1 2 1 2 2 4 3 4 (14)

τ>C C g g D( )s s s s s s s s
1/2 1/2 x

1 3 1 2 3 4 2 4 (15)

where we have defined the shell-based quantities

=
α∈ β∈ αβαβg gmaxs s s s

1/2

,

1/2
1 2

1 2 (16)

Figure 1. Localization of the AO indices in the Coulomb and
exchange contributions. In the Coulomb contribution to G(De), the α
and β indices are active, in the sense that they contribute to the active
MOs, whereas γ and δ are inactive. For G(Da), and the exchange
contribution to G(De), all AO indices are active.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00299
J. Chem. Theory Comput. 2021, 17, 7416−7427

7418

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00299?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00299?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00299?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00299?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00299?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= | | =α α
α∈ α∈

C C Cmax maxs
s p

p
s,1

1 1 (17)

= | |
α∈ β∈

αβD Dmaxs s
s s,1 2
1 2 (18)

In the following, we will also make use of the quantities

=g gmaxs s s s
1/2 1/2
1

2
1 2 (19)

=g gmax
s s s s

1/2 1/2

1 2
1 2 (20)

=D Dmaxs
s

s s1
2

1 2 (21)

=D Dmax
s s

s s
,1 2

1 2 (22)

=C Cmax
s

s
1

1 (23)

The active MOs determine which G(Dx) contributions are
negligible. When the screening is applied to G(Da), we always
use the current active MOs. On the other hand, when it is
applied to G(De), we use the initial active MOs. As a result, the
introduced error in G(De) is proportional to, and not bounded
by, the threshold. In practice, it is sufficient to use the same
thresholds without a significant loss of accuracy.
The screening conditions in eqs 14 and 15 assume

information about the four shells s1, s2, s3, and s4, which is
only available in the inner-most loop of a Fock matrix
construction. An efficient implementation, however, must
exploit the information available at any given level of the
nested loop. This is accomplished using a set of looser
screening conditions, derived from eqs 14 and 15, where all
information available at a given level is used to screen out
negligible terms.
The procedures used to calculate the Coulomb and

exchange terms are given in algorithms 1 and 2. In both
algorithms, the first step is to determine the set of shell pairs
s1s2 that correspond to non-negligible two-electron integrals.
The significant shell pair list

τ= { > }s s g g: s s1 2
1/2 1/2
1 2 (24)

is prepared at the beginning of the MLHF calculation. Here, τ
is an integral cutoff threshold, while gs s

1/2
1 2

and g1/2 are defined in

eqs 16 and 20, respectively. In the outermost loop, over the s1s2
in , we can use screening conditions derived from eqs 14 and
15 for the given s1 and s2 (see line 3 of algorithms 1 and 2).
Note that these conditions also take into account permuta-
tional symmetry. A shortened list of significant shell pairs s1s2 (
) is thus constructed, in addition to a list of the significant s1

( ) and a list of significant s2 for each s1 ( s1
). The dimensions

of , , and s1
all scale linearly with the size of the system for

G D( )e and are constant for G D( )e and G(Da). This
prescreening step is detailed in lines 2−9 of algorithms 1
and 2.
The elements of are ordered in different ways for G D( )x

and G D( )x . To allow for an early exit in the G D( )x

algorithm, the ordering follows the magnitude of the g Cs s
1/2
i i

products. In the G D( )x case, the desired scaling is already
achieved, and is sorted in the ascending order. The s1

list is

ordered according to ascending s2 to efficiently exploit
permutational symmetries (see lines 23 and 19 in algorithms
1 and 2).

In the construction loop for G D( )x and G D( )x , we first
loop over ∈s s1 2 and ∈s3 . At this point, we can formulate
screening criteria, from eqs 14 and 15, for the given s1, s2, and
s3. These criteria are used to either exit the s3 loop or to cycle
to the next s3; see lines 14 and 17−20 in algorithm 1 and lines
15−16 in algorithm 2. When the inner-most s4 loop is reached,
all the shells are known. Therefore, the Coulomb and exchange
conditions in eqs 14 and 15 can be used, though some minor
modifications are required to account for permutational
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symmetry; see lines 24−25 in algorithm 1 and lines 20−21 in
algorithm 2.
It is also possible to compute G D( )x and G D( )x in the

same construction loop. In this case, we use the structure in
algorithm 1, but the exchange conditions given in algorithm 2
are added in the corresponding loops.
Our discussion so far has focused on the scaling of the

