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Abstract: In this article, I develop a formal model of free will for complex systems based on emergent
properties and adaptive selection. The model is based on a process ontology in which a free choice
is a singular process that takes a system from one macrostate to another. I quantify the model by
introducing a formal measure of the ‘freedom’ of a singular choice. The ‘free will’ of a system, then,
is emergent from the aggregate freedom of the choice processes carried out by the system. The focus
in this model is on the actual choices themselves viewed in the context of processes. That is, the nature
of the system making the choices is not considered. Nevertheless, my model does not necessarily
conflict with models that are based on internal properties of the system. Rather it takes a behavioral
approach by focusing on the externalities of the choice process.
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1. Introduction

What is it that we mean when we ask if a system possesses free will? In most discussions of free
will, the nature of what freedom entails is often taken for granted; if we ask if a given choice is free,
we are assuming that it is a well-formed question to begin with. Rather than asking if a given choice is
free, we might instead ask what, in general, a free choice is. In other words, a more formal and rigorous
definition of freedom of choice ought to be a prerequisite to any deeper understanding of free will.

This is not merely academic. In EPR tests in quantum mechanics, it is often assumed that
the experimenters have free will (see [1] for an overview). On the other hand, as Bell suggested,
one could replace the experimenters with a pair of machines capable of making suitably random
measurements [2]. The variables measured by the machine are the same as the variables measured
by the experimenters, but do machines carrying out pre-programmed algorithms to produce random
measurements count as having free will? While they might produce measurements that are provably
more randomly chosen than those chosen by experimenters, it is hard to say if a presumably
non-conscious entity can possess free will. Therein lies the problem. Does it even make sense to
refer to the machine’s actions, which are guided by a pre-programmed algorithm, as making a choice?
As Nozick has rightly pointed out, “[a]n action’s being non-determined is not sufficient for it to be
free–it might just be a random act” [3]. A random act is no more free than a fully determined one.

Thus, it is that freedom of choice has a bearing on the nature of consciousness. Does our
conception of consciousness drive our definition of free will or is it the other way around?
Explicating the relationship between consciousness and volition has moved well beyond the theoretical.
Famously, the Libet experiments suggest to some that volition can be an unconscious act [4].
Additional experiments have built on Libet’s work [5,6]. On the other hand, our judgment of what this
means appears to be driven by the outcomes. Specifically, experimental work by Shepherd suggests
that the conscious causation of behavior tends to be judged as being free even when the causation is
explicitly deterministic [7].
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The question of whether free will is compatible or incompatible with (causal) determinism
has long been central to the nature of free will, at least in the Western perspective [8]. However,
the indeterminacy of quantum systems raises similar issues for seemingly opposite reasons [9,10].
In other words, one could argue that both causal determinism as well as quantum indeterminacy
are incompatible with free will. On the one hand, one can deny the existence of free will on the
grounds that all choices are pre-determined in some way. On the other hand, one can deny the
existence of free will on the grounds that all choices are simply macro-manifestations of random
quantum processes, i.e., the universe is nothing but a collection of randomly fluctuating quantum
fields. However, this misses a deeper point captured succinctly by O’Connor when he notes that
“though freedom of will requires a baseline capacity of choice . . . the freedom this capacity makes possible
is, nevertheless, a property that comes in degrees and can vary over time within an individual” [11]
p. 183 (original emphasis). The usual debate over the existence of free will is thus really a debate over
the capacity of choice. Less attention is paid to the nature of the freedom that this capacity makes
possible. It is this freedom that is the motivation for the model described in this article.

