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Abstract

Background: DNA chips allow simultaneous measurements of genome-wide response of thousands of genes, i.e. system
level monitoring of the gene-network activity. Advanced analysis methods have been developed to extract meaningful
information from the vast amount of raw gene-expression data obtained from the microarray measurements. These
methods usually aimed to distinguish between groups of subjects (e.g., cancer patients vs. healthy subjects) or identifying
marker genes that help to distinguish between those groups. We assumed that motifs related to the internal structure of
operons and gene-networks regulation are also embedded in microarray and can be deciphered by using proper analysis.

Methodology/Principal Findings: The analysis presented here is based on investigating the gene-gene correlations. We
analyze a database of gene expression of Bacillus subtilis exposed to sub-lethal levels of 37 different antibiotics. Using
unsupervised analysis (dendrogram) of the matrix of normalized gene-gene correlations, we identified the operons as they
form distinct clusters of genes in the sorted correlation matrix. Applying dimension-reduction algorithm (Principal
Component Analysis, PCA) to the matrices of normalized correlations reveals functional motifs. The genes are placed in a
reduced 3-dimensional space of the three leading PCA eigen-vectors according to their corresponding eigen-values. We
found that the organization of the genes in the reduced PCA space recovers motifs of the operon internal structure, such as
the order of the genes along the genome, gene separation by non-coding segments, and translational start and end
regions. In addition to the intra-operon structure, it is also possible to predict inter-operon relationships, operons sharing
functional regulation factors, and more. In particular, we demonstrate the above in the context of the competence and
sporulation pathways.

Conclusions/Significance: We demonstrated that by analyzing gene-gene correlation from gene-expression data it is
possible to identify operons and to predict unknown internal structure of operons and gene-networks regulation.
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Introduction

Microarray technology produces vast amounts of raw data

regarding the system-level response of the genome. Advanced

analysis methods were devised to extract meaningful information

from gene expression data, most of which focused on distinguish-

ing between groups of subjects (e.g., cancer patients vs. healthy

subjects) or identifying the most relevant genes that help to

distinguish between those groups-marker genes that exhibit

distinct up- or down-regulation.

Current DNA-expression data analysis methodologies can be

divided into supervised approaches, which aim to determine genes

that fit a predetermined pattern; and unsupervised approaches,

which aim to characterize the components without a priori

assumptions. Supervised methods are usually used to find

individual genes, like in the nearest neighbor approach [1], and/

or multiple genes, like in decision trees [2], neural networks [3],

and support vector machines [3], [4]. Unsupervised methods are

usually based on cluster analysis [5–10]. Several algorithmic

techniques were previously used in clustering gene expression data,

including hierarchical clustering [11], self-organizing maps [12],

K-means [13], simulated annealing [14], and graph theoretic

approaches such as HCS [15], CAST [16], CLICK [17] and bi-

clique identification algorithm [18]. The study presented here was

aimed to extract information about the functional (activity)

relations between genes, to elicit functional sub-groups of genes

and to reveal function-form motifs in an unsupervised way.

The guiding idea was that such information is embedded in the

similarities (here we use Pearson correlations but other methods of

similarity can also be used [19], [20]) between the expression
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profiles of different genes in response to different growth

conditions and/or different stages of growth. Therefore, we

devised an approach that is based on the analysis of gene-gene

correlation matrices rather than analyzing the matrices of gene

expression levels. In this regard our approach differs from other

unsupervised clustering techniques-it is aim to reveal hidden

properties of the network investigated and not just similar

properties.

We present the new approach by analyzing a database of gene

expression for a specific example in which Bacillus subtilis were

exposed to sub-lethal levels of antibiotics [21]. The gene-

expression levels were monitored in response to 37 different kinds

of antibiotics and at 3 time points after the exposure. We also note

that, though we focus in this work on analyzing the matrices of

correlations between genes (the gene correlation matrices),

important information can also be extracted, in principle, by

analyzing the matrices of correlations between the responses to the

different antibiotics, as we will show elsewhere.

The first step in the analysis is to evaluate, from the gene-

expression data, the corresponding matrices of gene correlations.

Here we employed the widely-used Pearson correlation method

[22] that normalizes the correlations according to the standard

deviations of the expression profile of each gene. The correlation

matrices are then investigated using the functional holography

(FH) method (discussed in detail in the next section and in

Appendix S1). Second, in order to capture system level motifs, the

FH method includes collective normalization of the correlations

(according to the correlations of each gene with all the others).