G(Dx) construction loops. In general, the prescreening steps
scale more steeply. In both algorithms 1 and 2, the
prescreening loop scales linearly with the system size. In the
case of G D( )e , the reordering scales as N N( ln ), while it is
independent of the system size for G D( )e and G(Da).
Furthermore, some of the quantities in eqs 16−23 have a cost
that scales quadratically, albeit with small prefactors. However,
for the systems we are targeting (103 to 105 AOs), their cost is
negligible when compared to the cost of constructing the Fock
matrix.
An overview of the computational scaling of terms related to

G(Dx) is given in Table 1; in particular, the table shows the

effects of the C-screening. Furthermore, it presents the scaling
of the prescreening lists g1/2 and D, as well as terms related to
the construction of the SAD Fock matrix.
There are additional steps which may scale more steeply

than the terms in Table 1. At the beginning of the MLHF
calculation, linear dependence is eliminated from the AO basis
by N( )3 Cholesky decomposition (or, alternatively, by
diagonalization) of the overlap matrix. The one-electron
Hamiltonian integrals are also computed at this stage; this

N( )2 step has a small prefactor and can be made linear with
the same multipole strategies that have been developed for the
Coulomb matrix in HF theory.24 These non-iterative steps are
the same as in standard HF. The MLHF procedure also
includes a non-iterative step to determine the initial active
orbitals, a procedure which is N( )2 scaling.

In addition to the cost of G(Da), and the related
prescreening steps, the iterative cost of MLHF includes the
cost of adding the elements [G(Da)]αβ to the AO Fock matrix,
as well as the subsequent AO-to-MO transformation. These
steps are N( )2 scaling processes. The Roothaan−Hall
optimization is performed in the MO basis and therefore
does not entail any steps that scale with the size of the system.
The initial Roothaan−Hall diagonalization of the SAD Fock
matrix, however, is performed in the AO basis and is therefore
an N( )3 step. However, for the systems we are targeting, the
computational cost is invariably dominated by the construction
of G(De) and G(DSAD).
OpenMP parallelization is applied to the outer index s1s2 of

the main construction loops in algorithms 1 and 2. Each thread
can either have its own copy of the Fock matrix or add
calculated contributions to a shared copy. With a copy for each
thread, one avoids the overhead resulting from threads having
to wait for access to memory locations. The memory penalty of
keeping a copy for each thread may become a bottleneck for
sufficiently large systems. One approach to remove this
memory bottleneck is to have a number of threads share a
copy of the Fock matrix.62 An alternative is to compress the
Fock matrix,63 so that every thread can hold a copy.
In the MLHF approach, the selection of the significant

elements for the compressed Fock matrix can be performed
using the same screening conditions applied in algorithms 1
and 2. This results in an asymptotically non-scaling memory
requirement for the copies of the Fock matrix in MLHF. In
HF, on the other hand, the memory requirement is
asymptotically linear with respect to the system size when
the density matrix is sparse. In this paper, compression is
adopted when the memory requirement becomes a limiting
factor.

■ RESULTS AND DISCUSSION
Algorithms 1 and 2 have been implemented in a development
version of the eT program.46 We use a Cholesky decomposition
to obtain the occupied orbital space and PAOs to obtain the
virtual active MOs. A threshold of 10−1 is used for the
Cholesky decomposition. In all calculations, we apply a
gradient threshold of 10−6, giving default values for τ and
τ equal to 10−12 and 10−10, respectively. The different
thresholds are all expressed in atomic units.
Unless otherwise stated, the initial idempotent density guess

is obtained from SAD through a diagonalization of the
corresponding Fock matrix.
All geometries can be found in ref 64, and we use UCSF

Chimera65 to visualize them.
Scaling Properties. The scaling properties of the

implementation are demonstrated on two sets of model
systems: linear chains of amino acids, constructed by repeating
the unit shown in Figure 2, and water clusters of increasing
radius, the smallest of which is shown in Figure 3.
For the amino acid chain, we define the alanine at the N-

terminal as active and use both the cc-pVDZ and aug-cc-pVDZ
basis sets. The timings for the Coulomb and exchange
contributions to G(DSAD), G(De), and G(Da) are given in
Tables 2 and 3 and depicted in Figure 4. The tables highlight
the improvement in the scaling due to the C-screening.
Without the C-screening, the active density reduces the scaling
by a factor of N, but the information in the active MO
coefficients is not exploited. This results in G D( )a scaling