In order to build a model of the freedom engendered by the existence of a capacity of choice,
it is necessary to assume that such a capacity exists. As such, the model that follows sidesteps the
question of whether or not free will actually exists. Rather, it proceeds from the assumption that
capacity of choice exists for some systems and develops a measure for the freedom that follows from
this assumption. The model is based on a process ontology in which a free choice is a process that
takes a system from one macrostate to another. I lay the groundwork for this by first describing the
self-evident characteristics of what I will call adaptive free choices. This very roughly corresponds to
what O’Connor calls “willing” or the “conscious forming of an intention to act” (see [11], p. 178) though
it does not explicitly presume an agent or system is conscious. I then develop the process ontology on
which the formal model is constructed where I show that both determinism and indeterminism have a
role to play in the nature of free choices. The formal model is then quantified by the ζ-function as a
measure of free choice and the Z-function as a corresponding measure of free will which is taken to be
an aggregation of free choices. Free will in this model, then, is not taken to be the capacity of choice,
but rather is viewed as an aggregation of the freedoms that a capacity of choice, if it exists, would
make possible. Finally, I discuss methods for assessing certain aspects of the model and for assigning
values to certain variables within the model.

2. Adaptive Free Choice

What do we generally think of when we think of free will? O’Connor claims that systems that
possess free will should generally be possessed of three capacities: (1) an awareness and sensitivity to
reasons for actions; (2) an ability to weigh and critically probe desires and intentions, and possibly
to reevaluate goals; and (3) the ability to choose, based on reasons, which action to take on a given
occasion [11]. While O’Connor claims that those are necessary for a system to possess free will,
are they sufficient?

Suppose that I open my refrigerator with the intent of having something to eat and am presented
with a variety of options. It is immediately obvious that, if my refrigerator only contained one thing,
then I wouldn’t have much of a choice. It seems clear, then, that, aside from any internal capacities that
I might possess, one very clear external factor in assessing the freedom of a choice is the number of
options that are available to choose from. By its very nature, the word “choice” implies that there must
be a minimum of two options to choose from. However, it is also necessary that I be able to read those
options (or a certain subset of them) into my memory and then process them, all in a finite amount of
time (it wouldn’t really be much of a choice if it took me an infinite amount of time to read in all the
options). As such, there is a computational aspect to free choice. Indeed, several computational models
of free will exist [12,13]. However, we also assume that, for free will to exist, the system or agent
experiencing it must have enough time to assign meaning or a value judgment (i.e., a weight) to each
possible choice. In other words, if the possible choices are read into the system’s memory too quickly,
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one could easily attribute any subsequent choice to mere instinct. O’Connor identifies three types of
“will” or “desire”: (1) minimally voluntary action, (2) willing or the conscious formation of an intention
to act (briefly mentioned above) and (3) an urge or want [11]. It seems clear, then, that the capacity to
weigh and probe desires and intentions, i.e., to assign meaning or a value judgment to each possible
choice, is linked to the distinction between a minimally voluntary action and a “willing”. What I refer
to as an adaptive free choice, then, includes the capacity to weigh and probe desires, the formation of
an intention to act based on the action of weighing and probing desires, and finally the carrying out of
the action whose intention was formed. That is, I assume that it is not merely sufficient to possess the
capacity of choice. Some action representing the choice being made must also take place. This is not a
trivial point.

Returning to the refrigerator, for the sake of simplicity, let’s suppose that I only have two
options—carrots and peppers. With only two choices, there is no real concern about the reading
and processing time being too lengthy and we can assume, for the moment, that neither is it too short,
i.e., I am free to stand in front of the refrigerator and ponder these two possibilities, assigning meaning
to them in the form of weights. Let us suppose that I then make a choice—carrots, for the sake of
argument. There is an often overlooked assumption in discussions of free will having to do with
the nature of actually enacting a choice. That is, we assume (usually implicitly) that, to a generally
high degree of probability, enacting the choice results in the desired outcome. To put it another
way, in choosing carrots, I am relying on the fact that there is a very high probability that, at some
point between choosing carrots and actually removing them from the refrigerator and ingesting them,
they remain carrots and do not spontaneously turn into peppers. That is, we rely on the fact that the
universe is a relatively stable place. Consider what would happen if we could not be confident that our
choices lead to their expected outcomes the vast majority of the time. If this were the case, we would
likely give up on choosing since the outcomes would be closer to random and thus the act of making a
choice would be pointless. As Nozick pointed out, a random act is not a free act [3]. Thus, there must
be some level of determinism involved in free choices in the sense that the chosen action itself is nearly
deterministic. The crucial point, however, is that each possible choice is a different action. Thus, it is that
we are choosing between different processes rather than labeling each choice as a different outcome
of the same process [14]. In other words, in order for the choice to be truly free, we have to have a
high degree of confidence that the state that we finally choose actually occurs. Otherwise, there is no
point in making a choice in the first place. However, this means that, when presented with a set of
possible choices, each choice must represent a fundamentally different process, e.g., the actual process
of reaching into my refrigerator for a carrot is not the same as the actual process of reaching into
my refrigerator for a pepper (at the very least, they are not in the exact same location and thus the
processes involve different spatial coordinates).