Third, the matrices of normalized correlations are then analyzed

using dimension reduction algorithms (here we use the Principal

Component Analysis algorithm–PCA [23]) to extract the most

relevant information. Next, to reveal functional motifs–functional

relations between genes–the genes are projected on a reduced 3-

dimentinal space whose axes are the three leading principal

components (PCs) of the PCA. We note that projection on a lower

dimension space of PCs is a common practice in investigations

using clustering approaches [24]. Last, a new element in the FH

analysis is that apart from the projection on a three dimensional

(3-D) space, we also draw lines between pairs of genes in the

reduced space, color-coded according to the values of the

Figure 1. Gene expression data matrix. The expression matrix shows part of the data set [21]. This part includes the response signal of selected
59 genes to the 37 different antibiotics at 3 time points (10, 40 and 80 minutes). The matrix is organized so that each row corresponds to a specific
gene. The genes [29] are sorted according to the operons they belong to. Columns 1–3 show the response to the first antibiotic at the three time
points, columns 4–6 the response to the second antibiotics at the 3 time points, and so on. The particular 59 genes whose responses are shown here
were selected since they belong to well known and functionally important operons.
doi:10.1371/journal.pone.0002708.g001
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correlations between the two genes. Doing so enables to retain

relevant information embedded in the higher dimensions that can

be lost in the dimension reduction. For example a link between

genes that belong to distinct clusters in the 3-D space indicate

functional connectivity in the higher dimensions. We also show

that that the method enables to reveal inhibitory relations between

genes that are reflected in negative correlation links.

As was mentioned above, for crucial evaluation of the new

approach, we decided to apply it for gene-expression data of B.

subtilis. The reason was that these bacteria have relatively complex

genome, for which the complete DNA sequence is available,

accumulated knowledge about the gene functions, exists, and the

organization of genes into operons is known [25–30].

We tested the ability of the approach to identify, from the gene-

expression data, the organization of genes into operons. These

functional units in the genome are composed of one or more genes

co-transcribed into one polycistronic mRNA–a single mRNA

molecule that codes for more than one protein. The basic structure

of an operon includes a promoter, an operator and a terminator;

however, some operons (like the examples we show here) can also

have quite complex internal functional organization [31]. At the

macroscopic scale, operons are organized as a network connected

by regulators that control, as many other biological networks, joint

biological functions and pathways.

Recent advancement of experimental methods induced a rapid

increase in the available detailed information about the various

genes clustered in the operon system. However, knowledge is still

lacking about the functional principles that govern the relationship

between function and internal structure of operons as well as inter-

operon regulation. We demonstrate that our analysis method can

extract such information from gene-expression data.

We show that, when projecting the genes of each operon onto

the 3-dimentional space according to their correlations with the

other genes, they tend to form distinct clusters. Furthermore, the

order of the genes within the clusters corresponds to the known

form motifs of the operon (for operons whose internal structure is

known) such as gene sequential order along the genome, gene

separation by non-coding segments, and translational start and

end regions. For operons whose structure is partially known, the

analysis can elicit additional intra-operon form motifs from the

measurements of the gene-responses. This approach is also

capable of exposing inter-operon relationships, like operons with

functional similarity, operons that share functional regulation

factors, etc. In particular, we demonstrate the detection of

activators and inhibitors for the competence and sporulation

pathways.

Methods

Gene-Expression Data
Gene Expression data was downloaded from GPC-biotech’s

website: http://www.gpc-biotech.com/. The expression database

constructed by Hutter et al. [21] presents a survey of gene

expression profiling for in vivo analysis of the mechanisms of

actions (MoAs) of antibacterial compounds. The database

contained the transcriptional response of 4204 genes of Bacillus

subtilis 168 following treatment with 37 antibacterial agents at

three time points. The antibacterial agents were divided into six

groups according to the cellular functions they affect including: cell

wall biosynthesis, DNA topology, fatty acid biosynthesis, folate

biosynthesis, protein biosynthesis and membrane-active com-

pounds and ionophores. The bacteria were treated with sub-lethal

(referred to in the literature also as sub-inhibitory) concentrations

of each compound, i.e. at concentrations that affect the growth but

do not completely halt it. RNA from each sample of treated

bacteria was purified and labeled, according to the research

protocol, and hybridized on a genome array generated by the

research group. A list of B. subtilis operons and their genes was

extracted from the DBTBS: database of transcriptional regulation

in B. subtilis (http://dbtbs.hgc.jp/ [32]) The B. subtilis gene signals

under the various antibiotics conditions are organized in a matrix–

each row is the vector of gene response signals to the different

antibiotics taken at the 3 time points, as illustrated in Figure 1 and

Table 1.