Table 1. Computational Scaling of Terms in the MLHF
Implementation, with and without Screening with Respect
to the MOs (C-Screening)

computational scaling

step
no

C-screening C-screening

prescreening N( )2 N( ) iterative

prescreening N( ) N( ) iterative

, s1 reordering (G D( )e ) N N( ln ) iterative

, s1 reordering (G D( )e ,
G(Da))

(1) iterative

G D( )e N( ) (1) non-iterative

G D( )e N( )2 N( ) non-iterative

G D( )a (1) (1) iterative

G D( )a N( ) (1) iterative

G D( )SAD N( ) non-iterative

G D( )SAD N( )2 non-iterative

g1/2 list N( )2 non-iterative

D lists N( )2 iterative
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linearly with the size of the system, while G D( )a is
independent of the system size. For G(De), since the density
is not localized to the active shells, the scaling is the same as in
a general Fock matrix construction, that is, for non-C-screened
algorithm, the Coulomb term scales quadratically and the
exchange term scales linearly. The results in Tables 2 and 3
and Figure 4 show that the C-screening implementation
reduces the costs for all two-electron contributions to the Fock
matrix and reduces the scaling for G D( )a and G(De).
As mentioned before, the C-screening, like all screening

methods based on the overlap of orbitals, performs better with
non-diffuse basis sets. However, these results show that the

N( ) scaling can be reached with both basis sets. The wall
time for the prescreening steps and for some relevant non-
iterative procedures in the calculations is reported in the
Supporting Information.

The calculations on the amino acid chains illustrate the
behavior of the algorithm for a one-dimensional system. Since
many systems of interest are three-dimensional, we also
consider the scaling properties on water clusters where the
central water molecule is active. Several combinations of basis
sets have been selected; in the following, the notation x/y (e.g.,
aug-cc-pVDZ/STO-3G) is used to denote that the active water
molecule is treated with the basis x and the environment with
the basis y.
Wall time for aug-cc-pVDZ/STO-3G calculations is shown

in the first row of Figure 5. When the environment is treated
with a minimal basis, the calculations rapidly exhibit the
correct scaling, even if diffuse basis functions are used on the
active atoms. This may be of some practical importance since
the active atoms must have diffuse functions for correlated
methods to predict intensive properties with quantitative
accuracy. Furthermore, an adequate frozen environment
density may not require a high-quality basis set.
In the last two rows of Figure 5, we report the wall time with

the aug-cc-pVDZ/cc-pVDZ and aug-cc-pVTZ/cc-pVDZ basis
set combinations. The computational cost of the G D( )a and

G D( )a terms is approximately constant with respect to the

cluster size. On the other hand, the G D( )e term has a scaling

in-between N( ) and N( )2 , and the G D( )e term scales as
N( ). The observed scaling is thus different from the

asymptotic scaling of these terms. Due to the larger number
of AOs per atom, these are calculations on smaller water
clusters than those with the STO-3G environment. Hence,
these calculations show that one must extend the environment
further to reach the asymptotic scaling. Despite this, the time
to construct G(De) still becomes smaller than the time
required to construct G(DSAD) when the system exceeds
15 000 AOs. The non-iterative cost is therefore dominated by
the G(DSAD) in the largest systems. Tables with the wall time
are given in the Supporting Information.

Comparison to HF. The MLHF method has already been
shown to be significantly cheaper than standard HF.42,46 The
C-screening detailed in algorithms 1 and 2 reduces the cost and
scaling of MLHF even further.
We illustrate these savings by performing MLHF and HF

calculations on the system shown in Figure 3, treated with the
aug-cc-pVTZ/cc-pVDZ basis set combination. The wall time
for the G(Dx) terms (tx), which completely dominate the
corresponding Fock matrix constructions, is given in Table 4.

Figure 2. Shortest amino acid chain used in our calculations. The
active atoms (those of the alanine at the N-terminal of the chain) are
highlighted in blue.

Figure 3. Smallest cluster of water molecules used in our calculations.
The active water molecule is highlighted in blue.