These characteristics of free choices are partially behavioral since they are based on the system’s
actions and its reaction to those actions. We weigh our choices based partly on past experience. If I have
eaten both carrots and peppers before, I will know what they taste like and can use that information
to place weights on each option. The fact that previous behavior can inform future behavior is a
characteristic of many downwardly causal processes. This makes the weighting of the choices and
the existence of a memory key differentiators, and motivates the use of the term adaptive (see [15]).
This distinguishes them from O’Connor’s minimally voluntary actions which I interpret as upwardly
causal. A minimally voluntary action is distinguished from a purely instinctual one by the fact that it
still leads to a desired outcome (see [11] for a fuller discussion).

If we expect the outcomes of chosen actions to be nearly deterministic in most instances, how can
we reconcile this with the fact that the quantum fields of which the universe is constructed, display a
certain level of indeterminacy? Is it possible to obtain deterministic outcomes from sets of random
processes? This, in fact, is exactly what happens in the thermodynamic limit of statistical physics. I use
similar methods to construct the process ontology that is at the heart of this model.
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3. Process Ontology

In order to reconcile a seemingly deterministic macroworld with a fundamentally random
microworld, I introduce a process ontology in which we may classify choices. The fundamental
entities of this ontology are systems, states, and processes. However, I refer to this as a process ontology in
order to emphasize the fact that the aim is to model both the internal reasoning about possible actions
as well as the fulfillment of a chosen action.

A system σ in this ontology can be anything one chooses it to be. We define states as follows.

Definition 1 (State). A state ψ(λ) is a unique vector configuration of the fundamental components of a system
as specified by some variable or set of variables λ.

The states of systems are thus functions of variables λ which allow us to specify the state.
Processes, then, take states from one configuration to another by changing λ.

Definition 2 (Process). A process π is a means by which a system may transition between some fixed state
ψi(λi) and one (and only one) of n possible states ψj(λj).

That is, though a process always ends in a single definite state, it may probabilistically end up
in one of a possible collection of states. We assume that the outcome state is definite (i.e., is not a
superposition). A graphical representation of a process is shown in Figure 1.

πij: ψi(λi)

ψj=1(λj=1)
...

ψj=k(λj=k)
...

ψj=n(λj=n)

Figure 1. A process πij takes a system σ from some fixed state ψi(λi) to one (and only one) of n
possible states ψj(λj).

The multiplicity ω(πij) for process πij is then defined to be the number of possible outcomes, i.e.,
ω(πij) = n.

These definitions now allow us to describe a spectrum of processes. It might be true, for instance,
that, for a given process πij, the multiplicity is ω(πij) = n = 1. That is, there might be only one
possible outcome for the process. Such a process is thus fully deterministic. Conversely, it may be true
that ω(πij) = n > 1 and that all outcomes have an equal likelihood of occurring, i.e., the probability
distribution for the process is flat. Such a process would naturally be fully random since no single
outcome is favored over any other.

It is important to distinguish here the difference between determinism and causality. In this
model, all processes are causal in that they follow from other processes. This includes “spontaneous”
processes which are understood to follow from conditions produced by other processes. For example,
spontaneous particle creation can only occur because of the presence of the underlying fields.
This model would assume that the existence of those fields came about from some process, even if the
nature of that process is not known. Thus, though this model is causal, it is not fully deterministic.
The distinction between causality and determinism has been rigorously delineated by D’Ariano,
Manessi, and Perinotti, and we refer the reader to [16] for details.