The Functional Holography Analysis
The Functional Holography (FH) approach was introduced by

Baruchi et al., [33–35] for analysis of recorded human brain

activity. The term hologram stands for ‘‘whole’’—holo in Greek,

plus ‘‘information’’ or ‘‘message’’—gram in Greek. The article

illustrated the ability of a method to capture hidden motifs in the

complex activity of neural networks and in recorded brain activity.

However, the same methodology can be applied to other

biological networks. In the coming paragraphs and in Appendix

S1, the main features of the FH methodology and its application to

the gene network will be discussed.

The Functional Holography analysis begins with the computa-

tion of the of gene-gene Pearson correlations matrix that

corresponds to the gene expression matrix. We calculate the

Pearson correlation [22] C(i,j) between the vectors Xi(n) and

Xj(n)–the expression profiles of genes (i) and (j) for all conditions.

Using this terminology, the Pearson correlation coefficient

between genes (i) and (j) is given by:

C i,jð Þ~
S Xi nð Þ{mið Þ Xj nð Þ{mj

� �
T

sisj

ð1Þ

The index n stands for the different antibiotic condition–all the

antibiotics at the three time points according to the order

described in Figure 1 and Table 1. The variables mi and si are

the mean value and the standard deviation of subject profiles (i)

and (j), respectively. For illustration, the correlation matrix that

Table 1. A description of the operons and their genes.

Operon
Name 1-argC 2-comGA 3-ybcO 4-xtmA 5-dltA 6-purE 7-sboA

Genes argC comGA ybcO xtmA dltA purE sboA

argJ comGB ybcP xtmB dltB purK alba

argB comGC ybcS xkdE dltC purB albB

argD comGD ybcT xkdF dltD purC albC

carA comGE ybdA xkdG dltE purS albD

carB comGF ybdB xkdH purQ albE

carB comGG ybdD xkdI purl albF

argF yqzE ybdE xkdJ purF albG

xkdK purM

xkdM purN

purH

purD

The particular 59 genes whose responses to the 37 antibiotics are shown in
Figure 1 were selected since they belong to well known and functionally
important operons.
doi:10.1371/journal.pone.0002708.t001

Genome Holography
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corresponds to the expression matrix of the 59 selected genes

(Figure 1) is shown in Figure 2 unsorted (the genes are randomly

ordered), after unsupervised sorting (the correlation matrix is

sorted using the dendrogram algorithm [36]), and after supervised

sorting (the genes are ordered according to the operons). The

Pearson correlation coefficient takes values from 21 (strong anti-

correlation) to +1 (strong positive correlation). To facilitate the

computations described below, we transformed the values from the

range [21,+1] to the range [0,1]. Hence we note that small values

correspond to strong negative correlations.

Figure 2. The gene correlation matrix: We show three representations (different ordering) of the gene correlation matrix for the 59
selected genes whose expression matrix is shown in figure 1. Both axes represent genes, but on the x-axis the genes are numbered to ease
visualization. The Pearson correlation coefficient can be assigned values from 21 (strong anti-correlation) to +1 (strong positive correlation). Here we
transformed the values from the range [21,+1] to the range [0,1], so small values correspond to strong negative correlations. (A) The unsorted
(arbitrary gene order) correlation matrix. (B) An unsupervised, sorted matrix using the dendrogram clustering algorithm [30]. (C) A supervised sorted
matrix in which the genes are ordered according to the operons they belong to. In both cases, the operons form distinct clusters in the sorted matrix.
doi:10.1371/journal.pone.0002708.g002

Genome Holography
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The results show that distinct clusters are formed according to

the operon classification. This implies that the correlation matrices

efficiently capture the intrinsic properties of the dataset that are

less transparent in the expression matrices.

Collective normalization. The approach also includes

collective normalization or affinity transformation, discussed in

details in [33–35]. We note that while the collective normalization

helps to make the functional motifs more transparent in some

cases, it is not an essential aspect of the analysis. Here, for the case

of gene expression analysis, we found it best to perform the

collective normalization using the meta-correlations MC(i,j).