Table 2. Wall Time for MLHF/cc-pVDZ Calculations on the Linear Amino Acid Chainsa

no C-screening C-screening

G(DSAD) G(De) G(Da) G(DSAD) G(De) G(Da)

#AOs t t t t t t t t t t t t

1254 7 1 54 29 22 7 7 1 24 4 4 2
2484 29 2 226 75 51 7 29 2 56 4 4 2
3714 65 3 508 119 79 7 65 3 86 4 4 2
4944 115 4 887 175 107 7 114 4 120 4 4 2
6174 179 5 1448 208 134 7 180 5 152 4 4 2
7404 273 6 2040 249 166 7 261 6 181 4 4 2
8634 352 8 2797 300 193 7 348 7 220 4 4 2
9864 470 9 3657 336 220 7 460 8 253 4 4 2

aThe timings are expressed in seconds without and with C-screening. All calculations were performed on two Intel Xeon-Gold 6138 processors
with 20 cores each with 160 GB memory available.
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The total wall time for the full calculations, ttot, is also reported.
Compared to the MLHF implementation without C-screening,
the total wall time ttot is reduced by approximately a factor of 3.
With respect to standard HF, ttot is reduced by approximately a
factor of 5. In particular, the C-screening reduces te by a factor
of 2.5 and ta by a factor of 4 for G(Da). The timings for
G(DSAD) are reported for reference, but are, as expected, the
same in the three calculations.

It should be emphasized that the computational savings
compared to non-screened MLHF and standard HF depend on
the basis set. In particular, the addition of diffuse functions to
the basis set has a significant impact on the screening.
Although the screening becomes effective at a sufficient
distance from the active region, this distance may be quite
large. For large basis sets with many diffuse functions, other

Table 3. Wall Time for MLHF/aug-cc-pVDZ Calculations on the Linear Amino Acid Chainsa

no C-screening C-screening

G(DSAD) G(De) G(Da) G(DSAD) G(De) G(Da)

#AOs t t t t t t t t t t t t

2112 28s 10s 10 8 8 5 29s 10s 8 5 4 3
4183 2 22s 44 27 23 8 2 23s 23 6 5 3
6254 5 37s 102 46 36 8 5 36s 37 6 5 3
8325 8 49s 179 66 50 8 8 48s 55 6 5 3
10396 13 1 282 87 63 8 14 1 69 6 5 3
12467 19 1 411 109 79 8 20 1 83 6 5 3
14538 27 1 562 133 96 8 27 1 101 6 5 3
16609 36 2 754 150 112 8 36 2 117 6 5 3

aThe timings are expressed in minutes when not stated otherwise, without and with C-screening. All calculations were performed on two Intel
Xeon-Gold 6138 processors with 20 cores each with 160 GB memory available.

Figure 4. Wall time for MLHF calculations on the linear amino acid chains, with C-screening. All calculations were performed on two Intel Xeon-
Gold 6138 processors with 20 cores each with 160 GB memory available.
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strategiesfor example, RI or Cholesky decomposition
could be incorporated into an MLHF implementation.
Validating the Screening Algorithm with CC2

Excitation Energies. Our implementation applies C-screen-
ing on both active and inactive electron repulsion terms. In this
section, we demonstrate that the results are insensitive to the
use of the C-screened MLHF wave function as a reference in
post-HF calculations of intensive properties.
We present CC2 excitation energies of different moieties in

aqueous solution, obtained with and without C-screening. The

systemsSO2, 4-aminophthalimide, and para-nitroaniline in
waterare depicted in Figure 6. In all cases, the solute is
chosen as active and treated with aug-cc-pVDZ, while the
surrounding water molecules are treated with cc-pVDZ. Table
5 shows that the C-screening does not affect the computed
excitation energies.

Density Purification and Memory Compression for
Large Systems. For large systems, the memory required to
keep a copy of the AO Fock matrix for each OpenMP thread
can become impractical. Additionally, the G(DSAD) con-

Figure 5. Wall time for MLHF calculations on clusters of water molecules of increasing radius, with C-screening. All calculations were performed
on two Intel Xeon-Gold 6138 processors with 20 cores each. The calculations with the environment treated with STO-3G were given 160 GB
memory; the calculations with a cc-pVDZ environment were performed with 360 GB memory available.
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struction can become the bottleneck since it scales as N( )2

with a significant prefactor. To avoid the G(DSAD) step and the
diagonalization of the corresponding Fock matrix, we make use
of McWeeny’s purification22,23 on an SMD starting guess.54

The memory usage for G(De) and G(Da) is reduced by
applying compression63 to the copies of the Fock matrix.
We use these strategies on erythromycin-in-water systems,

treated with aug-cc-pVTZ/cc-pVDZ. The smallest system, with
42 119 AOs, is depicted in Figure 7. In Table 6, we report
timings for the SMD guess tSMD, the purification tpur, the
memory compression tcom, and the G D( )e , G D( )e , and
G(Da) terms, along with the required memory of a single
copy of the compressed matrices. Note that the calculations
were carried out on two different machines (A and B), so that
the timings cannot be directly compared. The compression
scheme entails a computational penalty; however, it makes it
possible to reach systems with more than 105 AOs.
The cost of memory compression for the exchange term is

non-negligible. However, this compression step does not scale
with the system size. The cost is mainly due to the lack of
OpenMP parallelization. The calculations are still dominated
by the Coulomb term. Timings for the Coulomb compression
step are not reported as it requires less than a minute in all
calculations. This compression scales as N( ) for G D( )e , and
as (1) for G D( )a , so its cost will always be negligible
compared to other terms.
Due to the need to hold in memory some NAO