I note that all these definitions can be broken into two possible categories—micro or
macro—depending on the level of the system under consideration. This has the usual meaning
from statistics and statistical mechanics. Thus, for instance, we can speak of a pair of (fair) dice
as having 36 different microstates and 11 different macrostates. In this case, the microstates are
the various configurations that produce a given macrostate. A pair of (fair) dice is a fairly simple
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system in which we assume the fundamental constituents (the dice) do not interact. In more complex
systems, interactions may occur between the various parts of the system. It is not necessary for
interactions to occur, however, in order to obtain a deterministic macrostate from a collection of equally
likely microstates.

Consider a simple two-state system σ in a state i = 1. Since it is a two-state system, any potential
process only has two possible outcomes: either the existing state evolves to itself or to the other state.
Let us assume that each of these states is equally likely to occur in the long run. Examples of such
systems include two-state paramagnets, fair coins (being flipped), etc. Thus, the process π1j for the
evolution of a simple two-state system is

π1j: ψ1(λ1)

ψj=1(λj=1)

ψj=2(λj=2) (1)

The multiplicity for this process is ω(π1j) = 2. If we assume that each of the two possible
outcomes is equally likely, the probability distribution is quite simple.

Now, consider a more complex system that is composed of smaller sub-systems. The more
complex system will be referred to as a macrosystem and its states and processes will be referred
to as macrostates and macroprocesses. I will distinguish these from the component microsystems,
microstates, and microprocesses by using capital letters. Thus, for example, if πij is a microprocess
taking a microsystem σ from some fixed microstate ψi(λi) to one (and only one) of n possible
microstates ψj(λj), then ΠI J is a macroprocess taking a macrosystem Σ from some fixed macrostate
ΨI(ΛI) to one (and only one) of N possible macrostates ΨJ(ΛJ).

As an example, consider a macrosystem ΣAB that consists of two non-interacting two-state
microsystems σA and σB that is in a state I = 1. The possible outcome states and the associated
probability distribution are shown in Figure 2:

Π1J : Ψ1(Λ1) = {ψA
1 (λA

1 ), ψB
1 (λ

B
1 )}

ΨJ=1(ΛJ=1) = {ψA
1 (λA

1 ), ψB
1 (λ

B
1 )}

ΨJ=2(ΛJ=2) = {ψA
1 (λA

1 ), ψB
2 (λ

B
2 )}

ΨJ=3(ΛJ=3) = {ψA
2 (λA

2 ), ψB
1 (λ

B
1 )}

ΨJ=4(ΛJ=4) = {ψA
2 (λA

2 ), ψB
2 (λ

B
2 )}

P(ΨJ)

J
1 2 3 4

0.25

Figure 2. The macroprocess Π1J has four possible outcomes determined by the possible outcomes
of each of the independent, non-interacting two-state subsystems. The probability of each possible
outcome is the same. Recall that, once enacted, a process ultimately only leads to a single outcome,
e.g., while the act of flipping a coin can lead to two possible states, once the flip has concluded, the coin
ultimately ends up in only one state.

The probability of any given macrostate is given by the multiplicity of that macrostate divided by
the total multiplicity. In this situation, there is only one microstate for each macrostate and so

P(Ψ) =
Ω1(J=K)

Ω1J
=

Ω1(J=K)

ωA
1j ·ωB

1j
=

1
2× 2

= 0.25 (2)
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where Ω1(J=K) is the number of microstates that correspond to macrostate J = K and where ΩI J =

ωA
1j · ωB

1j follows from the fact that multiplicities are multiplicative. Once again, the probability
distribution is flat.

Now, consider an even more complex macrosystem composed of N non-interacting two-state
microsystems and let us ask how many of the subsystems will be in the state j = 2 after the process
Π1J occurs. The answer is given by the multiplicity, which is

Ω1J =

(
N

Nj=2

)
=

N!
Nj=2!(N − Nj=2)!