Where MC(i,j) is the Pearson correlation between the

correlations of genes (i) and (j) with all other genes.

Mathematically it is the correlation between rows (i) and (j) in

the correlation matrix C after reordering. In the reordering

process, the elements C(i,i) and C(j,j) are removed from the

calculation. The correlation vector for (i) is {C(i,j), C(i,1),

C(i,2),…}, and for (j) it is {C(j,i), C(j,1),C(j,2),…}. Using the

meta-correlation normalization we obtain the normalized gene

correlation matrix, A(i,j) given by:

A i,jð Þ~C i,jð Þ:MC i,jð Þ ð2Þ

The collective normalization was motivated by the idea that it can

help reveal hidden collective motifs by amplification of sub-groups

of strongly correlated genes and attenuation of functional relations

within and between the sub-groups.

In Figure 3 we present the matrix of normalized correlations

that corresponds to the correlation matrix shown in Figure 2. We

present both the supervised sorted matrix and the unsupervised

sorted one. We note that the separation into distinct operons is

more pronounced in the matrix of normalized correlations. More

specifically, the ratio R between the averaged intra- and inter-

operon correlations for the correlation matrix is R = 0.204, and for

the matrix of normalized correlations R = 0.357. The fraction of

information (relative variance) in the first three principal

components was 0.85 for the correlation matrix and 0.85 for the

normalized correlation matrix, thus the normalization improves

the clustering process while preserving the information from the

signal. The advantages of working with the normalized correlation

versus the signal can also be seen when applying unsupervised

clustering such as the dendrogram algorithm (Appendix S1 and

[36]) on both matrices, as shown in Figure 4. The signal matrix

has four mismatches while the normalized correlation has none.

For additional check, we performed the analysis was done with K-

mean clustering algorithm [13] and results with similar inferiority

to the signal matrix dendrogram [36] were obtained.

Dimension reduction. The third step in the FH analysis

process aims to extract the most relevant information embedded in

the normalized correlation matrix by applying a dimension

reduction algorithm (Appendix S1). Here we used the Principal

Component Analysis (PCA) algorithm [23] but other dimension

reduction (clustering) algorithms can also be used [37], [38]. For

visual representation of the functional motifs, the genes are located

in a reduced 3-dimensional (3-D) PCA space whose axes are the

three leading principal vectors (PC1, PC2 and PC3) of the PCA

algorithm (of the corresponding covariance, matrix). Each gene (i)

is located in the 3-D PCA space at a point {l1(i), l2(i) l3(i)}, were

the ln(i) (n = 1,2,3) are the three decomposition eigen-values of

gene (i) for the three leading principal vectors. We note that genes

having high normalized correlations relative to the other pairs of

genes will be closely located in the 3-D space. It is also important

to note that clusters of genes imply groups of genes with functional

resemblance.

Retrieval of lost information and the holographic

network. The last step of the FH analysis process is aimed to

retrieve information, embedded in higher dimensions, that might

have been lost in the dimension reduction process or in the affinity

transformation (i.e. non normalized correlation values) ([33–35]

and Appendix S2). The affinity transformation can make more

transparent highly correlated sub-groups, attenuate inter group

correlation and at the same time retain internal functional

relations within the sub-groups. Together with the PCA

procedure, groups are easier to detect and analyze. For that we

linked each pair of nodes by lines colored according to the original

(non-normalized) correlations. In addition, we link nodes with

correlations above/below a threshold, or within a range of values

according to the features of interest.

Figure 3. The matrix of normalized correlations. The matrix corresponds to the correlation matrix shown in Figure 2. (A) The supervised sorted
matrix (according to the operons). (B) The unsupervised version, sorted by the dendrogram algorithm [30]. Note that the dendrogram algorithm sorts
the operons in a different order (7,3,1,5,2,4,6), as explained in the text.
doi:10.1371/journal.pone.0002708.g003

Genome Holography
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The resulting manifold represents the functional relations

between the genes and the connecting lines between the genes

retain the information in the higher dimensions. In this sense the

manifold (connectivity diagram) in the abstract 3-D space can be

viewed as a ‘‘holographic network’’.