2 matrices, the
memory requirement of the full calculation scales quadrati-
cally; in the largest system, a peak memory usage of 518 GB
was reached. The memory usage for the compressed Fock
matrices is small and scales as (1) with the system size.
From Table 6, we see that the cost of the SMD construction

is significant. It is dominated by the HF calculation on
erythromycin. While solvated systems are trivially separated
into subsystems, large covalently bound systems require a

fragmentation procedure. This would also reduce the cost of
SMD for erythromycin-in-water.

■ SUMMARY AND CONCLUDING REMARKS
We have introduced a new algorithm for the two-electron
contributions to the Fock matrix in the MLHF method. This
algorithm exploits the locality of the active MOs to efficiently
screen contributions to the active MO Fock matrix. We achieve

N( ) scaling for the construction of G D( )e and (1) scaling
in the G D( )e and G(Da) terms. Although the MLHF
implementation includes steps that scale more steeply, the
Fock matrix construction dominates the iterative and overall
costs of calculations on systems with up to 104 to 105 AOs.
To demonstrate the scaling of the implementation, we have

presented a number of calculations on one- and three-
dimensional systems of increasing size. The efficiency of the
implementation was also tested on a water cluster, which
provides an illustration of the savings relative to non-screened
MLHF and HF. Our algorithm involves additional screening
based on the MOs with respect to previous algorithms. We
have therefore tested its accuracy by performing excited-state
CC2 calculations.
Since the memory required to hold a copy of the AO Fock

matrix for every OpenMP thread increases as N( )2 , the
memory usage can become the limiting factor for large
systems. At the same time, in these systems the N( )2 SAD
Fock matrix construction dominates the computational cost.

Table 4. Wall Time, Expressed in minutes, for MLHF and
HF Calculations on a Water Cluster with a 10 Å Radiusa

method tSAD (min) te (min) ta (min) ttot (min)

MLHF C-screening 1 4 2 12
MLHF no C-screening 1 10 8 40
HF 1 10 57

aThe times to construct G(DSAD), G(De), and G(Da) of the first
iteration are denoted as tSAD, te, and ta. ttot is the total wall time of the
full calculation. The aug-cc-pVTZ/cc-pVDZ combination of basis sets
is used, and there are 3236 AOs. The calculations were performed on
two Intel Xeon Gold 6152 processors, with 44 threads and 1.4 TB
memory available.

Figure 6. Three solvated moietiesSO2, 4-aminophthalimide, and para-nitroanilinetreated at the CC2-in-MLHF/HF level. The solute is active
in MLHF.

Table 5. CC2-in-MLHF/HF Excitation Energies, Obtained
Using aug-cc-pVDZ on the Active Atoms and cc-pVDZ on
the Inactive Atoms

C-screening (eV) no C-screening (eV)

SO2 + water 3.236 3.236
4-aminophthalimide + water 3.845 3.845
para-nitroaniline + water 4.036 4.036

Figure 7. Smallest erythromycin-in-water system used in our
calculations. The active erythromycin molecule is highlighted in blue.
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We have therefore combined the two-electron integrals
screening with memory compression of the Fock matrix63

and McWeeny’s purification22,23 of an SMD starting guess,54 in
order to reach larger system sizes. Calculations on
erythromycin-in-water systems with up to 100 000 basis
functions have been performed.
In the limit of large N, the cost to construct G(De) becomes

effectively independent of the system size. This is because of
the long-range decay of the Coulomb interactions, which is
used in HF theory to reduce the asymptotic Coulomb matrix
scaling from N( )2 to N( ).24 For the Coulomb contribution
of G(De), the N( ) scaling similarly reduces to (1). This is
not to say that all costs are independent of the system size: as
in other Fock construction algorithms, there may be
preparation steps that scale more steeply. Possible further
improvements could include an adaptation of the well-
established CFMM method,2 as well as a combination of the
MLHF approach with DF8 or Cholesky decomposition.14,15
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