. (3)

If N is very large, we can use Stirling’s approximation, N! ≈ NNe−N
√

2πN, which gives

Ω1J =
NN

NN2
2 (N − N2)(N−N2)

(4)

where N2 = Nj=2. The probability P(ΨN2) of a state ΨN2 occurring is plotted as a function of N2/N
for three different values of N in Figure 3 where I have normalized each distribution (see [17] Ch. 2).

P
(Ψ

N
2
)

N2/N
0.5 1.0

1.0

P
(Ψ

N
2
)

N2/N
0.5 1.0

1.0

P
(Ψ

N
2
)

N2/N
0.5 1.0

1.0

(a) (b) (c)

Figure 3. The normalized probability distribution for a two-state system is shown for (a) N = 10, (b)
N = 100, and (c) N = 1000 subsystems as a function of N2/N. As can be seen, for larger values of N,
a smaller number of macrostates tend to dominate over the rest. As N → ∞, the distribution tends
toward a delta function.

We can see from this that, as the size of the system increases, despite the underlying processes
being entirely random, the system tends to cluster in a small number of macrostates. As N →
∞, the system tends toward a single macrostate. That is, the transition between state 1 and some
state J becomes deterministic. From this we can see that sets of random microprocesses can lead to
deterministic macroprocesses.

The processes considered in the above example were non-interacting. The real world, of course,
includes interactions. An interaction between two systems is also a process that in some way changes
the variables of each system. As such, each subsystem is undergoing a process that is influenced by
the other subsystems’ processes. The details of the process ontology for such situations is beyond the
scope of the current work, which is intended as an introduction to the model. However, subsequent
works will elaborate on the underlying process ontology and discuss how it affects the distributions.
For the purposes of explicating the basic model of free will, the nature of the actual distributions is not
important. The distributions become important when assessing the actual choices that are fed into
the model.
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4. The Model

I will refer to any system that possesses the capacity of choice, as introduced in Section 2, as an
‘agent’. A choice can only be said to be free if the agent can make some judgment about all possible
choices in order to weigh them against one another, i.e., they must mean something to the agent.
Otherwise, the choice is random (and thus meaningless). In addition, the agent has to have a high
degree of confidence that the choice they finally make will actually be realized. Crucially, different
choices represent different processes. I thus define choice in the following manner.

Definition 3 (Choice). A choice is a (possible) macroprocess ΠI J that is a means by which a system may
transition between some fixed state I and one (and only one) of n possible states J .

Note that the lower-case n is deliberate and the reason will become evident in a moment.
For a particular choice to be free, the total number of choices presented to the agent at a given time,

which I will call the ‘choice ensemble’ Γ, must be read into the system’s memory and then processed
in a finite amount of time. Otherwise, the possibility of making a choice is undecidable. Likewise,
stability is assumed, as described in Section 2, in that the outcomes of the actions associated with each
choice do not change subsequent to the decision, i.e., carrots don’t spontaneously turn into peppers.

Given the above definition, I add the following axioms:

• Axiom 1.The most fundamental systems are irreducible to other systems, i.e., they contain no
interactions and cannot be partitioned.

• Axiom 2. All possible configurations, i.e., microstates, of fundamental systems are equally likely
in the long run.

• Axiom 3. A system’s macrostates are formed via interacting (micro)processes.
• Axiom 4. The probability that a choice will lead to its macrostate is arbitrarily high if the choice is

free, i.e., a free choice inevitably leads to a nearly deterministic outcome.
• Axiom 5. The number N of possible choices that a system has must be small enough to be read

into the system’s memory in a finite time.
• Axiom 6. The choices do not change at any time during the agent’s processing of the choices nor

during the agent’s enactment of the choice.
• Axiom 7. The choices must be distinct.