Results

Holographic presentation of the genes
In Figure 3 we showed that the normalized correlation matrix

can efficiently sort the genes according to the operons they belong

to. In Figure 5 we show the holographic presentation of the matrix

of normalized correlations using the projection on the 3-D space as

described above. Genes belonging to the same operon are marked

by the same color. Pairs of genes with correlations above 0.7 are

linked by lines colored according to the correlation values. As can

be seen, only genes belonging to the same operon are linked,

reflecting the fact that inter-operon correlations are weaker than

intra-operon ones.

Operons Holography–revealing function-form relations
We continue with holographic zooming [33–35] analysis of sub-

groups of genes–the operons in this study. The idea is to separately

perform the collective normalization on the correlation matrix of

the sub-group and to calculate a new 3-D space for this specific

sub-group. A clear correspondence between the genes functional

relations and the known structures of the operons is revealed. The

results are illustrated for two specific operons–spoVFA [39] and

pyrR [40] that have non trivial internal organization.

Holography of the spoVFA operon
The spoVFA operon is composed of five genes that are divided

into two functional sub-units (Figure 6A): 1. spoVFA and spoVFB,

that are responsible for the dipicolinate synthase of subunits A and

B that are involved in sporulation. 2. The asd, dapG and dapA

genes that are involved in vegetative growth and in stage 5 of

sporulation [41]. We can clearly observe in Figure 6B that the two

sub-units form two distinct clusters in the normalized correlation

Figure 4. The unsupervised results of the dendrogram algorithm applied on the expression matrix (left) and on the matrix of
normalized correlations (Figure 3B) (right). Genes belonging to the same operon are marked by the same color. Note that four mismatches
occur only in the matrix of normalized correlations (left).
doi:10.1371/journal.pone.0002708.g004

Genome Holography
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matrix. In Figure 6C we see that the genes of the two sub-units are

located apart and are cross-linked with weaker correlations.

Holography of the pyrR operon
The pyrR operon [40] has a more complex structure, as shown

in Figure 7A. It is composed of 10 genes that are organized in

three sub-units: 1. The gene pyrR that acts as self inhibitor of the

operon as a whole and also acts as an inhibitor of the three sub-

units. 2. The gene pyrP is located downstream from the pyrR with

a terminator segment in between. 3. The third sub-unit is

composed of 8 genes downstream from the pyrP with terminator

and promoter segments in between. The operon is regulated by

sigA and purR.

The normalized correlation matrix of the pyrR operon genes,

pyrR, pyrP, pyrB, pyrC, pyrAA, pyrAB, pyrK, pyrD, pyrF and

pyrE, and the corresponding holographic presentation are shown

in Figure 7B,C. In Figure 7C we can clearly see that pyrR and

pyrP are distinct from each other and from the 8 genes of the third

sub-unit of the operon. We also note that the holographic

functional organization of the operon in the 3-D space

corresponds to the structural organization of the operon, as pyrR

gene is linked only to the pyrP which, in turn, is linked to the rest

of the genes. The genomic scheme of the operon in Figure 7A is

consistent with these results, as pyrR and pyrP are separated from

the rest of the genes in the operon by terminators. Furthermore, it

was previously shown that pyrR is a protein that regulates the

expression of genes and operons of pyrimidine nucleotide

biosynthesis (pyr genes) in many bacteria and specifically in B.

subtilis. pyrR acts by binding to specific sequences on pyr mRNA,

causing transcriptional attenuation when intracellular levels of

uridine nucleotides are elevated [40].

Gene regulation
Regulatory mechanisms controlling expression of genes are

diverse, ranging from the basic unit of regulation, the operon, to

activators, repressors, etc. In this section we demonstrate the

ability of the FH method to capture regulatory mechanisms within

operons, expanding our discussion to inter-operon relations

existing mainly due to regulation. We focus on the example of

negative regulation by repressors (inhibitors of transcription). We

Figure 5. Holographic presentation of the genes in the 3-D space. The genes are located in the 3-D space whose axes are the three leading
principal components calculated by applying the PCA [22] to the matrix of normalized correlations. The location of each gene is according to its three
decomposition eigen-values for the three principal vectors. The links between pairs of genes are for correlations above 0.7.
doi:10.1371/journal.pone.0002708.g005

Genome Holography
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expect to detect strong negative correlations (or anti-correlations)

between a repressor gene and the genes that are part of the operon

it inhibits. To examine these assumptions, we chose to study the

regulation network related to sporulation that has gained much

interest over the years [41], [42]. We note that despite the wide

accumulated knowledge and the recent progress in understanding

this system, the dynamics (function) of the competence network is

still not completely understood, especially with regards to its

relations with the sporulation network [42], [43]. At the core of the

bacterial competence system is comK, a positive auto-regulatory

gene occupying a central position in the signal-transduction

network of the competence system. Several key components of this

network and their known regulatory roles are represented in

Figure 8 and described in Table 2.

To proceed with the investigation of this system, we chose to

analyze the relevant part of the expression data: the complete data

set consists of response to 37 different antibiotics, divided into

functional sub-groups according to their mechanisms of action

(stress) on the bacteria [21]. Since we are interested in competence

regulation, we decided to analyze gene-expression in response to

the sub-group of antibiotics that affect cell division. More

specifically, we calculated the inter-gene correlations for the

response to the group of antibiotics interfering with DNA topology

labeled ‘‘topo’’ [21].

In Figure 9A, 9B we show the resulting matrix of normalized

correlations and the corresponding holographic map of gene

response in the 3-D PCA space. To single out inhibitory relations

we also linked anti-correlated genes–genes that have high negative

correlations. To clarify the results, we first present in Figure 9A the

matrix of normalized correlations and the holographic network

when only two negative regulators–rok, a repressor of comK, and

abrB, a negative regulator of both comK and rok.

Time progress of the gene network response
In this section we illustrate the ability of the new approach to reveal

additional dynamical motifs related to the time progress in the

response of the gene network to the antibiotic stress. For this purpose,

we examined the response of the competence network, the ‘‘topo’’

antibiotics, at three time points–10, 40 and 80 minutes after

exposure. The comparison was performed using the ‘‘holographic

projection’’ [33–35]. First, we calculate the leading principal

components for the joint correlation matrix at all the time points,

and then we calculate the correlation matrices for each time point

separately. We then project the matrix for each time point onto the 3-

dimensional PCA space calculated for the joint correlation matrix. In

Figure 10 we show the resulting holographic networks for the three

time points after the exposure. It is quite obvious that the holographic

Figure 6. The spoVFA operon. In (A) we show schematically the known internal genomic sequential structure of this operon [39]. The operon
promoters are represented by blue arrows and the terminator is represented by a red crossed circle. Binding sites of regulators sigK, sigA and ND are
marked by blue rectangles. In (B), we show the ordered matrix of normalized correlations and the holographic representation of the operon is shown
in (C). We note the clear correspondence between the functional relations as captured by the holographic representation and the known operon
organization.
doi:10.1371/journal.pone.0002708.g006

Genome Holography
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network has changed over time. The main change is detected

between the 10 and 40 minutes time points. At 80 minutes after

exposure, there is an additional effect, as abrB and rok become

functionally more similar (closer in the 3-dimension PCA space) and

show higher correlations between them.

Harnessing the method for functional predictions
We demonstrated above the ability of the method to successfully

capture known functional relationships between genes belonging

to the same operon and also across operons. Based on this

demonstrated efficiency of the method, we proceeded to test its

ability to predict/reveal unknown functional relations. To test this

ability we investigate in this section the spoVAA operon [44]. In

Figure 11A we show the currently presumed internal structure of

this operon. The matrix of normalized correlations and its

holographic networks in the PCA space are shown in

Figures 11B and 11C, respectively. Inspecting these results, we

observe that lysA has weak correlations with the other genes in the

operon. These results are somewhat unexpected since no

terminator or regulation factors were found between spoVAF

and lysA (Genbank L09228). Azevedo et al. found a 2.3 kb

transcript originating about 1 kb upstream of the lysA start codon,

suggesting that transcription of spoVA continues into the lysA

gene. However, the lysA gene is also transcribed monocistronically

as a 1.3 kb transcript. A possible explanation might be the

existence of a regulation element, a terminator perhaps, between

the spoVAF and lysA genes. Another possible explanation can also

be the existence of an additional unknown pathway (through

another gene) in which the lysA gene acts as a negative regulator of

the spoVAA operon. LysA mediates the last step of the lysine

biosynthesis [45]. The lysine-mediated gene regulation in bacteria

appears to operate via a unique RNA structural element (similar to

riboswitch that is involved in the regulation of purin biosynthesis

[46]). The LYS element is characterized by its compact secondary

structure with a number of conserved helices and extended regions

of sequence conservation, which could be necessary for specific

metabolite binding [45]. Comparative genomic analysis predicted

conserved RNA secondary structures in lysine metabolism genes

Figure 7. The pyrR operon. (A) Schematic internal sequential structure presentation [40]. Promoter represented by a blue arrow. Terminator
represented by a marked circle. Rectangles represent regulation regions of sigA, purR and pyrR. (B) Matrix of normalized correlation. Note the low
correlations between pyrR to the rest of the genes, matching its function as a negative regulator. (C) FH holographic presentation, with correlation
values above 0.7 marked by lines.
doi:10.1371/journal.pone.0002708.g007