These are the formal axioms of the model. There are certain assumptions and definitions that fully
describe the model that will be introduced in the next section. However, from the formal standpoint,
we restrict ourselves to these axioms. It is worth noting that I do not require that the interactions of
Axiom 3 be classical. This is intentional. It is entirely possible that such an assumption will lead to
unusual results that require a refinement of the model, but that is an area for future work.

Now, suppose that some macrosystem Σ composed of k microsystems σ1, . . . , σk is presented
with an ensemble Γ of N possible choices Π11, . . . , Π1N . Each choice in the ensemble has nk possible
outcomes (hence the choice of a lower-case n in Definition 3). The probability distributions associated
with the choices in the ensemble are P1(Ψ; E1, K1), . . . , PN(Ψ; EN , KN) where Ei is the mean and Ki is the
variance for the given distribution. The ensemble of choices may be represented as a mixed distribution,

Γ(Ψ) = w1P1(Ψ; E1, K1) + w2P2(Ψ; E2, K2) + · · ·+ wN PN(Ψ; EN , KN) (5)

with weights wi ≥ 0, w1 + w2 + · · ·+ wN = 1 and where Γ(Ψ) is a convex function.
A particularly useful analysis of multimodal distributions is based on the distribution’s overall

topology. Ray and Lindsay give a method that utilizes what they refer to as the “ridgeline” function
which describes the shape of Γ(Ψ) as

Ψ∗(a) =

[
n

∑
i=1

aiK−1
i

]
×
[

n

∑
i=1

aiK−1
i Ei

]
(6)
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where a belongs to the n− 1 dimensional unit simplex Sn = {a ∈ Rn : ai ∈ [0, 1], ∑n
i=1 ai = 1}. Here,

Ki ∈ RD×D, Ei ∈ RD for a D-dimensional space and Ki and Ei correspond to the covariance and
mean of the ith component, respectively. This function can be used to identify the locations of the
peaks in the distributions if they are not clearly known [18]. Here, I will assume that the peaks are
reasonably distinct in that their individual means and variances, and thus their locations in the overall
distribution, are known.

Axiom 7 above captures the assumption that choices can only be said to be free if they are
reasonably distinct. If an agent is presented with two essentially identical choices, then there are
fewer criteria by which the agent can distinguish them and thus their distributions will have a certain
amount of overlap. If spatial information is included in their distributions, then they won’t overlap
perfectly since the two choices will, at the very least, represent different spatial locations. For example,
in choosing between two identical carrots, one is choosing between two objects that, though perhaps
otherwise identical, are in different spatial locations. In any case, one expects that the more distinct the
choices, the more free the ability to choose; if the choices are identical, the ability to choose is closer
to a random process, e.g., the choice between two nearly identical carrots is not as free as the choice
between a carrot and a pepper. A convenient measure of the distinctness of the choices in this case is
given by the Mahalanobis distance [18,19] between any pair of constituent distributions i and j in the
mixed distribution Γ(Ψ) given by

∆M(Ei, Ej, K) =
√
(Ej − Ei)TK−1(Ej − Ei) (7)

where Ei and Ej are the respective means and K is the covariance matrix. When the covariance
matrix is diagonal, this reduces to the standardized Euclidean distance. The Mahalanobis distance is
preserved under full-rank linear transformations of the space that is spanned by the data comprising
the distributions. Intuitively, then, the larger the value of ∆M, the more distinct choices i and j will be.
Within the full ensemble of choices Γ(Ψ), the freedom of choice i depends on the minimum distance
∆M between i and each other choice in the ensemble min(∆M)i.

Capturing Axiom 5 proves to be a bit tricky. We could quite simply define a time function T that
depends on the total number of choices N and require that it be finite. However, one might suppose
that different values for ∆M or even Σi will affect the time required to read in and process the choices.
For instance, if two neighboring choices are not particularly distinct in that they have considerable
overlap in their individual distributions, this might lead to the agent spending more time processing
and assigning weights to these two choices. Thus, I will assume that the time it takes for the agent to
read in and process the choices is some function of their number N as well as the general topology Ψ∗

of the distribution, i.e., T(Ψ∗, N). The crucial requirement is that

tmin < T(Ψ∗, N) < ∞ (8)

where tmin is some minimum time below which the choice becomes either minimally voluntary or
purely instinctual. This ensures that the information can be read into memory and processed in a finite
amount of time.