Figure 8. A representation of the known regulation relations in
our regulation gene network [41–43]. Arrows and blunt arrows
represent positive and negative regulation, respectively. At the center
of the chart lies the auto-regulatory gene comK. abrB and rok are
repressors of comK, and degU is a positive regulator. comK is a positive
regulator of the comG operon (comprised of the genes comGA to
comGG and yqze) and a repressor of the rok gene.
doi:10.1371/journal.pone.0002708.g008
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such as lysC and lysA. Thus, our analysis supports the genomic

prediction of a regulatory element adjacent to the lysA gene and

transcription of lysA monocistronically.

Predicting the function of y-genes
A common widespread approach to predicting the function of y-

genes (genes whose function is not known) from direct tests, like

knockout experiments, is to investigate the homology (genomic

sequence and expression profile) between the y-genes and other

genes whose function is known. We propose that our analysis

method provides a new functional prediction tool for y-genes, by

looking at the homology between the functional structures in the

PCA space. More specifically, we search for homology between

the structures of the functional correlations of two genes in the

PCA space with another set of genes (e.g operon). In other words,

we look at the homology between the structures of the holographic

networks that the two genes form–searching for holographic

homology. We note that this holographic homology can be used as

a contemporary annotation tool to further enhance the biological

knowledge of the gene network.

To examine and illustrate this idea, we tested a set of randomly

selected y-genes out of the 641 gene that have description

unknown [32]. Those genes were added to the operon-clustered

genes and co-analyzed. The y-genes that expressed high similarity

Table 2. Selected genes participating in the competence system [42–43].

# Gene Operon Relations in the system Function

1 comK comK Self activator and positive regulator of comG competence transcription factor (CTF)

2 comGA comG Positively regulated by comK DNA transport machinery

3 comGB Exogenous DNA binding

4 comGC DNA transport machinery

5 comGD

6 comGE

7 comGF

8 comGG

9 yqze

10 degU degSU Positive regulator of comK two-component response regulator

11 rok rok Negative regulator of comK and negatively
regulated by comK

repressor of comK

12 abrB abrB Negative regulator of comK transcriptional regulator

At the core of the bacterial competence system is comK, a positive auto-regulatory gene occupying a central position in the signal-transduction network of the
competence system with several key components of this network and their known regulatory roles.
doi:10.1371/journal.pone.0002708.t002

Figure 9. Holographic network of comK regulation. (A) The matrix of normalized correlations for the comK genes and the rok and abrB
regulators. (B) The functional relations as revealed in the corresponding 3-D PCA space. The genes of each operon are marked with the same color.
Genes with strong positive correlations (correlations above 0.7 in the [0,1] scale), or with strong negative correlations (correlations below 0.3 in the
[0,1] scale) are linked. The colors of the lines indicate the level of correlations–blue for negative and red for positive. Note that the abrB and rok genes
which are negative regulators of comK are located at a distance from it in the PCA space, and are connected by negative correlations to the comK
cluster.
doi:10.1371/journal.pone.0002708.g009
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to known operons, more specifically, y-genes that were clustered

with a known operon, were selected and further investigated.

Doing so revealed several y-genes that have relatively high

correlations to one of the operons. We show here one example

for the unknown gene yjlC that the analysis revealed has high

correlations with the purE operon and with the known gene purA.

The operons in this selected sub-network share the sigA binding

factor and the negative regulative factor purR [32]. From the

matrix of normalized correlations shown in Figure 12A, it is clear

that the unknown gene yjlC (red rectangle) has high correlations

with the gene purA and with all the genes of the purE operon, and

low correlations with the purR and xpt operons (blue). These

selective correlation relationships are further noticeable in the

corresponding holographic network shown in Figure 12B, where

genes with correlation values above 0.7 are connected by lines.

Zooming into the correlation sub-network of the unknown gene

yjlC and purA gene and purE operon is shown in Figure 12C.

Our analysis clearly demonstrates that the functional relations of

the unknown gene yjlC with the pure operon have high functional

similarity (holographic homology) to the functional relations of

purA with the purE operon. Such functional homology between

yjlC and purA (Figure 12) may indicate that the function of yjlC is

Figure 10. The correlation matrices for the competence gene network for three time stages, projected on the joint FH holographic
3-D of the PCA space for all time points (Figure 9). (A) After 10 minutes of exposure, (B) after 40 minutes of exposure and (C) after 80 minutes
of exposure to antibiotics interfering with DNA topology.
doi:10.1371/journal.pone.0002708.g010

Figure 11. The spoVAA operon [44]. (A) Schematic internal sequential structure presentation. The promoter is represented by a blue arrow, the
terminator by a red crossed circle, and the binding site of the activator by a purple rectangle. (B) Matrix of normalized correlations. (C) FH holographic
presentation in 3D PCA space, where correlation values above 0.8 are shown in lines.
doi:10.1371/journal.pone.0002708.g011
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related to purine biosynthesis, illustrating the predictive power of

the functional holography analysis.

Discussion

We presented a new, system-level analysis of the complex gene-

network response to environmental stress measured by DNA

chips. The method is based on the Functional Holography (FH)

analysis that was originally developed for analyzing multi-channels

recordings of cultured neural networks activity and of recorded

brain activity.

We used the method to analyze gene expression of Bacillus

subtilis exposed to sub-lethal levels of 37 different antibiotics. The

matrices of gene correlations were computed and analyzed using

the functional holography method. Then, relevant information

was extracted from the matrices of normalized correlations by

application of the PCA dimension reduction algorithm. The

success in retrieving meaningful information proves the assump-

Figure 12. Regulation of purE operon [29]. (A) Matrix of normalized correlations demonstrating the regulation of the xpt, purE and purA
operons by purR with low correlation values. (B) FH holographic presentation in PCA space of the genes of purE operon, purA, xpt, pbu, purR and yjlC
genes. Note the relationships between the pur operons and the yjlC gene. (C) FH zooming of the purE operon genes and purA and yjlC genes. Note
the high resembles between purA and yjlC.
doi:10.1371/journal.pone.0002708.g012
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tion that indeed valuable information is embedded in the

correlations (similarities) between the expression profiles of

different genes.

First we demonstrated the ability of the method to act as an

unsupervised and semi-supervised method for identifying the

sorting of the genes into operons. We then demonstrated that the

approach can also be used to reveal the internal structure of the

operons, thus relating the function (expression) to the form.

Therefore, it might be possible in the future to use this method as

means for unsupervised detection of operons and completion of

information about the internal structure of operons for which the

internal sequential information is partial. We showed a specific

example of using the method to deduce information about the

existence of unknown structural motif in the case of the spoVAA

operon. Another illustration of the predictive power of the method

was in regard to the yjlC unknown gene. We found that the

structure of its correlations with the purE operon is very similar to

that of the purA operon. These results demonstrated that the

method can be used as a prediction tool to reveal functional

similarities of unknown genes or operons.

Focusing on specific functional gene network, the competence

network, we analyzed the response to a specific class of antibiotic

materials–the topo. We found that the dynamical (functional)

correlation motifs in the corresponding holographic network (the

network in the abstract 3-dimensional space of PCA principal

vectors) match the known regulatory relations of the competence

system. Performing the analysis at three time points of response,

we could identify the progress in the dynamical response. We note

that our method, significantly simplifies the interpretation of the

complex gene-expression data. Still, this new method requires

further development in quantifying the calculated changes.

Here we focused on inspection of the internal structure of

operons, but we note that the method can also perform genome-

wide analysis by looking at the inter-operon correlations and thus

constructing a network of inter-operon functional connectivity.

We also note that the method can be used to inspect clustering

for metabolic paths, transcription factors and functional paths. In

addition to the analysis that was done for the correlations between

genes, one can also investigate the correlations between the effects

of the different antibiotics to reveal relations in the effects of

different antibiotics or effects of unknown new chemical agents.

Supporting Information

Appendix S1

Found at: doi:10.1371/journal.pone.0002708.s001 (0.72 MB

DOC)
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