It is debatable whether, aside from requiring that T be finite, we also need to require that it be
minimized but greater than tmin. Obviously if T is too small, the system is not extracting meaning
from the process and thus the choice is minimally voluntary or instinctual. Hence the lower bound on
T. On the other hand, one could argue that a shorter time means the system is more efficient. Greater
efficiency does not necessarily mean less freedom. Thus it is that we also might require that T be as
close to tmin as possible without dropping below it. I will leave this point unanswered in this initial
version of the model. However, I discuss some related points in Section 5.

The covariance, time function, and minimum Mahalanobis distance, then, provide a means of
measuring Axioms 4, 5, and 7, respectively. This leads us naturally to a measure of the “freedom” of
any particular choice in the ensemble.
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Definition 4 (Free choice). Given a finite number of possible choices N from ensemble Γ(Ψ), the “freedom” of
choice i is given by the function

ζ(Ki, T, min(∆M)i)i = Ci ×K−1
i × T(Ψ∗, N)×min(∆M)i (9)

where Ci is a constant of proportionality with units of inverse time.

I have assumed that maximizing the freedom of the choice entails minimizing its covariance since
this increases the “sharpness” of the probability distribution within the ensemble. The larger the value
of the ζ-function, then, the more free the choice.

This, of course, is only a measure of the freedom of a single choice. It is entirely possible that an
agent could have many free choices and many non-free choices. One would assume that a majority of
choices for any agent said to possess free will would have a high measure of freedom. The question is
whether freedom in this sense is additive or multiplicative. We can answer this by returning to the
statistical arguments that underpin the first few axioms.

In a certain sense, the freedom of a given choice is related to how easy it is to actually make that
choice. Roughly speaking, then, the more ways in which one can make a specific choice, the greater
the freedom of that choice. In that sense, freedom is similar to the outcomes of a process. The number
of outcomes for a given macrostate of a process is measured by the multiplicity which is multiplicative.
Thus, we can, by analogy, take freedom to be multiplicative in this particular model. As such, we can
take a measure of free will to be the following.

Definition 5 (Free will). Given some number of processes that result in choices, an agent’s free will is given by
a partition function

Z(ζ) =
N

∏
i=1

ζ(Ki, T, min(∆M)i)i, (10)

i.e., the level of free will that a system possesses over N choices is dependent in a multiplicative way on the level
of freedom in each of those choices.

5. Weighting the Choices

A crucial component of the model is the set of weights given in Equation (5). It is within these
weights that the action of choosing can either be entirely random (if the weights are all equal), entirely
deterministic (if there is only a single constituent distribution), or something in between. Freedom
is a spectrum between entirely random and entirely deterministic and it is this spectrum that ζ and
Z measure.

There are two basic methods for assigning the weights in the function Γ(Ψ) from a physical
standpoint. In the one case, the weights can be derived from the internal dynamics of the agent. That is,
we could begin with a set of k fundamental subsystems each with some state ψ(λ)i. These subsystems
could be allowed to evolve naturally through various processes πij such that the agent itself evolves
by some macroprocess ΠI J between two macrostates ΨI and ΨJ , where lowercase labels represent
microstates and uppercase labels represent macrostates. It is entirely possible that the agent could
have evolved via an entirely different macroprocess ΠI J′ to macrostate ΨJ′ under the same internal
conditions since the outcomes of the individual microprocesses are assumed to be random in
accordance with Axiom 2. Each of these possible macrostates may have an associated probability
distribution. Over a large number of evolutions of the agent to these macrostates, the weights can be
established statistically and an ensemble Γ(Ψ) can be formed.

Establishing the weights in this instance relies solely on the internal dynamics of the agent and
is an entirely upwardly causal process. It would be easy to dismiss this as a free choice either on the
grounds that, as a closed system, the agent is causally deterministic or on the grounds that it is simply
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reacting to underlying random processes. It is important to note that this does not mean the system is
free from external interactions. It simply means that the internal dynamics are what drives the state
evolution. The external constraints may be what sets the initial conditions in the form of the initial
state ΨI but plays no role in the determination of the actual weights.

However, no system is truly closed and so it is more accurate to assume that environmental and
contextual factors also drive the evolution of the processes that the agent undergoes. In actuality,
the agent interacts with its environment during the macroprocesses such that the dynamics are
influenced by the environment in addition to internal factors. Axiom 2 is still satisfied since the
underlying microstates of both the agent and its environment remain equally likely in the long run,
but conditions are now contextual such that the macrostates are now partially constrained by external
factors. These external factors can be construed as assigning a form of meaning to the weights. This is
a form of downward causation as discussed by Ellis and others (see, for example, [20]). Specifically,
this can be viewed as a form of decoupling similar to dynamic or symbolic decoupling that has been
argued as a possible driver for free will [21]. However, there is still something missing.

Let’s return to the choice between carrots and peppers in my refrigerator. If I choose carrots, did I
do so because my genetics and specific worldline in spacetime predisposed me to do so? If so, it was
hardly a free choice. Indeed, this is a typical feature of arguments against free will (see, for example, [22]).
On the other hand, perhaps I chose the carrot because I consciously weighed my past experience
against how I “felt” at the time. The difference between the two is that the second involves accessing
memory in the broad sense (i.e., including both stored practical information as well as potentially
qualia). One might argue that both instances involve memory, but that really isn’t the case. Accessing
memory is a necessarily downwardly causal process whereby a system in a higher-level state actively
accesses stored information about lower-level states. Specifically, the process of choosing from a set of
choices, which necessarily includes assigning them weights and accessing memory, is precisely a form
of adaptive selection [23]. Adaptive selection involves a process of variation (the process ontology in
this model) that generates an ensemble of states (here these are the macrostates) from which an outcome
is selected according to some kind of selection criteria. Indeed, the selection criteria themselves can
be chosen through a form of adaptive selection [15]. The presence of memory is fundamental to any
adaptive process. Thus, it makes sense to require that the determination of the weights in this model
be through a process of adaptive selection involving environmental and contextual factors, and the
accessing of the agent’s memory.

6. Conclusions

As I emphasized earlier, the model assumes that at least some complex systems possess a capacity
of choice. That may or may not be a valid assumption. However, it should be clear that human
behavior is at least partly guided by the assumption that we do have free will. Indeed, most legal
systems are built on the basis of that assumption. As O’Connor pointed out, then, the freedom that
this assumed capacity of choice makes possible should come in degrees and can vary in time with
individual agents [11]. Freedom, in this context, is an action taken by an agent and it is this action that
the model presented here aims to capture. Given the increasing importance of artificial intelligence and
autonomous systems, it also seems worthwhile to compare such actionable freedom across systems.
Could a machine make choices as freely as a human? Might there be a way to measure any difference?

In that sense, this model is one of behavior. It considers a system as being contained within an
environment that helps constrain that behavior. To a certain extent, there is a similarity here to the
cause and effect repertoires of integrated information theory (IIT) [24] and, indeed, the relationship is
part of a larger research project that is in the early stages. Additional work is required to determine
the form of the constant of proportionality in Equation (9) and determining the exact form for the
time function T. I suspect both may need to be determined through experiment. In addition, the
model presented here employs simple Gaussian distributions, but it would be interesting to see if
Fermi–Dirac, Bose-Einstein, or other such distributions give substantially different predictions.
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Clearly, the problem of free will is deeply tied to the problem of consciousness. As such, any model
will include some of the same baggage as models of consciousness including, for instance, how to deal
with qualia which appear to play a role in weighting the choices. More likely than not, the model will
need considerable revision and alteration in order to truly capture what we think of when we think of
free will, but it at least provides a basic framework for thinking about the problem.
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